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Yt : the process, θ : the underlying parameters

n Example 1. In chemistry and biology.

A reversible enzymatic reaction A↔B

typically modeled as

A B

U(y)

y: reaction coordinate

ttt dBdtYUdY σ+′−= )(

θ : the energy barrier heights etc.

EA EB
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Statistical Inference

n Given a stochastic model, infer the parameter values 
from data

n Major complication: the continuous-time model is only 
observed at discrete time points
Example: (i) Biology or chemistry experiments can track 
movement of molecules only at discrete camera frames

(ii) Finance or economics, interest rates, price index, etc. 
only observed daily, weekly or monthly



Likelihood Inference

n Data (Y1,t1), (Y2,t2),…(Yn,tn) from

n Likelihood

f(y|x,t,θ): transition density 

n In most cases, f does not permit analytical form; solving 
a PDE numerically is not feasible either



The Euler Approximation

n Idea: approximate an SDE 

by a difference equation 

n Obtain approx likelihood from the difference eqn

n Works well only if ∆t is small

Generated from 
Ornstein-Uhlenbeck process
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Exact



n If ∆t is not “sufficiently small”

¤ Choose a ∆t small enough so that the Euler 
approximation is appropriate.

¤ Treat the unobserved values of Yt as missing data.

n

n Data augmentation: 

n Use Monte Carlo to perform the augmentation

Bayesian Data Augmentation

yobs yobs yobsymis ymisymis ymis ymis ymis

∫∝ mismisobsobs dyyyPyP )()|,()|( θπθθ

)()|,()|,( θπθθ misobsobsmis yyPyyP ∝



Bayesian Data Augmentation (ctd)



Bayesian Data Augmentation (ctd)

Exact

k=31

Idea appeared simultaneously in stats & econ literature in late 1990s:

Elerian, Chib, Shephard (2001);   Eraker (2001);   Jones (1998)



Monte Carlo: Not that easy

n The smaller the ∆t , the more accurate the approximation

n However, the smaller the ∆t, the more missing data we 
need to augment: dimensionality goes way up!

n The missing data are dependent as well!

very slow convergence
of the Gibbs sampler
at small ∆t



Monte Carlo: Not that easy

n The smaller the ∆t , the more accurate the approximation

n However, the smaller the ∆t, the more missing data we 
need to augment: dimensionality goes way up!

n The missing data are dependent as well!

n The dilemma: 
¤ Low resolution (big ∆t) runs quickly, but result 

inaccurate 

¤ High resolution (small ∆t) good approximation, but 
painfully slow



Multi-resolution Idea

n Utilize the strength of different resolutions, while avoid their
weakness

n Simultaneously work on multiple resolutions

“rough” approximations quickly locate the important regions

“fine” approximations get jump start, and then accurately 
explore the space

.  .  . .  .  . 



Multi-resolution sampler

n Consider multiple resolutions (i.e., approximation levels) 
together. Associate each level with a Monte Carlo chain

n Start from the lowest level with a MC (such as Gibbs sampler); 
record the results

n Move on to the 2nd level

¤ In each MC update, with prob p do Gibbs

¤ With prob 1- p, draw y from previous lower level chain

augment y to (y, y') by “upsampling”

accept (y, y') with probability

n Move on to the 3rd level ……
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Likelihood at level k



A Pictorial Guide

y1 y2 ym.  .  . .  .  . 



A Pictorial Guide

y1 y2 ym.  .  . .  .  . 

with prob p Gibbs with prob 1-p

accept with }
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The comparison

multi-resolution vanilla Gibbs



Multi-resolution Inference

n Observation: A by-product of the Multiresolution
sampler is that we obtain multiple approximations to the 
same distribution

n Question: Can we combine them together for inference, 
instead of using only the finest resolution?

n Idea: Look for trend from successive approximations 
and leap forward



Illustration



Leap forward:
the multiresolution extrapolation



Richardson Extrapolation

)(lim 0 hAA h→=
n Richardson (1927)

n If is what we want

With resolution h

But for resolution h/2
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is an order of magnitude better!



Multiresolution Extrapolation

n We have multiple posterior distributions from the multi-
resolution sampler

n Extrapolate the entire distribution by quantiles

k =3
k =7



Inference of GCIR process

n

n Model for interest rate, bond rate, exchange rate

n No analytical solution for the transition density

n The data 

,)( tttt dBYdtYdY
ψσµγ +−= ),,,(θ ψσµγ=



Result

n Posterior distribution

K = inf

K = inf

vanilla Gibbsmultiresolution

3+7 extrap.



Result
n Posterior distribution

n Autocorrelation plots

K = inf

3+7 extrap.

K = inf

Faster and more accurate!



Result (continued)

n In Bayesian analysis, use MC samples to approximate 
posterior quantities of interest (eg., mean, median, etc.)

n Use quantiles from MC sample to construct interval 
estimate

)|( obsYE θθ →

)|()(ˆ )()(
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n Compare ratio of Mean Square Error given same 
time budget:



Application 1: Eurodollar rate

n 3-month Eurodollar deposit rate

n Use GCIR model
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Eurodollar rate

n Posterior mean, median and interval

,)( tttt dBYdtYdY
ψσµγ +−= ),,,(θ ψσµγ=



Application 2: Inference of Optically-
Trapped Particle Data

n McCann et al. (1999): Data of a particle in a bistable trap



n Again compare ratio of Mean Square Error given 
same time budget:



Discussion

n We introduce the multi-resolution framework

n Efficient Monte Carlo with the multi-resolution sampler

n Accurate inference with the multi-resolution extrapolation

n Extendible to higher dimensions

n Extendible to state space (HMM) models
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Extrapolation Theorem

n Assuming:

¤ The diffusion & volatility functions µ(•) and σ2(•) have 
linear growth

¤ µ(•) and σ2(•) are twice continuously differentiable with 
bounded derivatives

¤ σ2(•) is bounded from below

n Then for any integrable function g(θ):



Extrapolation Corollary

n Taking g(θ) to be an indicator function, then if a posterior 
cdf F has non-zero derivative at all points, its quantiles
can be expanded as:


