
Computational Speedup in Spatial Bayesian Image
Modeling via GPU Computing

Timothy D. Johnson

Department of Biostatistics
University of Michigan

Johnson (UM) June 9, 2011 1 / 19

Outline

1 Introduction

2 GPU Computing

3 Results

4 Concluding Remarks

Johnson (UM) June 9, 2011 2 / 19

Introduction

Problem 1: Group fMRI Analysis

Hierarchical Bayesian model 1

Level 1 — Likelihood
separate model for each subject (typically 10 - 20)
image intensities — finite mixture with spatially correlated weights
several components required to model each activation region
component means — finite mixture about activation centers

Level 2
Activation centers — finite mixture model about population centers

Level 3
Population centers modeled as a homogeneous Poisson process

I will concentrate on Level 1 as it is the most computationally intense

1Xu, Johnson, Nichols, Nee. Biometrics 2009
Johnson (UM) June 9, 2011 3 / 19

Introduction

Problem 1: Group fMRI Analysis

yv — intensity at voxel v . Approximately 250K voxels
xv — (x , y , z) spatial location
φ(y ; m, v) — Gaussian density w/mean m and variance v

Likelihood and weights
All voxels assumed to be conditionally independent

π(yv | ·) = w0φ(yv ; 0,1) +
J∑

j=1

wjφ(yv ; θj , σ
2
j)

w0 ∝ m

wj =
φ3(xv ; ηj ,Ψj)

m +
∑J

k=1 φ3(xv ; ηk ,Ψk)

where φ3(x ; η,Ψ) is the Gaussian density in R3 at x

Johnson (UM) June 9, 2011 4 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

Definition
Suppose that Y = {Y (ξ) : ξ ∈ S} is a non-negative random field such
that with probability one, ξ → Y (ξ) is a locally integrable function. If
[X | Y] ∼ PP(S,Y), then X is said to be a Cox process driven by Y .

Density
The density of XB = X ∩ B, B ⊂ S, w.r.t. the dist. of a unit-rate Poisson
process, is given by

π(x) = E

exp
(
|B| −

∫
B

Y (ξ)dξ
)∏
ξ∈x

Y (ξ)

 .
Furthermore, the intensity function is given by ρ(ξ) = E[Y (ξ)].

Johnson (UM) June 9, 2011 5 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

Definition
If Y (ξ) is a Gaussian Process, then the Cox process driven by
exp [Y (ξ)] is said to be a Log Gaussian Cox Process.

The dist of (X ,Y) completely determined by

m(ξ) = E(Y (ξ)) c(ξ, η) = Cov(Y (ξ),Y (η)).

We will assume c(ξ, η) is translation invariant and isotropic

c(||ξ − η||) = σ2r(α||ξ − η||).

A useful family of corr functions is the power exponential family:

r(α||ξ − η||) = exp(−α||ξ − η||δ).

Johnson (UM) June 9, 2011 6 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

Model the locations of Multiple Sclerosis lesions in 217 subjects

Intensity function λ(xv) = exp[Y (xv))]

Y (·) is a Gaussian process in B ⊂ R3

mean of process is µ
stationary correlation function r(||x − z||) = σ2 exp(−ρ||x − z||δ).

B is discretized on a grid (91× 109× 91)

Y (·) is approx by a finite dimen Gaussian r.v. Ỹ
The length of Ỹ is 902,629
Ỹ = µ+ σC1/2Z , Z ∼ N(0, I)
The covariance matrix is thus 902629× 902629

obviously, this matrix is too large to handle computationally

Johnson (UM) June 9, 2011 7 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

Model the locations of Multiple Sclerosis lesions in 217 subjects
Intensity function λ(xv) = exp[Y (xv))]

Y (·) is a Gaussian process in B ⊂ R3

mean of process is µ
stationary correlation function r(||x − z||) = σ2 exp(−ρ||x − z||δ).

B is discretized on a grid (91× 109× 91)

Y (·) is approx by a finite dimen Gaussian r.v. Ỹ
The length of Ỹ is 902,629
Ỹ = µ+ σC1/2Z , Z ∼ N(0, I)
The covariance matrix is thus 902629× 902629

obviously, this matrix is too large to handle computationally

Johnson (UM) June 9, 2011 7 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

Model the locations of Multiple Sclerosis lesions in 217 subjects
Intensity function λ(xv) = exp[Y (xv))]

Y (·) is a Gaussian process in B ⊂ R3

mean of process is µ
stationary correlation function r(||x − z||) = σ2 exp(−ρ||x − z||δ).

B is discretized on a grid (91× 109× 91)

Y (·) is approx by a finite dimen Gaussian r.v. Ỹ
The length of Ỹ is 902,629
Ỹ = µ+ σC1/2Z , Z ∼ N(0, I)
The covariance matrix is thus 902629× 902629

obviously, this matrix is too large to handle computationally

Johnson (UM) June 9, 2011 7 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

Model the locations of Multiple Sclerosis lesions in 217 subjects
Intensity function λ(xv) = exp[Y (xv))]

Y (·) is a Gaussian process in B ⊂ R3

mean of process is µ
stationary correlation function r(||x − z||) = σ2 exp(−ρ||x − z||δ).

B is discretized on a grid (91× 109× 91)

Y (·) is approx by a finite dimen Gaussian r.v. Ỹ
The length of Ỹ is 902,629
Ỹ = µ+ σC1/2Z , Z ∼ N(0, I)
The covariance matrix is thus 902629× 902629

obviously, this matrix is too large to handle computationally

Johnson (UM) June 9, 2011 7 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

Model the locations of Multiple Sclerosis lesions in 217 subjects
Intensity function λ(xv) = exp[Y (xv))]

Y (·) is a Gaussian process in B ⊂ R3

mean of process is µ
stationary correlation function r(||x − z||) = σ2 exp(−ρ||x − z||δ).

B is discretized on a grid (91× 109× 91)

Y (·) is approx by a finite dimen Gaussian r.v. Ỹ
The length of Ỹ is 902,629
Ỹ = µ+ σC1/2Z , Z ∼ N(0, I)
The covariance matrix is thus 902629× 902629

obviously, this matrix is too large to handle computationally

Johnson (UM) June 9, 2011 7 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

The structure of most stationary correlation matrices is Toeplitz in
1D, block Toeplitz in 2D and nested block Toeplitz in 3D.

These matrices can be embedded in circulant, block circulant and
nested block circulant matrices. 2

C fully specified by single row/column: called the base, c

Let C = FΛF H denote it’s eigenvector/value decomposition
F turns out to be the DFT matrix and Λ =

√
n diag(Fc).

c is of length n = 2 · 91× 2 · 109× 2 · 91(= 7,221,032)
for any vector v , Fv ↔ DFT(v) and F Hv ↔ IDFT(v).

Thus, we can use the FFT which is extremely fast: O(n log2 n).

2Wood and Chan (1994) JCGS
Johnson (UM) June 9, 2011 8 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

The structure of most stationary correlation matrices is Toeplitz in
1D, block Toeplitz in 2D and nested block Toeplitz in 3D.
These matrices can be embedded in circulant, block circulant and
nested block circulant matrices. 2

C fully specified by single row/column: called the base, c

Let C = FΛF H denote it’s eigenvector/value decomposition
F turns out to be the DFT matrix and Λ =

√
n diag(Fc).

c is of length n = 2 · 91× 2 · 109× 2 · 91(= 7,221,032)
for any vector v , Fv ↔ DFT(v) and F Hv ↔ IDFT(v).

Thus, we can use the FFT which is extremely fast: O(n log2 n).

2Wood and Chan (1994) JCGS
Johnson (UM) June 9, 2011 8 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

The structure of most stationary correlation matrices is Toeplitz in
1D, block Toeplitz in 2D and nested block Toeplitz in 3D.
These matrices can be embedded in circulant, block circulant and
nested block circulant matrices. 2

C fully specified by single row/column: called the base, c

Let C = FΛF H denote it’s eigenvector/value decomposition

F turns out to be the DFT matrix and Λ =
√

n diag(Fc).
c is of length n = 2 · 91× 2 · 109× 2 · 91(= 7,221,032)
for any vector v , Fv ↔ DFT(v) and F Hv ↔ IDFT(v).

Thus, we can use the FFT which is extremely fast: O(n log2 n).

2Wood and Chan (1994) JCGS
Johnson (UM) June 9, 2011 8 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

The structure of most stationary correlation matrices is Toeplitz in
1D, block Toeplitz in 2D and nested block Toeplitz in 3D.
These matrices can be embedded in circulant, block circulant and
nested block circulant matrices. 2

C fully specified by single row/column: called the base, c

Let C = FΛF H denote it’s eigenvector/value decomposition
F turns out to be the DFT matrix and Λ =

√
n diag(Fc).

c is of length n = 2 · 91× 2 · 109× 2 · 91(= 7,221,032)
for any vector v , Fv ↔ DFT(v) and F Hv ↔ IDFT(v).

Thus, we can use the FFT which is extremely fast: O(n log2 n).

2Wood and Chan (1994) JCGS
Johnson (UM) June 9, 2011 8 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

The structure of most stationary correlation matrices is Toeplitz in
1D, block Toeplitz in 2D and nested block Toeplitz in 3D.
These matrices can be embedded in circulant, block circulant and
nested block circulant matrices. 2

C fully specified by single row/column: called the base, c

Let C = FΛF H denote it’s eigenvector/value decomposition
F turns out to be the DFT matrix and Λ =

√
n diag(Fc).

c is of length n = 2 · 91× 2 · 109× 2 · 91(= 7,221,032)
for any vector v , Fv ↔ DFT(v) and F Hv ↔ IDFT(v).

Thus, we can use the FFT which is extremely fast: O(n log2 n).

2Wood and Chan (1994) JCGS
Johnson (UM) June 9, 2011 8 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

For example

C1/2v = FΛ1/2F Hv
= F

√
n diag(

√
Fc)F Hv

=
√

n DFT(
√

DFT(c)� IDFT(v))

or solving Cx = b:

x = C−1b
= FΛ−1F Hb

=
1√
n

DFT(IDFT(b)� DFT(c))

Although the FFT algorithm is fast, the base c in this problem is very
large. Hence, overall the MCMC algorithm is quite slow.

Johnson (UM) June 9, 2011 9 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

For example

C1/2v = FΛ1/2F Hv
= F

√
n diag(

√
Fc)F Hv

=
√

n DFT(
√

DFT(c)� IDFT(v))

or solving Cx = b:

x = C−1b
= FΛ−1F Hb

=
1√
n

DFT(IDFT(b)� DFT(c))

Although the FFT algorithm is fast, the base c in this problem is very
large. Hence, overall the MCMC algorithm is quite slow.

Johnson (UM) June 9, 2011 9 / 19

Introduction

Problem 2: Modeling of MS Lesion Location

For example

C1/2v = FΛ1/2F Hv
= F

√
n diag(

√
Fc)F Hv

=
√

n DFT(
√

DFT(c)� IDFT(v))

or solving Cx = b:

x = C−1b
= FΛ−1F Hb

=
1√
n

DFT(IDFT(b)� DFT(c))

Although the FFT algorithm is fast, the base c in this problem is very
large. Hence, overall the MCMC algorithm is quite slow.

Johnson (UM) June 9, 2011 9 / 19

GPU Computing

General Purpose Graphical Processing Unit Computing

3

!"#$%&'()*(+,%'-./0%1-,!

!

!

2((!345(!(6'-7'#881,7(9/1.&(:&';1-,(<*=!
!

!

>17/'&()?)*(>@-#%1,7?6-1,%(A$&'#%1-,;($&'(B&0-,.(#,.(
C&8-'D(E#,.F1.%"(G-'(%"&(!63(#,.(963(

Tesla C2050 GPU Single Precision — 1 TFLOP/s
Tesla M2090 GPU Single Precision — 1.33 TFLOP/s

3Source: NVIDIA CUDA C Programming Guide, Version 4.0
Johnson (UM) June 9, 2011 10 / 19

GPU Computing

General Purpose Graphical Processing Unit Computing

How do GPUs achieve such stunning performance gains over CPUs?

4

! !"#$%&'()*(+,%'-./0%1-,!
!

!

!234(!(5'-6'#771,6(8/1.&(9&':1-,(;*<! ! =!
!

!

"#$!%$&'()!*$#+),!-#$!,+'.%$/&).0!+)!12(&-+)34/(+)-!.&/&*+2+-0!*$-5$$)!-#$!678!&),!
-#$!978!+'!-#&-!-#$!978!+'!'/$.+&2+:$,!1(%!.(;/<-$4+)-$)'+=$>!#+3#20!/&%&22$2!
.(;/<-&-+()! !$?&.-20!5#&-!3%&/#+.'!%$),$%+)3!+'!&*(<-! !&),!-#$%$1(%$!,$'+3)$,!
'<.#!-#&-!;(%$!-%&)'+'-(%'!&%$!,$=(-$,!-(!,&-&!/%(.$''+)3!%&-#$%!-#&)!,&-&!.&.#+)3!
&),!12(5!.()-%(2>!&'!'.#$;&-+.&220!+22<'-%&-$,!*0!@+3<%$!A4BC!

!

!

>16/'&()?@*(A"&(852(3&B-%&:(C-'&(A'#,:1:%-':(%-(3#%#(
5'-0&::1,6(

!

D(%$!'/$.+1+.&220>!-#$!978!+'!$'/$.+&220!5$224'<+-$,!-(!&,,%$''!/%(*2$;'!-#&-!.&)!*$!
$?/%$''$,!&'!,&-&4/&%&22$2!.(;/<-&-+()'! !-#$!'&;$!/%(3%&;!+'!$?$.<-$,!()!;&)0!
,&-&!2;$)-'!+)!/&%&22$2! !5+-#!#+3#!&%+-#;$-+.!+)-$)'+-0! !-#$!%&-+(!(1!&%+-#;$-+.!
(/$%&-+()'!-(!;$;(%0!(/$%&-+()'C!E$.&<'$!-#$!'&;$!/%(3%&;!+'!$?$.<-$,!1(%!$&.#!
,&-&!2;$)->!-#$%$!+'!&!2(5$%!%$F<+%$;$)-!1(%!'(/#+'-+.&-$,!12(5!.()-%(2>!&),!
*$.&<'$!+-!+'!$?$.<-$,!()!;&)0!,&-&!$2$;$)-'!&),!#&'!#+3#!&%+-#;$-+.!+)-$)'+-0>!-#$!
;$;(%0!&..$''!2&-$).0!.&)!*$!#+,,$)!5+-#!.&2.<2&-+()'!+)'-$&,!(1!*+3!,&-&!.&.#$'C!

G&-&4/&%&22$2!/%(.$''+)3!;&/'!,&-&!2;$)-'!-(!/&%&22$2!/%(.$''+)3!-#%$&,'C!D&)0!
&//2+.&-+()'!-#&-!/%(.$''!2&%3$!,&-&!'$-'!.&)!<'$!&!,&-&4/&%&22$2!/%(3%&;;+)3!;(,$2!
-(!'/$$,!</!-#$!.(;/<-&-+()'C!H)!IG!%$),$%+)3>!2&%3$!'$-'!(1!/+?$2'!&),!=$%-+.$'!&%$!
;&//$,!-(!/&%&22$2!-#%$&,'C!J+;+2&%20>!+;&3$!&),!;$,+&!/%(.$''+)3!&//2+.&-+()'!'<.#!
&'!/('-4/%(.$''+)3!(1!%$),$%$,!+;&3$'>!=+,$(!$).(,+)3!&),!,$.(,+)3>!+;&3$!'.&2+)3>!
'-$%$(!=+'+()>!&),!/&--$%)!%$.(3)+-+()!.&)!;&/!+;&3$!*2(.K'!&),!/+?$2'!-(!/&%&22$2!
/%(.$''+)3!-#%$&,'C!H)!1&.->!;&)0!&23(%+-#;'!(<-'+,$!-#$!1+$2,!(1!+;&3$!%$),$%+)3!
&),!/%(.$''+)3!&%$!&..2%&-$,!*0!,&-&4/&%&22$2!/%(.$''+)3>!1%(;!3$)$%&2!'+3)&2!
/%(.$''+)3!(%!/#0'+.'!'+;<2&-+()!-(!.(;/<-&-+()&2!1+)&).$!(%!.(;/<-&-+()&2!*+(2(30C!

)*@ !234 D(#(8&,&'#E?5/'$-:&(5#'#EE&E(
!-7$/%1,6(4'0"1%&0%/'&(
H)!L(=$;*$%!BMMN>!LOHGHP!+)-%(,<.$,!68GP &!3$)$%&2!/<%/('$!/&%&22$2!
.(;/<-+)3!&%.#+-$.-<%$! !5+-#!&!)$5!/&%&22$2!/%(3%&;;+)3!;(,$2!&),!+)'-%<.-+()!
'$-!&%.#+-$.-<%$! !-#&-!2$=$%&3$'!-#$!/&%&22$2!.(;/<-$!$)3+)$!+)!LOHGHP!978'!-(!

"#$%&!

'()!"*+,-*.!

'()!

'()!

'()!

/0'1!

"2)!

/0'1!

!! !
!! !
!! !
!! !
!! !
!! !
!! !
!! !

32)!

More transistors are dedicated to data processing rather than data
caching and control flow. GPUs typically have hundreds of cores.
(Tesla C2050 — 448 cores)

4Source: NVIDIA CUDA C Programming Guide, Version 4.0
Johnson (UM) June 9, 2011 11 / 19

GPU Computing

GPU Memory Bandwidth Limitations

Key to performance with HDD: reduce memory transfers
← More memory
Faster transfer→

5

!
"#$%&'!()*+$+,-*+%./!

!!!"#$%&%'"()*+
0123!0!4#/*!5&-6*+6#/!78+9#! 27:;<=;>:;;?@ABC;!!D!!EB!

>CE 2FGH0F!"F"(IJ!K530FK!

!"#$%&'()*'+%,+'%+'('-./%0'01-2%+3.*'+4%56)*6%6.('%&)77'-'89%*6.-.*9'-)+9)*+%96.9%
-'7/'*9%96')-%&)+9)8*9%,+.:'+%)8%!"#$%.33/)*.9)18+;%<6'+'%0'01-2%+3.*'+%)8*/,&'%:/1=./4%
/1*./4%+6.-'&4%9'>9,-'4%.8&%-':)+9'-+4%.+%+6158%)8%?):,-'%@;A;%%

%

L+M8&#!>CE! "#$%&'!K)-6#/!%.!-!0123!2#A+6#!

B7%96'+'%&)77'-'89%0'01-2%+3.*'+4%:/1=./%.8&%9'>9,-'%0'01-2%.-'%96'%01+9%3/'89)7,/C%+''%
D'*9)18%E;F%17%96'%!"#$%!%&'()'*++,-)%./,01%71-%96'%.01,89+%17%0'01-2%.(.)/.=/'%)8%
'.*6%0'01-2%+3.*'%.9%'.*6%*103,9'%*.3.=)/)92%/'('/;%E/1=./4%/1*./4%.8&%9'>9,-'%0'01-2%
6.('%96'%:-'.9'+9%.**'++%/.9'8*24%71//15'&%=2%*18+9.89%0'01-24%-':)+9'-+4%.8&%+6.-'&%
0'01-2;%

<6'%(.-)1,+%3-)8*)3./%9-.)9+%17%96'%0'01-2%923'+%.-'%+6158%)8%<.=/'%@;F;%

N-OP#!>C?! K-P+#.*!L#-*8&#/!%Q!2#A+6#!"#$%&'!

,-*)./+ 0)('1%)#+
)#2)33+(4%5+

6'(4-&+ 7((-88+ 9()5-+ 0%3-1%*-+

I#M+/*#&! (.! .R-! IRS! ?!*T&#-9! NT&#-9!

U%6-P! (QQ! ! IRS! ?!*T&#-9! NT&#-9!

KT-	! (.! .R-! IRS! 3PP!*T&#-9/!+.!OP%6V! 4P%6V!

7P%O-P! (QQ! ! IRS! 3PP!*T&#-9/!W!T%/*! X%/*!-PP%6-*+%.!

0%./*-.*! (QQ! J#/! I! 3PP!*T&#-9/!W!T%/*! X%/*!-PP%6-*+%.!

N#Y*8&#! (QQ! J#/! I! 3PP!*T&#-9/!W!T%/*! X%/*!-PP%6-*+%.!

!.*6'&%18/2%18%&'()*'+%17%*103,9'%*.3.=)/)92%A;>;%

<1%G1+9%

5Source: NVIDIA CUDA C Best Practices Guide, Version 4.0
Johnson (UM) June 9, 2011 12 / 19

GPU Computing

How is the GPU exposed in C/C++ ?

C/C++ interface (CUDA and OpenCL)
allocate memory on the GPU — special malloc function
copy data from CPU to GPU memory — special function
call kernel function—executes on GPU, N times in parallel
copy GPU output to CPU — special function
free GPU memory

Johnson (UM) June 9, 2011 13 / 19

GPU Computing

Kernel Functions

kernels—C function, executed on GPU, N times in parallel by N
threads

threads—smallest functional units. Each thread executes the
kernel on a separate piece of data. Each thread has its own
register memory, invisible to all other threads
blocks—threads are partitioned into blocks. Threads within a block
can cooperate with one another and can share memory. Threads
in different blocks cannot cooperate.
grid—blocks of threads are partitioned onto a grid.
The host interface (the C program) calls the kernel

specifies the number of threads/block and the number of blocks/grid
passes memory pointers where data have been loaded onto the
GPU.

Johnson (UM) June 9, 2011 14 / 19

GPU Computing

Kernel Functions

kernels—C function, executed on GPU, N times in parallel by N
threads
threads—smallest functional units. Each thread executes the
kernel on a separate piece of data. Each thread has its own
register memory, invisible to all other threads

blocks—threads are partitioned into blocks. Threads within a block
can cooperate with one another and can share memory. Threads
in different blocks cannot cooperate.
grid—blocks of threads are partitioned onto a grid.
The host interface (the C program) calls the kernel

specifies the number of threads/block and the number of blocks/grid
passes memory pointers where data have been loaded onto the
GPU.

Johnson (UM) June 9, 2011 14 / 19

GPU Computing

Kernel Functions

kernels—C function, executed on GPU, N times in parallel by N
threads
threads—smallest functional units. Each thread executes the
kernel on a separate piece of data. Each thread has its own
register memory, invisible to all other threads
blocks—threads are partitioned into blocks. Threads within a block
can cooperate with one another and can share memory. Threads
in different blocks cannot cooperate.

grid—blocks of threads are partitioned onto a grid.
The host interface (the C program) calls the kernel

specifies the number of threads/block and the number of blocks/grid
passes memory pointers where data have been loaded onto the
GPU.

Johnson (UM) June 9, 2011 14 / 19

GPU Computing

Kernel Functions

kernels—C function, executed on GPU, N times in parallel by N
threads
threads—smallest functional units. Each thread executes the
kernel on a separate piece of data. Each thread has its own
register memory, invisible to all other threads
blocks—threads are partitioned into blocks. Threads within a block
can cooperate with one another and can share memory. Threads
in different blocks cannot cooperate.
grid—blocks of threads are partitioned onto a grid.

The host interface (the C program) calls the kernel
specifies the number of threads/block and the number of blocks/grid
passes memory pointers where data have been loaded onto the
GPU.

Johnson (UM) June 9, 2011 14 / 19

GPU Computing

Kernel Functions

kernels—C function, executed on GPU, N times in parallel by N
threads
threads—smallest functional units. Each thread executes the
kernel on a separate piece of data. Each thread has its own
register memory, invisible to all other threads
blocks—threads are partitioned into blocks. Threads within a block
can cooperate with one another and can share memory. Threads
in different blocks cannot cooperate.
grid—blocks of threads are partitioned onto a grid.
The host interface (the C program) calls the kernel

specifies the number of threads/block and the number of blocks/grid
passes memory pointers where data have been loaded onto the
GPU.

Johnson (UM) June 9, 2011 14 / 19

GPU Computing

How is the GPU exposed in C/C++ ?

6

6Source: NVIDIA CUDA C Programming Guide, Version 4.0
Johnson (UM) June 9, 2011 15 / 19

GPU Computing

Example

Typical C code
loop over voxels, i

loop over mixture comp, j
calculate j th comp
contrib. to likelihood at
voxel i

end mixture comp loop

end voxel loop

Parallel code
allocate GPU memory
data copy CPU→ GPU
call kernel()
data copy GPU→ CPU
free GPU memory

kernel code (voxels processed in
parallel)

load shared memory
loop over mixture comp, j

calculate j th comp contrib.
to likelihood at voxel i

end mixture comp loop

Johnson (UM) June 9, 2011 16 / 19

GPU Computing

Example

Typical C code
loop over voxels, i

loop over mixture comp, j
calculate j th comp
contrib. to likelihood at
voxel i

end mixture comp loop

end voxel loop

Parallel code
allocate GPU memory
data copy CPU→ GPU
call kernel()
data copy GPU→ CPU
free GPU memory

kernel code (voxels processed in
parallel)

load shared memory
loop over mixture comp, j

calculate j th comp contrib.
to likelihood at voxel i

end mixture comp loop

Johnson (UM) June 9, 2011 16 / 19

Results

Gain in Computational Efficiancy

Model Processor Iterations Memory Time Factor
(x 1000) (Mb) (hours)

groupFMRI CPU 5 229.52
GPU 5 175 1.20 191

LGCP CPU 120 595.00
GPU 120 311 4.75 125

Johnson (UM) June 9, 2011 17 / 19

Results

Caveats

reduce data transfers
beware of conditional branching (e.g. if-else)
bank conflicts (memory)

for shared memory, a bank conflict occurs when two or more
threads within a warp try to access different bytes of memory within
the bank

a warp is a group of 32 threads—minimum size of data processed. A
hardware constraint. Blocks of threads are further divided into warps.

if two or more threads try to access the same byte, no bank conflict
occurs
may need to pad arrays to avoid bank conflicts
in my opinion, most difficult aspect of GPGPU computing

Johnson (UM) June 9, 2011 18 / 19

Concluding Remarks

Conclusions

GPGPU computing can substantially improve performance
Likelihood based approaches can also gain from GPGPU
computing
In general, the larger the problem, the greater the practical gains.

Johnson (UM) June 9, 2011 19 / 19

	Introduction
	GPU Computing
	Results
	Concluding Remarks

