LAD Fused Lasso Signal Approximation

Xiaoli Gao Oakland University

INTERNATIONAL WORKSHOP ON PERSPECTIVES ON HIGH-DIMENSIONAL DATA ANALYSIS, TORONTO

June 10, 2011

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

Outline

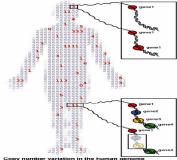
- Background: DNA copy number variation
- LAD Fused lasso signal approximation
- Asymptotic properties of LAD-FLSA
- Computation and numerical studies
- Concluding remarks

・ロト ・雪 ・ ・ ヨ ・ ・ ヨ ・

LAD Fused lasso signal approximation Asymptotic properties of LAD-FLSA Computation and numerical studies Concluding remarks References

DNA copy number variation (CNV) Statistical methods

DNA copy number variation in the human genome



Copy number variation in the human genome The 30,000 genes are usually present in two copies. New studies unveil a new map of the genome by cataloguing DNA than 2 highlighted in red) across world-wide populations. Duplication of a gene (top) and deletion of two genes (bottom) are depicted.

Xiaoli Gao LAD Fused Lasso Signal Approximation

(日)

DNA copy number variation (CNV) Statistical methods

Copy number variation (CNVs)

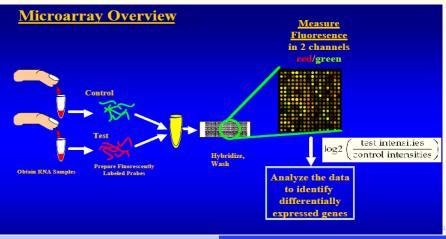
Deletions, insertions, duplications and complex multi-site variants are collectively termed as CNV. Most CNVs are neutral but some of them are functional and influence phenotypic differences between humans.

- CNVs influence gene expression, phenotypic variation by disrupting genes and altering gene dosage.
- CNVs improve our ability of survive (e.g. mutations in the CCR5gene protect against AIDS)
- CNVs confer risk to complex diseases.
- The contribution of CNV to many common diseases (e.g. heart disease, cancer, diabetes, and psychiatric disorders like schizophrenia and bipolar disorder) is largely unknown.

LAD Fused lasso signal approximation Asymptotic properties of LAD-FLSA Computation and numerical studies Concluding remarks References

DNA copy number variation (CNV) Statistical methods

Steps in using a microarray

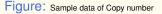


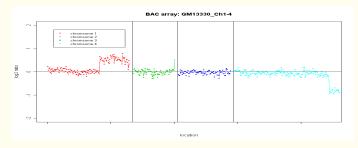
Xiaoli Gao LAD Fused Lasso Signal Approximation

LAD Fused lasso signal approximation Asymptotic properties of LAD-FLSA Computation and numerical studies Concluding remarks References

DNA copy number variation (CNV) Statistical methods

CNVs data: BAC array





() < </p>

LAD Fused lasso signal approximation Asymptotic properties of LAD-FLSA Computation and numerical studies Concluding remarks References

DNA copy number variation (CNV) Statistical methods

CNV data features

- High dimensionality
- Sparsity
- Spatial local smoothness (along the chromosome)

・ロト ・四ト ・ヨト

3

LAD Fused lasso signal approximation Asymptotic properties of LAD-FLSA Computation and numerical studies Concluding remarks References

DNA copy number variation (CNV) Statistical methods

Statistical Methods

- Formulate CNV detection into a regression problem
 - Select copy number amplification/deletion regions correctly
 - Recover the underlying relative intensities and detect all the true copy number variations.

・ロ・・ 日・ ・ 日・ ・ 日・

Fused lasso signal approximation Previous work LAD fused lasso signal approximation

Signal approximation model

Linear regression: $y_i = \mu_i^0 + \varepsilon_i$, $i = 1, \cdots, n$.

- μ_i^0 is the true signal at *i*
- ε_i is the noise
- y_i is the realization of hidden signal and noise at i

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

3

Fused lasso signal approximation Previous work LAD fused lasso signal approximation

True model

Blocky:

$$\mu_{i}^{0} = \sum_{j=1}^{J_{0}} \nu_{j}^{0} \ I(i \in \mathcal{B}_{j}^{0}),$$

where \mathcal{B}_{j}^{0} , $1 \leq j \leq J_{0}$ is the block partition and J_{0} is the number of blocks

Sparse: many of µ_i⁰'s are zero ⇔ ν_j⁰ = 0, for j ∉ K⁰, K⁰ is the nonzero block set.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

3

Fused lasso signal approximation Previous work

•
$$\mu' = (\mathbf{0}'_{10}, \mathbf{2}'_5, -\mathbf{2}'_5, \mathbf{0}'_{20}, \mathbf{1}'_{10})$$

• $\nu' = (0, 2, -2, 0, 1)$
• $J_0 = 5, \, \mathcal{K}^0 = \{2, 3, 5\}, \, \mathcal{J}^0 = \{11, 16, 21, 41\}$

A toy example

Fused lasso signal approximation Previous work LAD fused lasso signal approximation

Recover the hidden signals

- How to estimate $\mu = (\mu_1, \cdots, \mu_n)$ when *n* increases?
- Penalized objective function:

 $\operatorname{Loss}(\boldsymbol{\mu}; \mathbf{y}) + P_{\lambda}(\boldsymbol{\mu})$

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

3

Fused lasso signal approximation Previous work LAD fused lasso signal approximation

Fused Lasso penalty (Tibshirani et al. 2005)

How to obtain a "blocky" and "sparse" estimate?

- ► The lasso penalty: penalizing the ℓ_1 norm of the signals $\|\mu\|_1 \equiv \sum_{i=1}^n |\mu_i|$ to enforce a *sparse* solution
- ► The total variation penalty: penalizing $\|\mu\|_{\text{TV}} \equiv \sum_{i=1}^{n} |\mu_i \mu_{i-1}|$ to enforce a *blocky* solution
- The combination of these two penalties results in the fused lasso (FL) penalty (Tibshirani et al., 2005)
- The signal approximation approach using fused lasso is denoted as "FLSA"

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

Fused lasso signal approximation Previous work LAD fused lasso signal approximation

Previous penalized methods on signal approximation

We only list a few studies on the theoretical investigation:

 LS signal approximation using total variation penalty (LS-FSA, Boysen et al. 2009, Harchaoui and Lévy-Leduc 2010,...)

$$\widehat{\mu}_{n}^{\ell_{2}}(\lambda_{n}) = \arg\min\{\sum_{i=1}^{n}(y_{i}-\mu_{i})^{2}+\lambda\sum_{i=2}^{n}|\mu_{i}-\mu_{i-1}|\}$$

• LS signal approximation using fused lasso penalty (LS-FLSA, Rinaldo 2009,...)

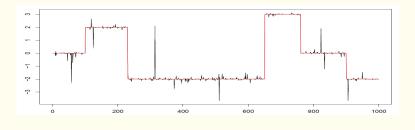
$$\widehat{\mu}_{n}^{\ell_{2}}(\lambda_{1n},\lambda_{2n}) = \arg\min\{\sum_{i=1}^{n}(y_{i}-\mu_{i})^{2}+\lambda_{1n}\sum_{i=1}^{n}|\mu_{i}|+\lambda_{2n}\sum_{i=2}^{n}|\mu_{i}-\mu_{i-1}|\}$$

・ロ・・ 日・ ・ 日・ ・ 日・

Fused lasso signal approximation Previous work LAD fused lasso signal approximation

LS solution can be invalid

- Previous work are studied under ℓ_2 loss
- When data is contaminated or the normal assumption is violated, ℓ_1 loss becomes a good alternative



Fused lasso signal approximation Previous work LAD fused lasso signal approximation

LAD fused lasso signal approximation

• LAD-FLSA solution (Gao and Huang 2010):

$$\widehat{\mu}_{n}^{\ell_{1}}(\lambda_{1n},\lambda_{2n}) = \arg\min\{\sum_{i=1}^{n}|y_{i}-\mu_{i}| + \lambda_{1n}\sum_{i=1}^{n}|\mu_{i}| + \lambda_{2n}\sum_{i=2}^{n}|\mu_{i}-\mu_{i-1}|\}$$

LAD-FSA solution:

1

$$\widehat{\mu}_n^{\mathrm{FL}}(\lambda_{2n}) = \widehat{\mu}_n^{\mathrm{FL}}(0, \lambda_{2n}) = \arg\min\left\{\sum_{i=1}^n |y_i - \mu_i| + \lambda_{2n}\sum_{i=2}^n |\mu_i - \mu_{i-1}|\right\}.$$

- LAD has robust properties when the data set is contaminated by some outliers
- Computation is easy since all three terms are ℓ_1 norm

Fused lasso signal approximation Previous work LAD fused lasso signal approximation

Statistical questions and properties

Questions: Under both the *block* and the *sparsity* assumptions, for large *n*,

- (1) how close $\hat{\mu}_n$ can be to the true model μ^0 asymptotically?
- (2) how accurately $\hat{\mu}_n$ can recover the true nonzero blocks with a large probability?
- (3) what is the complexity of LAD-FLSA as a modeling procedure for (λ₁, λ₂)?

In general, the theoretical studies on LAD regression is much harder than LS regression

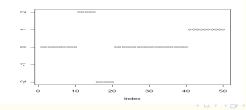
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Preliminaries Estimation consistency Sign consistency

Some notations

- $b_{\min}^0 = \min_{1 \le j \le J_0} b_j^0$, the smallest block size;
- $a_n = \min_{i \in \mathcal{J}^0} |\mu_i^0 \mu_{i-1}^0|$, the smallest jump;
- $\rho_n = \min_{i \in \mathcal{K}^0} |\nu_i^0|$, the smallest nonzero signal intensity.

• e.g.
$$b_{\min}^0 = 5$$
, $a_n = 1$, $\rho_n = 1$.



Xiaoli Gao LAD Fused Lasso Signal Approximation

Preliminaries Estimation consistency Sign consistency

Error assumption A1

(A1) Random errors ε_i 's are independent and identically distributed with median 0, and have a density *f* that is continuous and positive in a neighborhood of 0.

・ロ・ ・ 雪 ・ ・ 回 ・ ・

Preliminaries Estimation consistency Sign consistency

Assumption A2

(A2) There exists a constant $M_1 > 0$ such that the true jump size $J_0 < M_1\Lambda_n$, where $\Lambda_n = \max\{16n/(\lambda_{2n}^2 - 2n^2\lambda_{1n}^2), n/(\lambda_{2n} - n\lambda_{1n})\} + 1$ for $\lambda_{2n}^2 > 2n^2\lambda_{1n}^2$.

(日)

Preliminaries Estimation consistency Sign consistency

Estimation consistency

Theorem

Suppose (A1) and (A2) hold. Then there exists a constant 0 < c < 1 such that

$$\mathbf{P}\left(\|\widehat{\boldsymbol{\mu}}_n - \boldsymbol{\mu}^0\|_n \ge \gamma_n\right) \le \Lambda_n \exp\{\Lambda_n \log n - (1-c)^2 (f(0)/8) n \gamma_n^2\} + (8/f(0)) (\Lambda_n/(n\gamma_n^2))^{1/2},$$

where Λ_n is defined in (A2) and $\gamma_n = 2/(c\sqrt{f(0)})[\lambda_{1n} + 2\lambda_{2n} + ((M_1 + 1)\Lambda_n/n)^{1/2}]$, where $\|\mathbf{x}\|_n = \left(\sum_{i=1}^n x_i^2/n\right)^{1/2}$. Furthermore, if we choose λ_{1n} and λ_{2n} such that $\lambda_{1n} + 2\lambda_{2n} = (c\sqrt{f(0)}/2)\gamma_n - ((M_1 + 1)\Lambda_n/n)^{1/2}$, then

$$\mathbf{P}\left(\|\widehat{\boldsymbol{\mu}}_n - \boldsymbol{\mu}^0\|_n \geq \gamma_n\right) \leq \Lambda_n n^{\{1-M_3f(0)(1-\varepsilon)^2\}\Lambda_n} + O\left(1/\sqrt{\log n}\right),$$

where $\gamma_n = (8M\Lambda_n(\log n)/n)^{1/2}$.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

э.

Preliminaries Estimation consistency Sign consistency

Comments on the estimation results

- If the number of jumps is bounded, the convergence rate in terms of $\|\cdot\|_n$ norm can be compared to the optimal rate $n^{-1/2}$ (Yao and Yu, 1989)
- Furthermore, if the blocks partition is done correctly with a large probability, then $\hat{\nu}_n \rightarrow \nu^0$ (*in terms of* ℓ_2 *norm*) at rate $((\log n)/b_{\min}^0)^{-1/2}$.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Preliminaries Estimation consistency Sign consistency

Definition

 $\widehat{\mu}_n$ is jump selection consistent if

$$\lim_{n\to\infty} \mathbf{P}\left(\{\widehat{J}=J_0\} \bigcap \{\cap_{1\leq j\leq J_0} \{\widehat{\mathcal{B}}_j=\mathcal{B}_j^0\}\}\right)=1.$$

Definition

 $\widehat{\mu}_n$ is jump sign consistent if

$$\lim_{n\to\infty} \mathbf{P}\left(\{\widehat{\mathcal{J}}=\mathcal{J}^0\} \bigcap \{\operatorname{sgn}(\widehat{\mu}_i-\widehat{\mu}_{i-1})=\operatorname{sgn}(\mu_i^0-\mu_{i-1}^0), \forall i\in\mathcal{J}^0\}\right)=1.$$

・ロ ・ ・ 四 ・ ・ 回 ・ ・ 日 ・

э

Preliminaries Estimation consistency Sign consistency

Definition

 $\widehat{\mu}_n$ is block selection consistent if

$$\lim_{n\to\infty} \mathbf{P}\left(\{\widehat{\mathcal{J}}=\mathcal{J}^0\}\bigcap\{\widehat{\mathcal{K}}=\mathcal{K}^0\}\right)=1.$$

Definition

 $\widehat{\mu}_n$ is block sign consistent if

$$\lim_{n\to\infty} \mathbf{P}\left(\{\widehat{\mathcal{J}}=\mathcal{J}^0\} \bigcap \{\widehat{\mathcal{K}}=\mathcal{K}^0\} \bigcap \{\operatorname{sgn}(\widehat{\nu}_j)=\operatorname{sgn}(\nu_j^0), \forall j\in\mathcal{K}^0\}\right)=1.$$

・ロ・・ 日・ ・ 日・ ・ 日・

э

Preliminaries Estimation consistency Sign consistency

Assumptions B

(B1) (a)
$$\lambda_{2n} \to \infty$$
;
(b) there exists a $\delta > 0$, such that $\lambda_{2n} (\log(n - J_0))^{-1/2} > (1 + \delta)/2$.

(B2) (a) $(b_{\min}^0)^{1/2}a_n \to \infty$; (b) there exists $\delta > 0$, such that $(b_{\min}^0 / \log(J_0))^{1/2}a_n > 3(1+\delta)/(\sqrt{2}f(0))$ for sufficiently large *n*.

(B3) $\lambda_{2n} < (f(0)/3)b_{\min}^0 a_n$ for sufficiently large *n*.

(日)

Preliminaries Estimation consistency Sign consistency

Jump selection consistency of LAD-FSA solution

A LAD-FSA solution is

$$\widehat{\mu}_{n}^{\mathrm{FL}}(\lambda_{2n}) = \widehat{\mu}_{n}^{\mathrm{FL}}(0,\lambda_{2n}) = \arg\min\left\{\sum_{i=1}^{n}|y_{i}-\mu_{i}| + \lambda_{2n}\sum_{i=2}^{n}|\mu_{i}-\mu_{i-1}|\right\}.$$

Theorem

A LAD-FSA solution $\hat{\mu}_n^F(\lambda_{2n})$ is jump sign consistent under (A1) and (B1-B3).

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Preliminaries Estimation consistency Sign consistency

Assumptions C

(C1): (a)
$$\lambda_{1n}(b_{\min}^0)^{1/2} \to \infty$$
 when $n \to \infty$;
(b) there exists $\delta > 0$, such that
 $\lambda_{1n}(b_{\min}^0 / \log(J_0 - K_0))^{1/2} > 4\sqrt{2}(1 + \delta)$.
(C2): $\lambda_{2n}/b_{\min}^0 < \lambda_{1n}/8$ when *n* is large enough.
(C3): (a) $\rho_n(b_{\min}^0)^{1/2} \to \infty$ when $n \to \infty$;
(b) there exists $\delta > 0$ such that
 $\rho_n(b_{\min}^0 / \log(K_0))^{1/2} > 2\sqrt{2}(1 + \delta)/f(0)$.

(C4): $\lambda_{2n}/b_{\min}^0 < f(0)\rho_n/3$ when *n* is large enough.

(C5): $\lambda_{1n} < f(0)\rho_n/2$ when *n* is large enough.

Note: some conditions can be redundant. (C2) & (C5) \implies (C4). (C5) & (C1-a) \implies (C3-a).

Preliminaries Estimation consistency Sign consistency

Sign consistency of LAD-FLSA solution

Theorem

Under (A1), (B1-B3) and (C1-C5), a LAD-FLSA estimator is block sign consistent.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Computation Simulation studies

Computation

- All ℓ_1 norms facilitate the computation for fixed (λ_1, λ_2)
- Using previous results to provide reasonable ranges of λ_1 and λ_2
- For example: choose $0 < \lambda_1 < 0.5$ with an increment of 0.01; choose $(n/\log(n))^{1/2} < \lambda_{2n} < n^{1/2}$ with an increment of 0.1.

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

Computation Simulation studies

Tuning parameter selection

D(M_{λ1,λ2}) = Σⁿ_{i=1} ∂E[µ̂_i(y;λ1,λ2)]/∂y_i (Gao and Fang, 2011)
 E[|K̂(λ1,λ2)|] = D(M_{λ1,λ2})
 BIC : Σⁿ_{i=1} |y_i - µ̂_i(λ1,λ2)| + |K̂(λ1,λ2)| log(n)/2

・ロト ・ 聞 ト ・ ヨ ト ・ ヨ ト

3

Computation Simulation studies

Simulation set-up

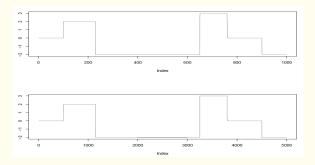
•
$$\mu^0 = (\mathbf{0}'_{p_{1n}}\mathbf{2}'_{p_{2n}} - \mathbf{2}'_{p_{3n}}\mathbf{3}'_{p_{4n}}\mathbf{0}'_{p_{5n}}\mathbf{2}'_{p_{6n}})'$$

- normal/double exponential distribution/Cauchy distribution
- Weak/mild/strong noises
- *n* = 1000 or 5000

・ロ・・ 日本・ ・ ヨ・

Computation Simulation studies

True model



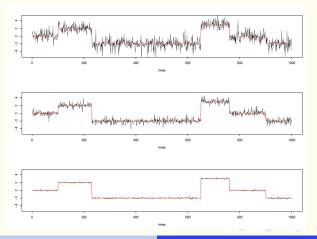
Xiaoli Gao LAD Fused Lasso Signal Approximation

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ

Computation Simulation studies

Sample data sets



Xiaoli Gao

LAD Fused Lasso Signal Approximation

Computation Simulation studies

Evaluate the performances

- OFR+6(CFR): the ratio of recovering μ⁰ correctly or plus at most six additional false positives (correctly fitted ratio).
- JUMP: the average number (standard deviation) of the number of jumps.

LARE
$$(\hat{\mu}_{n}, \mu^{0}) = \frac{\sum_{i=1}^{n} |\hat{\mu}_{i} - \mu_{i}^{0}|}{\sum_{i=1}^{n} |\mu_{i}|}.$$
 (1)

・ロト ・四ト ・ヨト ・ヨト

Computation Simulation studies

Simulation results

	n = 1000				n = 500		
$\sigma_i \sigma$	Model	LARE ¹	OFR+6(CFR) ²	JUMP ³	LARE	OFR+6(CFR)	JUMP
1.0	LAD-FLSA	0.197	89%(17%)	7.12(1.32)	0.217	81%(10%)	6.95(1.22)
	LS-FLSA	0.035	18%(3%)	7.82(1.47)	0.048	16%(5%)	7.54(1.43)
0.5	LAD-FLSA	0.098	97%(32%)	5.59 (0.75)	0.109	95%(19%)	5.70(0.89)
0.5	LS-FLSA	0.016	48%(13%)	5.68(0.74)	0.029	55%(10%)	5.64(0.79)
- 0.1	LAD-FLSA	0.019	100%(93%)	5(0)	0.021	100%(92%)	5(0)
0.1	LS-FLSA	0.013	100%(93%)	5(0)	0.026	100%(93%)	5(0)
ci 1.0	LAD-FLSA	0.154	88% (22%)	7.42(1.54)	0.183	93%(27%)	6.88(1.08)
1.0	LS-FLSA	0.031	12%(0%)	7.42(1.42)	0.044	19%(2%)	7.07(1.44)
Double E	LAD-FLSA	0.077	97%(34%)	5.95(0.90)	0.091	99%(43%)	5.71(0.84)
g 0.5	LS-FLSA	0.016	57%(12%)	5.73(0.78)	0.029	57%(14%)	5.55(0.66)
g 0.1	LAD-FLSA	0.015	100%(97%)	5(0)	0.018	100%(95%)	5.01(0.1)
0.1	LS-FLSA	0.013	100%(97%)	5(0)	0.026	100%(95%)	5.01(0.1)
1.0	LAD-FLSA	0.048	87%(56%)	6.12(1.07)	0.051	82%(50%)	5.95(0.89)
	LS-FLSA	0.239	17%(4%)	16.37(5.38)	0.175	19%(8%)	10.27(3.10)
0.5	LAD-FLSA	0.028	99%(70%)	5.56(0.86)	0.027	91%(73%)	5.62(0.72)
U.5	LS-FLSA	0.120	39%(17%)	10.67(3.62)	0.081	49%(30%)	7.89(2.16)
	LAD-FLSA	0.007	95%(92%)	5.18(0.46)	0.005	99%(95%)	5.16(0.37)
0.1	LS-FLSA	0.029	94%(78%)	6.30(1.34)	0.033	85%(76%)	5.63(1.07)
0.5	LS-FLSA LAD-FLSA	0.120	39%(17%) 95%(92%)	10.67(3.62) 5.18(0.46)	0.081	49%(30%) 99%(95%)	7

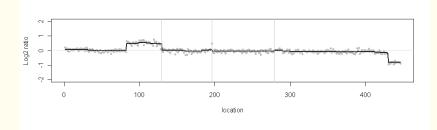
Xiaoli Gao

LAD Fused Lasso Signal Approximation

Computation Simulation studies

BAC array data analysis

A CGH array consisting of 2400 bacterial artificial chromosome (BAC) clones. Sample CGH copy number data on chromosomes 1–4 from cell line GM 13330 is analyzed.



Computation Simulation studies

Numerical studies on DF

Hypothetical data from chromosome 1 with 129 locations of GM 13330

$$y_i^0 = y_i + \varepsilon_i^0, \ i = 1, \cdots, 129, \ \varepsilon_i^0 \stackrel{\text{i.i.d}}{\sim} N(0, 0.1\sigma^*),$$

 σ^* is the standard deviations of $y-1,\cdots,y_{129}$

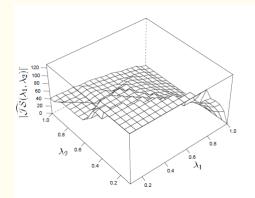
•
$$\widehat{\mathsf{GDF}}(\lambda_1, \lambda_2) = |\widehat{\mathcal{K}}(\lambda_1, \lambda_2)|$$

- GDF(λ₁, λ₂):sum of sensitivities (Algorithm 1 in Ye (1998))
- 500 Monte Carlo simulations

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Computation Simulation studies

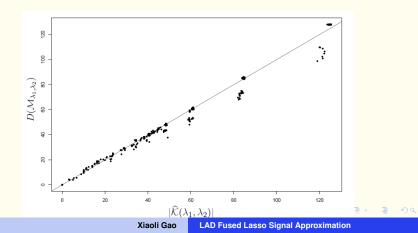
DF changes with tuning parameters



Xiaoli Gao LAD Fused Lasso Signal Approximation

Computation Simulation studies

Unbiased estimator of DF



Summary

- (Robust properties) A LAD-FLSA estimate can be more efficient than an LS-FLSA when the data have heavy noises or the data are contaminated by outliers
- (Estimation) A LAD-FLSA estimator can be estimation consistent. It almost reaches an almost optimal rate if the block size is fixed
- (Variable selection) A LAD-FLSA estimator can be sign consistent under some sufficient conditions

・ロ・・ 日・ ・ 日・ ・ 日・

References

- Boysen, L., Kempe, A., Liebscher, V., Munk, A. ad Wittich, O.L. (2009). Consistencies and rates of convergence of jump-penalized least squares estimators. <u>AOS</u>, **37**, 157–183.
- Gao, X. and Fang, Y. (2011). Generalized degrees of freedom under the L₁ loss function. <u>JSPI</u>, **141**, 677–686.
- Gao, X.L. and Huang, J. (2010). A robust penalized method for the analysis of noisy DNA copy number data, <u>BMC Genomics</u>, 11:517.
- Gao, X.L. and Huang, J. (2011). Estimation and Selection Properties of the LAD Fused Lasso Signal Approximator. In submission
- Harchaoui, Z. and Lévy-leduc, C. (2010). Multiple change-point estimation with a total variation penalty. JASA, 105, 1480–1493.

< 日 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < 国 > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > < П = > <

References

- Rinaldo, A. (2009). Properties and refinements of the fused lasso. <u>AOS</u>, 37, 2922–2952.
- Snijders, A.M., Nowak, N., Segraves, R., Blackwood, S., Brown, N., Conroy, J., Hamilton, G., Hindle, A.K., Huey, B., Kimura, K., Law, S., Myambo, K., Palmer, J., Ylstra, B., Yue, J.P., Gray, J.W., Jain, A.N., Pinkel, D. and Albertson D. (2001). Assembly of microarrays for genome-wide measurement of DNA copy number. <u>Nature Genetics</u>, 29, 263–264.
- Tibshirani, R., Saunders, M., Rosset, S., zhu, J., and Knight, K. (2005). Sparsity and smoothness via the fused lasso. <u>JRSS-B</u>, 67, 91–108.
- Yao, Y., and Au, S. T. (1989). Least-squares estimation of a step function. Sankhya-A, 51, 370–381.

Thank Ejaz for the invitation. Thanks to all organizers.

◆□▶ ◆御▶ ◆注▶ ◆注▶ ─ 注 ─