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Outline of the talk

• Information Criterion based on pseudo-likelihood
with application to select mean structure

• Information Criterion based on penalized-likelihood
with application to select covariance structure
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Composite likelihood methodology

• The composite likelihood (CL) paradigm (Lindsay,
1988; Cox and Reid, 2004) constitutes a rich class of
pseudo-likelihoods based on marginal likelihood
objects.

• Let {f (y;ψ),ψ ∈ Ψ} be a parametric statistical
model, with the parameter space Ψ ⊆ RQ. Let
Y = (Y′1, . . . , Y′n)′ denote the data set, where
Yi = (yi1, . . . , yimi )

′ are the vector of observations
sampled independently on unit i , i = 1, . . . , n.
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Composite likelihood methodology

• ψ = (θ,η), where θ is the parameter of interest and
η is the nuisance parameter.

• Model selection in CL is concerned with θ, and the
corresponding parameter space is Θ ⊆ RP , with
dimension P possibly dependent on the sample size.

• A collection of index subsets A = {A : A ⊆ Ω}, where
each element A is a subset of
Ω = {(i , j), j = 1, . . . , mi , i = 1, . . . , n}. For a given
unit i , similarly we denote Ai = {A : A ⊆ Ωi} with
Ωi = {(i , j), j = 1, . . . , mi}.

• YA = {yij , (i , j) ∈ A}.
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Composite likelihood methodology

• A composite likelihood function is defined as

CL(θ; Y) =
∏
A∈A

LA(θ; Y)wA =
n∏

i=1

∏
A∈Ai

LA(θ; Y)wA , (1)

where LA(θ; Y) = f (YA;θ) is the marginal likelihood
with respect to composite set A, and {wA} is a set of
suitable weights.
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Composite likelihood methodology

• Example 1: A singleton Ai = {Ωi} corresponds to the
full likelihood

• Example 2: Ai = {{1}, . . . , {mi}} gives rise to a
composite likelihood of univariate margins.

• The composite log-likelihood is
cl(θ; Y) =

∑n
i=1

∑
A∈Ai

wA`A(θ; Y), where
cl(θ; Y) = log CL(θ; Y) and `A(θ; Y) = log LA(θ; Y).
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Composite likelihood methodology

• The maximum composite likelihood estimator (CLE)
is given by

θ̂
c

= arg max
θ∈Θ

cl(θ; Y).

• The CLE is consistent and asymptotically normally
distributed under some mild regularity conditions.
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Bayesian Information Criteria

• Let P = dim(Θ), and let s be a subset of {1, . . . , P}.
Denote by θs the parameter θ with those elements
outside s being pre-specified as 0 or some known
values.

• Let ds be the number of parameters under a
marginal submodel s. Let S denote the model space
of all possible submodels being considered.
Associated with each submodel s, let p(s) be the
prior probability of the occurrence of the submodel
defined on space S.
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Bayesian Information Criteria

• In the conventional setting where the number of
parameters P is fixed (or not dependent on the
sample size n), it is commonly assumed that each
submodel s has an equal probability of being
selected, p(s) = 1/card(S).

• Under the full likelihood framework, assuming equal
priors for different submodels, Schwarz (1978)
proposed the BIC criterion to select the best model
among all the candidate models. The first term in
BIC is minus twice the log-likelihood evaluated at the
maximum likelihood estimate and the second term is
log(n) times the number the parameters in the
model.
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Bayesian Information Criteria

• A much more challenging task of model selection in
high-dimensional data analysis is that P is not fixed
but increases as the sample size rises. Suppose that
P = O(nκ), with κ > 0.

• In this case, the equal probability prior will actually
favor models with more parameters; see for example
Chen and Chen (2008).

• To ensure an increasing chance of selecting models
with sparsity, we adopt a stratified sampling scheme
proposed by Chen and Chen (2008).
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Bayesian Information Criteria

• To proceed, first partition the model space into
submodel spaces S = ∪P

k=1Sk , where each Sk
contains models with k parameters.

• Let τ(Sk ) = card(Sk ) be the size of Sk . Obviously,
τ(S1) = P.

• Within a given subspace Sk , an equal probability
prior is imposed as p(s|Sk ) = 1/τ(Sk ), s ∈ Sk .

• Specifying prior probabilities for these subspaces
proportional to their sizes, say p(Sk ) ∝ {τ(Sk )}ξ for
some ξ ≤ 1, we obtain that the prior probability of a
submodel s is proportional to τ(Sk )−γ , with
γ = 1− ξ > 0.

• Using such prior probabilities, Chen and Chen
(2008) have proposed an extended BIC criterion
which has an extra penalty term 2γlogτ(Sk ) for
s ∈ Sk on the model space complexity.
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Bayesian Information Criteria

• When the full likelihood is numerically prohibitive to
compute, we aim to develop an analogue of extended
BIC criterion based on the composite likelihood.

• Select the model with the highest composite
posterior probability.

Pc(s|Y) =
p(s)

∫
CL(Y|θs)πs(θs)dθs∑

s∈S p(s)
∫

CL(Y|θs)πs(θs)dθs
,

with πs(θs) denoting the prior density of θs.

• Using the Laplace approximation (Tierney and
Kadane, 1986, Tierney, et al., 1989), and ignoring
Op(1) terms, we have the resulting criterion
simplified as:

− 2 log CL(θ̂
c
s ; Y) + ds log(n) + 2γ log{τ(Sds)}. (2)
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Measure of model complexity

• d∗s = trace (H−1
s Vs), where

Hs = EψT ,0

{
− c̃l

(2)
(θs)

}
, and Vs = varψT ,0

{
c̃l

(1)
(θs)

}
.

(3)
• The d∗s has been accepted as a measure of model

complexity in composite likelihood setting (Varin and
Vidoni, 2005).

• The proposed CL-BIC for model selection is:

CL-BIC(s) = −2 log CL(θ̂
c
s ; Y) + d∗s log(n) + 2γ log{τ(Sd∗s )},

(4)

with the cardinality term τ(Sd∗s ) = Pd∗s .



Title Introduction Composite BIC simulation model selection of covariance structure conclusion

Model Selection Consistency

• The notion of consistent model selection is about
identifying the smallest correct model with probability
tending to one as the sample size increases.

• Let CL-BIC(s), s = T , s−, s+ denote the composite
likelihood BIC criteria obtained under the true (T),
under-fitting (s−) and over-fitting marginal models
(s+).

• We assume the conventional regularity conditions
required for consistency and asymptotic normality of
the maximum likelihood estimator (Cox and Hinkley,
1974). Furthermore, we assume several additional
regularity conditions needed by composite likelihood
estimation in connection to model misspecification
(White, 1982; Varin and Vidoni, 2005).
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Assumptions

• Denote the composite log-likelihood ratio (CLR)
between two marginal submodels s and s′ by

λs′|s(Y;θs′ ,θs) = log
{

CL(θs′ ; Y)

CL(θs; Y)

}
= cl(θs′ ; Y)−cl(θs; Y).

(5)
• The pseudo true value of parameter θs in Θs under a

misspecified model s, which minimizes the expected
composite KL distance (Varin and Vidoni, 2005)
between the true marginal model and a marginal
submodel s. That is,
θs,0 = arg minθs∈Θs EψT ,0

{λT |s(Y;θT ,0,θs)}.
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Model identifiability

• To establish the consistency result, we need a set of
regularity assumptions regarding the uniform
boundedness of the moments of the derivatives of
the composite log-likelihood across the model space.

• Between the true model and a competing model s,
we examine the standardized expected composite
KL distance:

EψT ,0
{λT |s(Y;θT ,0,θs,0)}/[varψT ,0

{λT |s(Y;θT ,0,θs,0)}]
1
2 .

• To ensure model identifiability, we assume that as n
increases, the minimum standardized expected KL
distance should increase at a rate greater than√

log n.
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Model identifiability

• Example: in the linear model setting. Consider a
model Y = Xθ + ε, where ε ∼ Nn(0, σ2I). Let XT and
Xs denote the design matrices of the true model and
a candidate model with respective vectors of the
regression coefficients θT and θs. Denote the true
null value as θT ,0 under the true model and the
pseudo null value as θs,0 under the candidate model.
Then Assumption reduces to the condition in Chen
and Chen (2008):

lim
n→∞

min
s∈S−

{
(log n)−1∆n(s)

}
= ∞, (6)

with ∆n(s) = ||XTθT − Xs(X′sXs)
−1X′sXTθT ,0||22.
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Some notation

• For over-fitting scenario, define the model space
S+(m) ⊂ S+, with
S+(m) = {s : s ∈ S+, ds − dT = m},
m = 1, . . . , K − dT .

• For any over-fitting model s, define a matrix
Ds = (IdT , 0dT ,ds−dT ), with IdT being an identity matrix
of dimension dT × dT , and 0dT ,ds−dT denoting a
matrix of zeros with dimension dT × (ds − dT ).

• Let Ms/T denote the difference matrix
(Hs(θs,0)

−1 − D′
sH−1

T (θT ,0)Ds).
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Some notation

• let λs[1], . . . , λs[m] denote the nonzero eigenvalues of

M
1
2
s/T Vs(θs,0)M

1
2
s/T in ascending order and

λs =
∑m

j=1 λs[j]/m. Define
$ = lim supn→∞ maxs∈S+

(λs[m]/λs).

• When all the eigenvalues are equal, the ratio of the
maximum eigenvalue over the mean eigenvalue,
λs[m]/λs, is one. On the other hand, λs[m]/λs < m.
Thus $ resides in interval [1, K − dT ).
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Selection consistency

• Theorem Under the regularity conditions, when
γ > $ − 1/(2κ),

PψT ,0

{
min

s∈S−∩S+

CL-BIC(s) > CL-BIC(T )
}
→ 1,

as n →∞.
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Multivariate normal model

• We consider the multivariate familial data analysis
discussed in Zhao and Joe (2005). The sample is
drawn from families with inter-correlations among
individuals in a family. Denote the numbers of
families and members in each family by n and m.

• The response vector of measurements for the i-th
family is denoted by Yi = (yi1, . . . , yim)′. Associated
is a set of covariates at the individual level,
Xi = (xi1, . . . , xim)′, with xik = (xik1, . . . , xikP)′,
representing the P covariates observed for the k -th
individual in the i-th family.
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Multivariate normal model

• Yi follows a multivariate normal distribution,
Nm(µi ,Σ), where the mean vector is governed by a
linear model, µi = Xiβ, with β = (β1, . . . , βP)′. The
covariance matrix Σ is specified according to an
exchangeable dependence structure, σk ,k ′ = ρ.

• We consider two different scenarios. In the first
scenario, we set P = 30, n = 200 and m = 4. The
covariates are generated from a multivariate normal
with the standard normal N(0, 1) marginals and
inter-correlation Cov(xikp, xikp′) = 0.2. The
within-family correlation ρ is set to either 0.3 or 0.6.

• In the second scenario, we set P = 1000, n = 200,
and m = 4.
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Multivariate normal model

Table: Multivariate normal model with P = 30 and N = 200

β ρy CL-AIC CLU -BIC0 CLU -BIC0.5 CLB -BIC0 CLB -BIC0.5 EBIC0
β1 0.3 0.878 0.739 0.655 0.911 0.875 0.914

(0.035) (0.003) (0.002) (0.037) (0.011) (0.034)
β1 0.6 0.873 0.727 0.668 0.946 0.903 0.949

(0.026) (0.002) (0.002) (0.053) (0.014) (0.055)
β2 0.3 0.852 0.697 0.667 0.892 0.818 0.892

(0.108) (0.005) (0.004) (0.116) (0.045) (0.128)
β2 0.6 0.845 0.695 0.663 0.938 0.890 0.940

(0.095) (0.014) (0.006) (0.142) (0.065) (0.135)
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Multivariate normal model

Table: multivariate normal model with P = 1000 and n = 200

β ρy CL-AIC CLB -BIC0 CLB -BIC0.5 EBIC0 EBIC0.5
β1 0.3 0.896 0.893 0.819 0.889 0.818

0.472 0.439 0.039 0.378 0.037
β1 0.6 0.894 0.894 0.837 0.881 0.838

0.456 0.346 0.052 0.211 0.052
β2 0.3 0.868 0.850 0.717 0.842 0.710

0.780 0.641 0.044 0.545 0.032
β2 0.6 0.873 0.847 0.728 0.815 0.722

0.783 0.535 0.064 0.316 0.053
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Multivariate probit model

• The second simulation study is based on a
multivariate probit model, in which the binary
response vector arises from a dichotomization of an
underlying multivariate normally distributed random
vector.

• Under the same setup in Section 4.1, binary
correlated responses are obtained by dichotomizing
the continuous multivariate normal measurements.

• The two scenarios of P < n and P >> n are
considered. For a multivariate probit model with
many covariates, the full likelihood involves high
dimensional integration and is computationally
prohibitive.
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Multivariate probit model

Table: Multivariate probit model with P = 30 and n = 100

β ρy rate CL-AIC CLU -BIC0 CLU -BIC0.5 CLB -BIC0 CLB -BIC0.5
β1 0.3 (PSR) 0.846 0.710 0.670 0.768 0.682

(FDR) 0.248 0.068 0.060 0.111 0.063
0.6 (PSR) 0.850 0.713 0.675 0.769 0.707

(FDR) 0.233 0.067 0.052 0.104 0.063
β2 0.3 (PSR) 0.812 0.693 0.687 0.707 0.692

(FDR) 0.394 0.079 0.071 0.111 0.078
0.6 (PSR) 0.813 0.703 0.695 0.735 0.693

(FDR) 0.363 0.089 0.065 0.130 0.069
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Multivariate probit model

Table: Multivariate probit model with P = 1000 and n = 100

β ρy CL-AIC CLU -BIC0 CLU -BIC0.5 CLU -BIC1.0 CLB -BIC0 CLB -BIC0.5 CLB -BIC1.0
β1 0.3 0.790 0.766 0.593 0.393 0.782 0.647 0.475

0.522 0.431 0.118 0.029 0.494 0.169 0.055
0.6 0.778 0.756 0.571 0.398 0.775 0.640 0.500

0.540 0.448 0.095 0.024 0.516 0.181 0.058
β2 0.3 0.865 0.840 0.635 0.540 0.863 0.692 0.588

0.703 0.587 0.092 0.012 0.696 0.163 0.031
0.3 0.868 0.828 0.637 0.518 0.858 0.718 0.592

0.711 0.590 0.087 0.012 0.678 0.167 0.036
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Quadratic Exponential Model

• A less simple model involving conditional likelihoods.
• Consider an experiment involving n clusters, the i-th

of which contains ni binary measurements. Suppose
yij = 1 when the outcome is success and yij = −1
when the outcome is failure.

• Let Yi represent the vector of outcomes for the i-th
cluster. Geys, et al. (1997) used the following model
for the joint distribution of clustered binary data:

fYi (yi) ∝ exp{
ni∑

j=1

µijyij +
∑
j≤j ′

wijj ′yijyij ′}, (7)

which belongs to the quadratic exponential family
discussed in Zhao and Prentice (1990).
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Quadratic Exponential Model

• Express the joint distribution in terms of zi , the
number of successes for the i th cluster. Assuming
µij ≡ µi and wi ≡ w , and through re-parametrization
µ∗i = 2µi , and w∗ = 2w , model (7) is transformed
into:

fYi (yi) = exp{µ∗i zi + w∗(−zi(ni − zi))− C(µ∗i , w∗)},

with C(µ∗i , w∗) being the normalizing constant. A
positive interaction effect w∗ corresponds to classical
clustering or over-dispersion, while a negative value
corresponds to under-dispersion.
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Quadratic Exponential Model

• Using traditional likelihood approach to analyze such
data will inevitably involve highly intensive calculation
of the normalizing constant C(µ∗i , w∗), which varies
across clusters of different sizes.

• As an appealing alternative method, we formulate
the composite likelihood in the form of conditional
likelihoods.

cl =
n∑

i=1

ni∑
j=1

log f (yij |{yij ′}, j ′ 6= j).

• Within each cluster, there are ni conditional
probabilities of observing the outcome for the j-th
measurement, given the outcome for the other ni − 1
measurements.
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Quadratic Exponential Model

• Under the assumption of the exchangeable nature of
the measurement, there are two types of
contributions: i) the conditional probability of an
additional success result, given there are zi − 1
successes and ni − zi failures:

pis =
exp{µ∗i − w∗(ni − zi + 1)}

1 + exp{µ∗i − w∗(ni − zi + 1)}
,

ii) the conditional probability of an additional failure,
given there are zi successes and ni − zi − 1 failures:

pif =
exp{−µ∗i + w∗(ni − zi − 1)}

1 + exp{−µ∗i + w∗(ni − zi − 1)}
.

Thus, the composite likelihood can be expressed as
cl =

∑n
i=1{zi log pis + (n − zi) log pif}.
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Quadratic Exponential Model

• Modelling in terms of covariate effect can be
achieved using the linear model µ∗i = Xiβ, where Xi
is a 1× P vector containing the covariate values and
β is a P × 1 vector of regression coefficients.
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Quadratic Exponential Model

Table: Quadratic exponential model with P = 1000

n w rate CL-AIC CL-BIC
500 0.2 (PSR) 0.937 0.933

(FDR) 0.777 0.218
0.3 (PSR) 0.921 0.915

(FDR) 0.742 0.250
0.4 (PSR) 0.923 0.914

(FDR) 0.728 0.394
1000 0.2 (PSR) 0.936 0.936

(FDR) 0.809 0.016
0.3 (PSR) 0.923 0.923

(FDR) 0.783 0.032
0.4 (PSR) 0.914 0.914

(FDR) 0.757 0.139
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Real Data Analysis

• A data from a diabetic nephropathy (DN) study at
University of Michigan.

• In this data set, 35 DN abnormal patients were
followed for a period of time ranging from 6.91 to
10.89 years. During the period, their renal functions
were measured at multiple time points and the
treatment results were classified into binary
outcomes as either successful or failure.

• Each of the patients’ renal tissue had undergone a
microarray analysis to obtain gene expression data.
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Real Data Analysis

• The purpose: determine if there are any biomarkers
among the 500 candidate genes that have important
influence on the risk of exacerbation through a
certain therapeutic program.

• The challenge:the presence of correlation among
repeated measurements within each patient; the
number of repeated measurements varies across the
35 patients.

• The total number of measurements is 402, while the
total number of candidate covariates is 500.

• This data set is a practical example containing a
large number of covariates and strong dependency
among the clustered binary outcomes.
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Real Data Analysis

• We impose penalization on the composite likelihood
with L1 penalty.

• We gradually increase the tuning parameter in the
penalty term and obtain a sequence of models, at
which both CL-AIC and CL-BIC are computed.

• We choose γ = 1− 1/(2κ) = 0.75, setting κ = 2,
and $̂ = 1, the lower bound of $.

• When the tuning parameter increases from 0.04 to
0.26, the number of parameters in the sequence of
selected models are 3, 4, 5, 8, 9, 11, respectively.
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Real Data Analysis

• For the sequence of selected models, the CL-BIC
takes the values of
557.85, 551.21, 559.21, 578.96, 585.45, 567.32,
whereas the CL-AIC takes the value of
536.09, 518.5732, 515.7058, 502.8211, 498.4278, 458.5472.

• As shown, CL-BIC is minimized at an intermediate
model with 4 parameters including intercept,
interaction and 2 gene covariates. Among all the
models being examined, CL-AIC is minimized at the
most complicated model with 11 parameters.

• The CL-BIC shows its advantage of balancing the
model fitting and model complexity when dealing with
a large model space.
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Some practical concerns

• One can vary the magnitude of γ and selects the
optimum value that offers the best balance between
sensitivity and selectivity. This works for the situation
when we can simulate the data generating
mechanism where the the real data arises and apply
the simulation gauged γ onto the real data.

• Another approach uses γ = $̂ − 1/(2κ), under the
circumstances that the sample size is sufficient. For
each candidate model s, we compute the ratio of the
maximum eigenvalue over the mean eigenvalue of
the matrix Ĥ−1/2

s V̂sĤ−1/2
s . The maximum ratio over all

the models being examined offers an ad-hoc
estimator $̂ of the quantity $.

• When sample size is small, as a conservative
approach, we choose γ = 1− 1/(2κ) setting $̂ = 1,
the lower bound of $.
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model selection in covariance structure

• Covariance selection in Gaussian graphical model
• The proposed penalized likelihood method for

covariance selection
• Selection of Tuning parameter –Consistency of

modified BIC in penalized likelihood framework
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Covariance selection in Gaussian graphical model

• Let X = (X (1), ..., X (p)) ∼ Np(µ,Σ) with µ denoting
the unknown mean and Σ denoting the nonsingular
covariance matrix. We wish to estimate the
concentration matrix C = Σ−1.

• The zero entries cij in the concentration matrix
indicates the conditional independence between the
two random variables X (i) and X (j) given all other
variables (Dempster, 1972, Whittaker, 1990,
Lauritzen, 1996).

• The Gaussian random vector X can be represented
by an undirected graph G = (V , E), where V
contains p vertices corresponding to the p
coordinates and the edges E = (eij)1≤i<j≤p
represent the conditional dependency relationships
between variables X (i) and X (j).
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Modified BIC for graphical model

Under this high-dimensional setup, the penalized
likelihood estimation of covariance matrix has been
investigated by Rothman et al. (2008) and Lam and Fan
(2009).
We propose to modify the BIC with an extra penalty term
of 4 log pn on the dimension of the covariance matrix,
while the log-likelihood term is evaluated directly at the
penalized estimator. Given a λ, the associated modified
BIC criterion is defined as:

BICλ = −n log |Ĉλ|+ ntr(ĈλĀ) + {log n + 4 log pn}
∑

1≤i<j≤p

I(ĉij,λ 6= 0).
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Modified BIC for graphical model

We further assume that dT is bounded by a finite
constant Q and (pn/n)(log pn)

k = O(1), for some k > 1.

Theorem
Under the regularity conditions, Pr(Gλ̂BIC

= GT ) → 1,

where λ̂BIC , which may not be unique, is the tuning
parameter that minimizes the modified BIC criterion with
the SCAD penalty.
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simulation

Table: Results for Graphical Model with p=250 and N=500.

LASSO SCAD
model 1 model 2 model 1 model 2

bic cv bic cv bic cv bic cv
fp 16.30 566.24 10.22 952.57 2.94 1981.43 7.99 90.46

( 5.92) (28.12) ( 5.40) (68.63) ( 1.72) (47.17) ( 4.22) (13.37)
fn 0.12 0.00 110.01 23.48 0.36 0.00 112.80 76.93

( 0.38) ( 0.00) ( 8.49) ( 3.95) ( 0.72) ( 0.00) ( 7.58) ( 4.82)
tp 98.88 99.00 79.99 166.52 223.64 224.00 202.20 238.07

( 0.38) ( 0.00) ( 8.49) ( 3.95) ( 0.72) ( 0.00) ( 7.58) ( 4.82)
tn 31010 30460 30925 29982 31023 29045 30927 30845

( 5.92) (28.12) ( 5.40) (68.63) ( 1.72) (47.17) ( 4.22) (13.37)
spec 1.00 0.98 1.00 0.97 1.00 0.94 1.00 1.00

( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00) ( 0.00)
sens 1.00 1.00 0.42 0.88 1.00 1.00 0.64 0.76

( 0.00) ( 0.00) ( 0.04) ( 0.02) ( 0.00) ( 0.00) ( 0.02) ( 0.02)
mcc 0.93 0.38 0.61 0.35 0.99 0.31 0.78 0.74

( 0.02) ( 0.01) ( 0.03) ( 0.01) ( 0.00) ( 0.00) ( 0.01) ( 0.02)
fdr 0.14 0.85 0.11 0.85 0.01 0.90 0.04 0.27

( 0.04) ( 0.01) ( 0.05) ( 0.01) ( 0.01) ( 0.00) ( 0.02) ( 0.03)
psr 1.00 1.00 0.42 0.88 1.00 1.00 0.64 0.76

( 0.00) ( 0.00) ( 0.04) ( 0.02) ( 0.00) ( 0.00) ( 0.02) ( 0.02)

SCAD:the SCAD penalty; LASSO: the L1 penalty.
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Conclusion

• Information Criterion can be constructed based on
composite likelihood or other pseudo-likelihood when
full likelihood is hard to compute

• Extra penalty needed on the dimensionality of the
model space under P →∞ case.

• Can be used to select variables in mean structure or
select sparse covariance or inverse covariance
structure

• The likelihood term can be evaluated at the
penalized likelihood estimator so that the resulting
BIC can be directly used to select the tuning
parameters for penalized likelihood estimation
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