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Introduction

Recent advancements in medical and other fields of
scientific research have allowed scientists to collect data of
unprecedented size and complexity.

A common statistical problem in such applications is:

To model a response variable Y as a function of a small
subset of features x = (x1, x2, . . . , xp)>.

This is often referred to as a feature (or variable) selection
problem.



Introduction

Sometimes, in applications, many variables are introduced
to reduce possible modeling biases, but the number of
variables a model can accommodate is often limited by the
amount of data available.

In other words, the number of variables considered
depends on the sample size, i.e. pn, which reflects the
estimability of the parametric model.



Introduction

The problem becomes even more complex when the
population under study is made up of subpopulations and
the relationship between Y and x varies across the
subpopulations.

Finite mixture of regression ( FMR) models provide a flexible
statistical tool in studying such relationships.



Finite Mixture of Regression (FMR) Models

In some applications the population under study is
heterogeneous, i.e. it is made of sub-populations:

 

Sub-population 1

Sub-population 2

Sub-population 3

Sub-population 4

A Heterogeneous Population 

Each sub-popultation calls for its own regression modelling
between Y and x .

FMR models provide a natural way to model unobserved
heterogeneity in such populations.



Example: Parkinson disease (PD)

Parkinson disease (PD) is a neurological disorder.

Over one million people in North America have PD.

No cure available for PD, although current medication are
effective in controlling its symptoms.

Early diagnostic and monitoring is crucial in controlling the
disease and in improving the life quality for the patients.



Monitoring PD’s symptom progression

The main symptoms of PD are tremor, rigidity and other
general movement disorders, as well as vocal impairment.

Tracking PD symptoms involves various physical
examinations performed by trained clinical staff.

A medical rater subjectively assesses the ability of a patient
in performing certain tasks. The physical tests are mapped
to a metric that is designed to follow PD progression.

A typical metric of such is the Unified Parkinson’s Disease
Rating Scale (UPDRS), which reflects the presence and
severity of symptoms of PD.



Monitoring PD’s symptom progression

However, UPDRS requires the patient’s presence in the
clinic and is also a time-consuming physical examination by
trained clinical staff.

Thus, symptom monitoring is costly and logistically
inconvenient for both patients and clinical staff.

An affordable, cost-effective and reliable alternative:

Telemonitoring



Telemedicine

Noninvasive telemonitoring is an emerging option in
general medical care.

Such options are also considered in PD research.

The potential for telemonitoring of PD depends heavily on
the design of simple tests that can be self-administrated
quickly and remotely.

Recording speech or vocal properties are good candidates
in this regard.

Research has shown that approximately 90% of people with
PD exhibit some form of vocal impairment.



Telemonitoring

Tsanas et al. (2010)



The statistical problem of interest

Whether dysphonic features extracted from speech signals
recorded at home can be used as surrogate to study PD

severity and progression?

That is to find a statistical model between speech
properties and UPDRS.

The data under our consideration contains observations on
p speech features.

The goal is to select an optimally reduced subset of the p
features, x = (x1, x2, . . . , xp), that are predictive of the
UPDRS, the response variable, Y , leading to a clinically
useful model.



Histogram of Y (UPDRS)
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Notice the bimodality of the histogram !



Some of the challenges in analyzing the PD data

Simple exploration indicates that a single regression model
is unlikely to be able to accommodate the multimodality
nature of the data.

Some of the speech features are highly correlated.

Not all the covariates x1, x2, . . . , xp are significant in
explaining the random behaviour of the UPDRS.

In general, as sample size increases, more features will
likely be extracted from additional algorithms in the hope
that greater prediction accuracy can be achieved. That is, p
increases as n increases.



From statistical standpoint, the challenging issue in
analyzing the PD data falls into the general category of
feature or variable selection in a regression model.

We will use an FMR model to analyze the data.



The focus of this talk

We discuss the problem of feature selection in
Finite Mixture of Regression ( FMR) Models.



From a regular regression model to mixture of regression models

Response variable: Y ∈ Y ⊂ R

Covariates: x> = (x1, x2, . . . , xp) ∈ X ⊂ Rp.

In a GLM model the Y and x are related through a density
function

h(y ; θ(x), φ)

with a known link function θ(x) = L(β0k + x>βk ).

The model claims that the response y is a function of x
through a known link function L(·).



Finite mixture of regression (FMR) models: a generalization

Let H = {h(y ; θ, φ); (θ, φ) ∈ Θ× Φ ⊂ R× R+} be a
parametric family of density functions for Y with respect to
a σ-finite measure µ, and φ is a dispersion parameter.

The conditional density function of Y given x in a FMR

model with K components is:

f (y ; x ,Ψ) =
K∑

k=1

πk h(y ; θk (x), φk )

with a known link function θk (x) = L(β0k + x>βk ), and

K∑
k=1

πk = 1 , πk > 0.



FMR models with diverging number of parameters

In some of the recent feature selection problems the
dimension of the model is large and may grow with the
sample size.

In this talk we allow the dimension p of the feature vector x
to increase with the sample size n, that is:

x>n = (x1, x2, . . . , xpn ) ∈ X ⊂ Rpn , pn →∞ as n→∞.
The component-wise regression vectors: βnk

The diverging vector of parameters:

Ψn = {(β0k ,βnk , πk , φk ); k = 1,2, . . . ,K}



Feature selection problem in FMR models

Naturally, when there are a large number of covariates,
there may be only a small subset of covariates that are
significant within each subpopulation.

That is, for each k , many of the βkj ’s are zero.

The goal is to identify those xj ’s for which βkj 6= 0.

In such situations the FMR model of interest is called:

SPARSE FMR MODEL



Feature selection problem in FMR models

Let s be a subset of {1,2, . . . ,pn}. We denote xn[s] as the
sub-vector of xn with elements in s.

Let βnk [s] be the subvector of βnk with βkj = 0, j /∈ s.

For any s1, s2, . . . , sK , we get an FMR submodel:

f (y ; x ,Ψn, s1, s2, . . . , sK ) =
K∑

k=1

πk h(y ; θk (xn[sk ]), φk )

with θk (xn[sk ]) = L(β0k + x>n [sk ]βnk [sk ]).

A feature selection method aims at selecting sk ’s such that
the resulting FMR submodel best balances the model
parsimony and goodness of fit of the data.



Classical feature selection methods in FMR models

All-subset selection methods such as AIC or BIC are not
feasible even for moderate values of p and K .

e.g. If K = 3 and p = 20, there are: 220 × 220 × 220 possible
submodels to be test by AIC or BIC.



An efficient feature selection method in FMR models

Khalili and Chen (2007) proposed a computationally
efficient penalized likelihood approach for feature selection
in FMR models.

Statistical properties of their proposed method:

(1)
√

n-CONSISTENCY,
(2) ASYMPTOTIC NORMALITY,
(3) SPARSITY.

In this work the dimension p of the feature space is
assumed fixed with respect to the sample size n.



FMR models with diverging dimension (FMR)

We consider the problem of feature selection in FMR

models when p = pn, and pn →∞ as n→∞.

Huber (1973), Fan and Peng (2004).



MLE in FMR models

Let (x1, y1), (x2, y2), . . . , (xn, yn) be a random sample of
observations from the FMR model.

The (conditional) log-likelihood function is given by

ln(Ψn) =
n∑

i=1

log{f (yi ; x i ,Ψn)}.

Maximum likelihood estimation (MLE) of Ψn:

Ψ̃n = argmaxΨn
ln(Ψn).

But if β0
kj = 0, the MLE β̃kj is not necessarily zero !



Feature selection method in FMR models

We propose to estimate Ψn through the regularized
log-likelihood function

pln(Ψn) = ln(Ψn)− pn(Ψn)

with the regularization function

pn(Ψn) =
K∑

k=1

πk

pn∑
j=1

rn(βkj ;λnk ) +
τn

2

K∑
k=1

pn∑
j=1

β2
kj .



Why the penalty function rn(β;λnk ) ?

For each k , let β0
nk = (β0

1k ,n,β
0
2k ,n)τ such that β0

2k ,n
contains the 0 effects.

Consistency in feature selection (sparsity):

The penalty function rn(βkj ;λnk ) is designed such that

P(β̂2k ,n = 0)→ 1 , k = 1,2, . . . ,K , as n→∞.

By having an estimator with the above property, we are in
fact performing feature selection !



Examples of rn(β;λnk )

Most common choices are: LASSO, SCAD and HARD.
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Why the ridge penalty?

Controlling the variance of β̂1k ,n:

Similar to the ridge regression of Hoeral and Kennard
(1970), the quadratic terms β2

kj are to prevent wild
estimates of the true nonzero β0

kj ’s corresponding to the
highly correlated features xj ’s.

See also Hastie, Tibhsirani and Friedman (2009).



Performance of the proposed feature selection method

The performance of the new method is studied:

Theoretically:
consistency, asymptotic normality, and sparsity.

An extensive simulation study.

The PD data is also analyzed to demonstrate the use of the
new method in real applications.



Some notations required for asymptotic study

Let: Ψ̂n = argmaxΨn
pln(Ψn)

Consider the joint density function f (zi ; Ψn) of the random
variable Z i = (x i ,Yi).

Consider the quantities:

q1n = maxk,j{rn(β0
kj ;λnk )/

√
n : β0

kj 6= 0}

q2n = maxk,j{|r ′
n(β0

kj ;λnk )|/
√

n : β0
kj 6= 0}

q3n = maxk,j{|r ′′
n (β0

kj ;λnk )|/n : β0
kj 6= 0}



Conditions on the penalty function rn(·;λnk )

(P0). For all n and λnk , rn(0;λnk ) = 0, and rn(β;λnk ) is
symmetric and non-negative. It is non-decreasing and twice
differentiable for all β in (0,∞) with at most a few
exceptions.

In addition, there exists constants A1 and A2 such that
when β1 > A1λnk , β2 > A1λnk , then:

1
n
|r ′′n (β1;λnk )− r ′′n (β2;λnk )| ≤ A2|β1 − β2|.

(P1). As n→∞,

√
pnq1n = o(1 + q2n),q2n = o(p−1/2

n ),q3n = o(1).



continued...

(P2). As n→∞,

τn√
n

max
k ,j
|β0

kj | = o(1 + q2n); τn = o(n).

(P3). For Tn = {β; 0 < β ≤
√

pn
n log n},

lim
n→∞

inf
β∈Tn

r ′n(β;λnk )
√

npn
=∞.



Theorem 1: Consistency in estimation

Let Z i = (x i ,Yi), i = 1,2, . . . ,n, be a random sample from a
density function f (z ; Ψn) that satisfies certain regularity
Conditions.

Assume that the function rn(β;λnk ) satisfies Conditions P0
and P1, and the tuning parameter τn in ridge penalty
satisfies Condition P2.

If p2
n√
n → 0, then there exists a local maximizer Ψ̂n of the

function pln(Ψn) for which

‖Ψ̂n −Ψ0
n‖ = Op{

√
pn

n
(1 + q2n)}.



Theorem 2: Sparsity and asymptotic normality

Assume conditions in Theorem 1 are fulfilled, and also
assume that the regularization function satisfy Conditions
P0-P3.

If p2.5
n√
n → 0, then for any

√
n/pn-consistent maximum

regularized likelihood estimator Ψ̂n, as n→∞:

SPARSITY: P(β̂2k,n = 0)→ 1, k = 1,2, . . . ,K .

ASYMPTOTIC NORMALITY:

√
n Bn I−1/2

1 (Ψ01)

{[
I1(Ψ01)−

p′′
n (Ψ01)

n

]
(Ψ̂n1 − Ψ01) +

p′
n(Ψ01)

n

}

−→d N(0, G)

where BnBτn → G.



Some remarks

1. The estimator Ψ̂n is
√

n/pn-consistent if q2n = O(1).

Proper choices of the tuning parameter λnk in LASSO and
SCAD will lead to the desired consistency rate.

Regarding the ridge penalty, if for example τn = log n, then
Condition P2 is also guaranteed.

2. To have consistency in feature selection, the λnk needs to
be chosen such that

√
n
pn
λnk →∞.

The properties 1 and 2 cannot be achieved simultaneously
by LASSO. Achievable by SCAD!



PD data: (Little et al., 2009, 2010, 2011)

The data are the results of a clinical trial.

Information on the speech signals can be extracted using
both linear and nonlinear algorithms to characterize
clinically relevant properties.

Some features may address the ability of the voice folds to
sustain simple vibration whereas some others may be able
to characterize the extent of turbulent noise in the speech
signals.

n = 5875 observations on 16 speech characteristics,
leading to a 5875× 16 design matrix.



Final selected model

We fitted an FMR model with K = 2.

The final selected model is

0.57 φ(y ; µ̂1(x),4.362) + 0.43 φ(y ; µ̂2(x),4.362)

µ̂1(x) = 15.87 + xτ [s1]β̂1[s1]

µ̂2(x) = 28.70 + xτ [s2]β̂1[s2].

s1 = {9,10,13,15,16}
s2 = {2,3,4,16}.



Fitted FMR model to the PD data

Mixture components
Voice features Com1 Com2

Intercept 15.87(.10) 28.70(.12)

MDVP:Jitter (%) − −
MDVP:Jitter(Abs) − -3.65(.13)

MDVP: RAP − 3.77(.12)

MDVP: PPQ − -1.85(.13)

Jitter:DDP − −
MDVP:Shimmer − −

MDVP:Shimmer (dB) − −
Shimmer:APQ3 − −
Shimmer:APQ5 -1.92(.12) −

MDVP: APQ 1.73(.12) −
Shimmer:DDA − −

NHR − −
HNR -1.16(.12) −

RPDE − −
DFA -1.89(.10) −
PPE 1.50(.12) 2.16(.12)



Interpretation of the fitted model

For those patients whose PD symptoms are mild (smaller UPDRS
scores), dysphonic measures such as Shimmer:APQ5,
MDVP:APQ, HNR, DFA, and PPE are important features for
monitoring disease progression.

For those with more severe symptoms (larger UPDRS scores), a
different set of features, MDVP:Jitter (Abs), MDVP:RAP,
MDVP:PPQ, appear to be more relevant in monitoring the
progression of PD.



Interpretation of the fitted model

Although all 16 features represent dysphonic measures, and
multiple measures may characterize some similar aspect of the
speech, still subtle difference in different xj ’s may have a
profound implication in PD research.

For instance, fundamental frequency variations (MDVP:Jitter
(Abs)) and variations in signal amplitude (Shimmer:APQ5) both
capture symptoms manifested in vocal fold vibration and lung
efficiency, but the former is predictive of severity in advanced PD
patients whereas the latter is predictive of severity in mild PD
patients.

Also our results suggest that UPDRS is affected by harmonics to
noise ratio (HNR), but only in mild PD patients, with decreasing
HNR leading to progression of the disease. However, as PD
progresses to an advance stage, HNR may reach such a low
level that it may no longer be useful for further severity prediction.
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Thank you for your attention!


