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Introduction

Quantum Mechanics

Fundamentally, quantum mechanics describes the properties
of physical objects by probabilities.

These probabilities determine the probability of a single
experimental measurement yielding a particular outcome.

These probabilities are parameterized by a parameter which is
called a state.
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Introduction

Measurement

To understand a state one performs measurements.

In the macroscopic world, we usually take measurement for
granted.

Day-to-day, if we want to know how long an object is, we
simply use a ruler, measuring tape, etc.

In experiments, we recognize that our measuring devices and
techniques are not perfect, so we append estimated
uncertainties to our measurements.
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Introduction

Characterization

The peculiarities of quantum mechanics can make the process of
measurement more complicated.

Classically, we can measure all degrees of freedom of an object
of interest.

The uncertainty principle tells us that precise measurement of
one property prevents us from achieving precise measurement
of conjugate properties, eg.

∆x∆p ≥ ~
2

.

One cannot fully characterize the state of a single quantum
mechanical object.
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Introduction

Estimation

If one cannot fully characterize the state of a quantum mechanical
object, how can we ensure that we are working with the states we
believe we are working with? How can we accurately test our
hypotheses?

With multiple copies (of course, no-cloning prevents true
copies, in general) one can make precise measurements of
more than one property of a state.

In the situation where we can repeatedly produce and test
states created with the same experimental settings, we can
circumvent this restriction.

Combining the results of multiple measurements lets us
produce an estimate of the full state
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Introduction

Statistical Theory

Quantum mechanics is a statistical theory at heart. Most physical
properties are expressed as superpositions of fixed states – we only
have direct access to the statistics resulting from repeated
measurements.

Repeated measurement of identical quantum states will, in
general, result in different outcomes.

Clearly, we cannot simply measure a property once, pack-up
and go home!!!!!
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Basics of State Estimation

Notation

Let us begin with some notation.

Denote the state by a d × d matrix ρ(θ), where θ ∈ Θ which
have the properties that tr ρ = 1, Hermitian and positive
semi-definite.

Denote the set of measurement operators by {X1 . . .Xm},
where each is a Hermitian matrix.

Born’s rule tells us that the probability of observing a
particular outcome when measuring a system is given by

pi (θ) = Tr (Xiρ(θ))
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Basics of State Estimation

Notation

For concreteness, consider an optical system where, for a given
initial state being estimated, a given measurement will either result
in a detection (success) or no detection (failure).

Let yi be a frequency count associated with Xi

The probability of observing yi detections for each
measurements Xi is then the product of Poisson distributions,
treating the counts as independent

p(y1 . . . ym|θ) =
m∏

i=1

(λTr (Xiρ (θ)))yi

yi !
e−λTr(Xiρ(θ)).

The above is the probability of observing the counts
{y1 . . . ym} given the parameter θ ∈ Θ.
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Basics of State Estimation

Notation

Some tidying up ....

Because p1 + · · ·+ pm = 1 we must have X1 + · · ·+ Xm = I.
Letting y1 + · · ·+ ym = n, by conditioning on n

multinomial distribution

P (Yi = y1, . . . ,Ym = ym|n; θ) =
n

y1! · · · ys !
p1(θ)y1 · · · ps(θ)ys
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Likelihood Analysis

Likelihood

This leads to

the log-likelihood

s−1∑
k=1

yk log pk(θ) + (n − · · · − ys−1) log (1− · · · − ps−1(θ)) .

.

where pj(θ) = Tr (Xjρ(θ)) for θ ∈ Θ

a generalized linear model with a linear link function!
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Likelihood Analysis

Some Properties of MLE

As the sample size tends to infinity...

... the MLE reaches the Cramér-Rao bound – the error in the
estimate is optimal

... the MLE estimate converges to the true parameter value
(Consistency)

... the MLE estimate takes on a normal distribution
(Asymptotic Normality)
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Likelihood Analysis

Consistency of MLE

As the sample size tends to infinity... the MLE estimate converges
to the true parameter value.

This is clearly a desirable property

There are a number of technical requirements placed on the
likelihood function to achieve consistency
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Likelihood Analysis

Asymptotic Normality of MLE

As the sample size tends to infinity... the MLE estimate takes on a
normal distribution.

Again, in order for asymptotic normality to hold, there are
several technical requirements

One requirement that could cause problems here is:

The true value must not lie on a boundary of the parameter
space Θ for example pure states which are defined to be rank
1 matrices.
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Parametrization

Parameterization

The parameter space is

Θ = {ρ = ρ(θ) : ρ∗ = ρ Tr ρ = 1 psd}
the interior of Θ are the positive definite matrices

the boundaries consist of disjoint union of rank 1 to rank
d − 1 matrices.

Again the pure states are rank 1 matrices.
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Deviance and Likelihood Analysis

Parametrization

ρ̂ and ρ̃ MLE estimates under all states and pure states respectively

D(ρ̂, ρ̃) = 2 {`(ρ̂; y1, . . . , ys)− `(ρ̃; y1, . . . , ys)} .

θ = (θ(1), θ(2)) for which the pure states is given by θ(2) = 0.
The score statistic for testing for purity is

S(θ̃) =

(
∂`

∂θ(2)

∣∣∣∣
θ=θ̃

)
I−1

22·1(θ̃)

(
∂`

∂θ(2)

∣∣∣∣
θ=θ̃

)′
,

I22·1(θ) = I22(θ)− I21(θ)I−1
11 (θ)I12(θ)

I(θ) =

(
I11(θ) I12(θ)
I21(θ) I22(θ)

)
.
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Deviance and Likelihood Analysis

Large sample theory

The score statistic for testing for purity has the result

S(θ̃) ∼ χ2
(d−1)2 ,

as n→∞ provided we “enlarge” our parameter space to

S = {ρ = ρ(θ) : ρ∗ = ρ Tr ρ = 1 TrXjρ > 0 j = 1, . . . ,m}
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One Qubit Case

1 Qubit Case

In order to provide some clarity, let us consider the simplest case.
If our parameters are θ = (a12, b12, a22), let

ρ(θ) =

(
1− a2,2 a1,2 + ib1,2

a1,2 − ib1,2 a2,2

)
.

The following new parameters are defined:

α1,2 = a1,2

β1,2 = b1,2

α2,2 = a2,2(1− a2,2)− (a2
1,2 + b2

1,2).
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1 Qubit Case ctd.

We have:

a1,2 = α1,2

b1,2 = β1,2

a2,2 =
1±

√
1− 4(α2,2 + α2

1,2 + β2
1,2)

2
.

Thus

ρ(α1,2, β1,2, α2,2) =

 1∓
q

1−4(α2
1,2+β

2
1,2+α2,2)

2 α1,2 + iβ1,2

α1,2 − iβ1,2

1±
q

1−4(α2
1,2+β

2
1,2+α2,2)

2

 .
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q

1−4(α2
1,2+β

2
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2 α1,2 + iβ1,2

α1,2 − iβ1,2

1±
q

1−4(α2
1,2+β

2
1,2+α2,2)

2



The eigenvalues of the above are

1±
√

1− 4α2,2

2

Setting α2,2 = 0 is then the only way to get to the pure states

Can control whether looking at boundary or interior state

It should also be clear that this parametrization will uniquely
define the likelihood function

These properties extend beyond the single-qubit case.
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Optical Experiments

Figure: Schematic diagram of two-qubit experiment.
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Optical Experiments

Single Qubit Experiments

Table: Deviances, score statistics, and purities of qubits.

Data set
I II III IV V

Deviance, D 37.23 0.16 754.02 1.04 34.60
p value .00 .69 .00 .31 .00
Score, S 41.14 0.16 838.37 1.04 34.75
p value .00 .69 .00 .31 .00
Purity, γ̂ .995 .999 .996 1.000 .996
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Optical Experiments

Two Qubit Experiments

Table: Deviances, score statistics, and purities of qubit pairs.

Data set
I II III IV V VI VII VIII IX

Deviance, D 25,146 892 3,958 148 9,835 981 199,658 4,232 205,642

Score, S 1,494 1,675 2,197 178 1,216 1,159 1.85× 1013 1.93× 1010 2.34× 1011

Purity, γ̂ 1.527 .992 1.355 .978 1.257 .935 .668 .937 .658
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