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OUTLINE

STUDIES OF ASSOCIATION BETWEEN
DISEASE AND GENETIC MARKERS

COMPARISONS BETWEEN POPULATION GENETIC
AND STATISTICAL APPROACHES

MODEL COMPARISONS
CRITERIA COMPARISONS
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BACKGROUND: GENOMICS RESEARCH PROJECT

THE LARGE p SMALL n PROBLEM, WHERE
n = SAMPLE SIZE AND
p = No. OF PREDICTORS.

EXAMPLES INCLUDE n = 3000 AND p = 500, 000.
THIS IS NOT A PROBLEM, SAY POPULATION
GENETICISTS.

QUESTIONS:

(1). WHY NOT A PROBLEM? THEIR ANSWER: DUAL
PCA, CORRELATION AND BONFERRONI.

(2). WHAT MODEL DO POPULATION GENETICISTS
PROPOSE?

(3). FOR THEIR MODEL, WHAT ARE GOOD
PROCEDURES?
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BACKGROUND: GENOMICS RESEARCH PROJECT

THE DATA CONTAINS
1500 CASES (TYPE II DIABETES);
1500 CONTROLS (NOT TYPE II DIABETES);
3000 INDIVIDUALS, i.e., n = 3000.

QUESTION: HOW DO CASES AND CONTROLS DIFFER
GENETICALLY?

FOR EACH INDIVIDUAL, WE MEASURE p = 500, 000
GENETIC MARKERS, CALLED SNPs
(SINGLE NUCLEOTIDE POLYMORPHISMS).

EACH SNP SCORE IS 0, 1 or 2. IT MEASURES HOW
CLOSE AN INDIVIDUAL’S SNP AT A CERTAIN LOCATION
IS TO THE SNP OF A REFERENCE GENOME AT THE
SAME LOCATION.
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BACKGROUND: GENOMICS RESEARCH PROJECT

GENETIC MARKER VALUES
gij ∈ {0, 1, 2}

AT p = 500, 000 GENOME LOCATIONS

FOR n = 3000 INDIVIDUALS

1 ≤ j ≤ n, 1 ≤ i ≤ p.

ASK: AT LOCATION i , IS THERE A SIGNIFICANT
ASSOCIATION BETWEEN GENOTYPE AND DISEASE,
i = 1, . . . , 500, 000?

H0i : NO ASSOCIATION AT LOCATION i
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BASIC TEST STATISTICS

USE TEST STATISTICS Ti = Ri

√
n−2
1−R2

i

WHERE

Ri = Corr(gi1, · · · , gin; d1, · · · , dn), i = 1, · · · , p.
AND

dj =

{
1, if disease
0, otherwise

j = 1, · · · , n.

THE TESTS BASED ON |Ti | ARE EQUIVALENT TO
CHI-SQUARE-TESTS.

LET ρi = POPULATION CORRELATION, WE TEST

H0 : ρi = 0 H1 : ρi 6= 0, i = 1, · · · , p.
USING TEST STATISTICS |Ti | AND BONFERRONI CRITICAL
VALUES. THEY USE CR.VAL.= .05/500000 = 10−7.
REJECT H0 IF pi < 10−7, WHERE pi = P-VALUE FOR THE iTH
SNP.
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GENOTYPE STANDARDIZATION:

RECALL gij ∈ {0, 1, 2}. IN THE HARDY-WEINBERG GENETIC
MODEL, gij ∼ Bin(2, qi ). HERE E (gij) = 2qi AND

SD(gij) =
√

2qi (1− qi ), 1 ≤ i ≤ p, 1 ≤ j ≤ n.

INSTEAD OF gij , USE THE STANDARDIZED SCORE

NEW gij =
gij − ḡi√

2q̂i (1− q̂i )
,

where ḡi = (
∑n

j=1 gij)/n and

q̂i =
1 +

∑n
j=1 gij

2 + 2n
= ESTIMATE OF ALLELE FREQUENCY OF SNP i

= BAYES ESTIMATE BASED ON BETA(2,2) PRIOR

IN HARDY-WEINBERG MODEL
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GENOTYPE STANDARDIZATION:

THIS TRANSFORMATION MAKES THE NEW gij ’s HAVE
MEANS ZERO AND APPROXIMATELY THE SAME SD’s.

IT IS USED IN THE CORRELATION VERSION OF
PRINCIPAL COMPONENT ANALYSIS (PCA).

IT GIVES MORE WEIGHT TO RARE SNPS.

8 / 43



CONFOUNDING PROBLEM

BIG PROBLEM: THERE MAY BE SPURIOUS CORRELATION
BECAUSE OF GENETIC CLUSTERS.
THIS SPECIFIED MARKER g is NOT ASSOCIATED WITH DISEASE,
THE CLUSTERS ARE DETERMINED BY MARKERS OTHER THAN
THE SPECIFIED MARKER g .
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ANCESTRY STRATA

THE CLUSTERS ARE CALLED GENETIC ANCESTY
STRATA.
PEOPLE WITH SIMILAR “ANCESTRY” ARE IN THE SAME
STRATA.
ANCESTRY IS A CONFOUNDING VARIABLE.

HOW TO CORRECT FOR ANCESTRY AND THEREBY
AVOID SPURIOUS ASSOCIATION?

ANSWER: DUAL PCA = DUAL PRINCIPAL COMPONENT
ANALYSIS.

THE ALGORITHM IS CALLED “EIGENSTRAT” OR
“EIGENSOFT”.
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DUAL PCA:

THE TRANSPOSE OF THE GENOTYPE DESIGN MATRIX IS

X = (gij)p×n = (DESIGN MATRIX )T ,

Ψn×n = p−1XTX = DUAL “COVARIANCE” MATRIX .

WHY NOT USE THE USUAL (n−1XXT )p×p?

BECAUSE COMPUTER CANNOT HANDLE A p × p MATRIX.

TREAT DATA ACROSS MARKERS AS IID, TREAT DATA
ACROSS INDIVIDUALS AS VARIABLES THAT ARE NOT IID.

IS THIS A PROBLEM?
NO, BECAUSE:
RESULT: XTX AND XXT HAVE THE SAME NONZERO
EIGENVALUES.
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ANCESTRY

DEFINITION: THE ANCESTRY akj OF INDIVIDUAL j ALONG
THE kTH AXIS OF ANCESTRY VARIATION IS THE jTH
COORDINATE OF THE kTH EIGENVECTOR Ak OF (XTX )n×n,
1 ≤ k ≤ K .

∑
j
akj = 0,

∑
j
a2kj = 1,

∑
j
akjak ′j = 0 WITH k 6= k ′.

HERE K IS CHOSEN BY THE JOHNSTONE TEST, WHICH IS
BASED ON THE TRACY-WIDOM DISTRIBUTION.

THE FIRST SAMPLE DUAL PRINCIPAL COMPONENT
EVALUATED AT THE jTH PERSON =

√
λ1a1j ,

WHERE λ1 IS THE LARGEST EIGENVALUE OF (XTX )n×n.

THUS, a1j = 1√
λ1
∗{LOADING FACTOR OF THE jTH

INDIVIDUAL IN THE FIRST DUAL PC}.
INDIVIDUALS WITH SIMILAR LOADING FACTORS ARE IN
THE SAME CLUSTER.
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ANCESTRY ADJUSTMENT:

THERE IS NO NEED TO USE CLUSTERS.

INSTEAD USE A CONTINUOUS ANCESTRY
ADJUSTMENT.

EACH PERSON IS ASSIGNED A GENETIC ANCESTRY
SCORE, WHICH IS SUBTRACTED FROM THEIR
GENOTYPE gij .
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ANCESTRY ADJUSTMENT:

LET ĝkij = PREDICTED GENOTYPE AT LOCUS i FOR
INDIVIDUAL j BASED ON THE ANCESTRY akj .
THEN ĝkij = γkiakj WHERE

γki =
∑
j

akjgij

= DUAL k TH PC EVALUATED AT

THE i TH COLUMN OF X = (gij)

= REGRESSION COEFFICIENT WHEN

REGRESSING gi1, · · · , gin LINEARLY ON Ak
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ANCESTRY ADJUSTMENT

ĝkij = BEST LINEAR PREDICTOR OF gij BASED ON Ak .

DEFINION: THE GENOTYPE ADJUSTED FOR
ANCESTRY ALONG THE kTH ANCESTRY AXIS IS

gkij = gij − ĝkij

HOW DOES THIS COMPARE WITH THE COVENTIONAL
STATICIAL PCA?
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ANCESTRY ADJUSTMENT

REGRESSING SIMULTANEOUSLY ON ALL
PCAk , 1 ≤ k ≤ K , ANCESTRY SCORES

IS EQUIVALENT TO

REGRESSING ON EACH PCAk ONE AT A TIME IN
SEQUENCE,

BECAUSE THE PCs ARE ORTHOGONAL.
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ANCESTRY ADJUSTMENT

SUPPOSE WE USE (XTX )p×p
INSTEAD OF THE DUAL (XXT )n×n
THEN,

akj =
1√
λk
{(PC )k EVALUATED FOR THE INDIVIDUAL j}

WE COULD HAVE USED SINGULAR VALUE
DECOMPOSITION TO ARRIVE AT THIS POINT.
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ANCESTRY ADJUSTMENT

THUS, THE ANCESTRY akj OF THE jTH INDIVIDUAL
ALONG THE kTH ANCESTRY AXIS IS PROPORTIONAL
TO THE kTH CONVENTIONAL PRINCIPAL COMPONENT
EVALUATED AT THE GENETIC MARKER SCORES FOR
THE jTH INDIVIDUAL.

WHEN ADJUSTING GENOTYPE FOR ANCESTRY BY
FORMING gij − ĝkij , WE ARE ADJUSTING BY USING THE
BEST LINEAR PREDICTOR ĝkij OF GENOTYPE gij FOR
THE INDIVIDUAL j BASED ON THE kTH
CONVENTIONAL PRINCIPAL COMPONENT.
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PHENOTYPE ADJUSTMENT

THE PHENOTYPES: d1, · · · , dn
dj = DISEASE INDICATOR, 0 OR 1, FOR jTH INDIVIDUAL.
ALSO ADJUST FOR ANCESTRY

dj → dj − d̂kj = dkj

d̂kj IS THE BEST LINEAR PREDICTOR OF dj BASED ON
THE ANCESTRY AXIS Ak , WHICH IS ALSO THE BEST
LINEAR PREDICTOR OF Ak BASED ON THE
CONVENTIONAL EIGENVECTOR Bk .

REGRESS {PHENOTYPE − E (GE |A)} ON
{GENOTYPE − E (PH |A)}.
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DECISION RULE

THE FINAL STATISTICS ARE

Ti = Ri

√
n − 2

1− R2
i

,

WHERE Ri IS THE CORRELATION BETWEEN
THE ANCESTRY ADJUSTED STANDARDIZED
GENOTYPES gkij , 1 ≤ k ≤ K , 1 ≤ i ≤ p, 1 ≤ j ≤ n AND
THE ANCESTRY ADJUSTED DISEASE INDICATORS dkj ,
1 ≤ k ≤ K , 1 ≤ j ≤ n.

LET pi =P-VALUE BASED ON Ti

DECIDE THAT THE iTH MARKER IS ASSOCIATED WITH
DISEASE IF pi ≤ 10−7, i = 1, · · · , 500, 000.
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A BIOMEDICAL GENOMICS MODEL

HIERARCHICAL MODEL:

(1). CHOOSE U UNIFORM(0.1, 0.9).
OUTPUT U = u.

(2). CHOOSE P1,P2 I.I.D. BETA(α, β)
WITH α = 1−d

d
u and β = 1−d

d
(1− u)

WHERE

d = GENETIC DIFFERENTIATION WITHIN A POPULATION

= Fst = 0.01(EUROPE)

α = 99u

HERE E (P1|u) = E (P2|u) = u, VAR(Pl |u) IS SMALL.

OUTPUT (P1,P2) = (p1, p2).
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A BIOMEDICAL GENOMICS MODEL

(3)

(a) STRATA I: HARDY-WEINBERG MODEL CHOOSES
CONTROL AND CASE GENOMIC DATA AS
GCO ∼ BINOMIAL(2, p1), g

I
ij , d

I
j = 0

GCA ∼ BINOMIAL(2, p∗1), g
I
ij , d

I
j = 1

WHERE
p∗1 = Rp1

1−p1+Rp1
AND

R =RELATIVE RISK OF DISEASE=
p∗1

1−p∗1
1−p1
p1

R = 1 MEANS SAME RISK
OUTPUT g I

ij , d
I
ij

(b) STRATA II: SAME, EXCEPT USE p2.
OUTPUT g II

ij , d
II
j
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A BIOMEDICAL GENOMICS MODEL

(4)
GENERATE 600 CASES AND 400 CONTROLS FROM
STRATA I.

GENERATE 400 CASES AND 600 CONTROLS FROM
STRATA II.

OUTPUT {gij , dj}. THE STRATA LABELS I AND II ARE
DROPPED.

23 / 43



METHODS:

METHOD 1: EIGENSTRAT

LET pi BE P-VALUE FOR iTH SNP USING Ti = Ri

√
n−2
1−R2

i
.

SELECT THE SNPs WITH pi < 10−7, BONFERRONI WITH
α = 0.05 AND I. JOHNSTONE “SELECTION” OF NO. OF
STRATA.

Ri = CORR BETWEEN iTH GENETIC MARKER AND
DISEASE INDICATOR USING STANDARDIZATION AND
ANCESTRY ADJUSTMENT.
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METHODS:

METHOD 2: LOGISTIC REGRESSION

LOGIT [PROB(DISEASE |GENOTYPE )] = α+βGENOTYPE

Ti = t − STAT = β̂/SE (β̂)

HERE GENOTYPE IS STANDARDIZED AND
ANCESTY ADJUSTED.
PHENOTYPE IS NOT.
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METHODS:

METHOD 3: EFRON’S EMPIRICAL BAYES
H0i : CORR(PHENOTYPE,GENOTYPE Gi )= 0
H1i : CORR 6= 0

π0 = PRIOR PROB OF H0i . HERE π0 = IS CLOSE TO 1.
pi = P-VALUE FOR SOME STAT SUCH AS Ti

Zi = φ−1(pi ) ∼ N(0, 1) WHEN H0i HOLDS
THE ESTIMATED POSTERIOR PROBABILITY OF H0i IS

P̂(H0i |Zi ) =
π0f0(zi )

π0f0(zi ) + (1− π0)f̂1(zi )

WHERE f0 = N(0, 1) and f̂1 IS AN ESTIMATE OF f1.

DECIDE H1i IF P̂(H0i |Zi ) ≤ 0.2
THIS PROCEDURE IS LABELLED “LOCAL FDR”.
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METHODS:

HOW TO ESTIMATE f1?

ASSUME A MIXTURE MODEL:

f (z) = π0f0(z) + (1− π0)f1(z)

f0(z) = N(0, 1)

f1(z) = N(µ, σ2)

SEE GRAPH NEXT PAGE.
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THE DISTRIBUTION OF ALL Z-VALUES BY EIGENSTRAT

10000 SNPs, 50 relevant SNPs, 1000 persons, R = 2, 50 MC simulations
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THE DISTRIBUTION OF Z-VALUES GREATER THAN 4, BY EIGENSTRAT

10000 SNPs, 50 relevant SNPs, 1000 persons, R = 2, 50 MC simulations

THIS IS AN ESTIMATE OF f1 IN (1− π0)f1

D
en

si
ty

4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

29 / 43



METHODS 3A and 3B

EFRON’S METHOD (EMP. BAYES) ONLY REQUIRES
P-VALUES. THUS WE CAN COMBINE METHOD 3 WITH
METHODS 1 AND 2.

METHOD 3A: EFRON-EIG
EFRON EMP. BAYES WITH Ti FROM EIGENSTRAT

METHOD 3B: EFRON-LOG
EFRON EMP. BAYES WITH Ti FROM LOGISTIC
REGRESSION
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CRITERIA # 1: OPTIMAL EMP. BAYES

OPTIMAL EMP. BAYES

LET X = (g ,Y ) = ALL DATA
RECALL BAYES RULE:
DECIDE H1i IF P(H1i |X ) > P(H0i |X ).

CRITERIA # 1: SUN AND CAI (07 JASA)
HYBRID: BAYES-NEYMAN-PEARSON
SUBJECT TO P(H0i |X ) ≤ q
MAXIMIZE P(H1i |X )

EFRON (BOOK 2010), SUN AND CAI (07 JASA) AND
OTHERS PROPOSED CLEVER WAYS OF ESTIMATING
π0, P(H1i |X ) AND P(H0i |X ).
ROBBINS, STEIN, EFRON-MORRIS IDEAS
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CRITERIA # 2: NEYMAN-PEARSON-SPJφTVOLL

CONSIDER ALL PROCEDURES WITH
I:

∑p
i=1 P(H0i REJECTED|H0iTRUE) = γ = “LEVEL”

AMONG THESE, TRY TO “MAXIMIZE”
IIc :

∑
i∈A P(H0i REJECTED|H1i TRUE)=“POWER”

WHERE

A = {i : iTH SNP RELEVANT}
= TRUE ASSOCIATION SET

THIS CRITERIA IS USED IN THE RECENT BIOMEDICAL
GENOMICS LITERATURE.
WHAT SAMPLE SIZE IS NEEDED TO HAVE REASONABLE
POWER FOR THE BIOMEDICAL MODEL?
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CRITERIA # 3: FDR AND FNR

H0: ALL H0i ARE TRUE. “THERE ARE NO RELEVANT SNPS.”

FDR = FALSE DISCOVERY RATE= EH0(FDR∗) WHERE

FDR∗ =
# IRRELEVANT SNPs SELECTED

#SELECTED SNPs
=

#FALSE DISC’S

#OF DISC’S

FNR = EA(FNR∗) WHERE

FNR∗ =
# RELEVANT SNPs NOT SELECTED

# SNPs NOT SELECTED

AND A = {i : SNP i IS RELEVANT}

BENJAMINI AND HOCHBERG (1995) CONSTRUCTED A
PROCEDURE WITH FDR < q, FOR A PREASSIGNED q ∈ (0, 1).
HERE 0/0 = 0.
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CRITERIA # 2 REVISITED:

SPJφTVOLL (72 AMS), STOREY (07 JRSSB),
SUN AND CAI (07 JASA)

IN THE CLASS OF PROCEDURES WITH
E (#FALSE DISCOVERIES)=GAMMA
MAXIMIZE
E (#CORRECT DISCOVERIES).

THE DISCOVERY RULES LOOK LIKE:

Ψi (X ) =

{
0 DECIDE SNP i IRRELEVANT
1 DECIDE SNP i RELEVANT

HERE X = ALL DATA ACROSS ALL SNPS AND DISEASE
INDICATORS.
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SPJφTVOLL’s THEOREM (1972)

LET f01, . . . , fop AND f1, . . . , fp
GE GIVEN INTEGRABLE FUNCTIONS.

LET S(γ) =TESTS
ψ1, . . . , ψp WITH∑p

i=1

∫
ψi (x)f0i (x)dµ(x) = γ (E.G., EXPECTED NO. OF FALSE

DISCOVERIES)

THEN THE TEST THAT MAXIMIZES∑p
i=1

∫
ψi (x)fi (x)dµ(x) (E.G., EXPECTED NO. OF CORRECT

DISCOVERIES)
IS

φ1, . . . , φp = {1[fi (x) > cf0i (x)] : i = 1 . . . , p}

.
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SPJφTVOLL, SPECIAL CASE (a)

TAKE

f0i = DENSITY FOR THE IRRELEVANT CASE

fi = DENSITY FOR THE RELEVANT CASE

CONSIDER TWO DIFFERENT SCENARIOS:

CASE I: ALL SNP’s ARE IRRELEVANT.
CASE II: EXACTLY FIVE SNPS ARE RELEVANT.

WE CAN ASK:
IF WE CONTROL THE CASE I EXPECTED NO. OF FALSE
DISCOVERIES AT γ, THAT IS SPJ LEVEL = γ,
WHAT IS THE EXPECTED NO. OF CORRECT DISCOVERIES FOR
CASE II USING METHOD k? WHAT IS THE POWER?

HOW DOES METHOD k COMPARE TO THE ORACLE THAT USE

SPJφTVOLL’s OPTIMAL RULE?
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SPJφTVOLL, SPECIAL CASE (b)

TAKE

h0i = DENSITY FOR THE IRRELEVANT CASE

TAKE
f0i = h0i/NO. OF DISCOVERIES

SPJφTVOLL γ = FDR = FALSE DISCOVERY RATE
COMPUTE (OR MAXIMIZE) CORRECT DISCOVERY RATE
FOR VARIOUS SCENARIOS.
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MONTE CARLO

p = 10, 000 SNPs,
n = 1, 000 PEOPLE,
M = 200 MONTE CARLO TRIALS,
pi < 10−7 IN EIGENSTRAT,
DATA GENERATED USING POPULATION GENETIC
MODEL.

TABLE 1. CRITERIA # 3:
FDR IS THE EXPECTED VALUE OF

FDR∗ =
# IRRELEVANT SNPs SELECTED

#SELECTED SNPs

FNR IS THE EXPECTED VALUE OF

FNR∗ =
# RELEVANT SNPs NOT SELECTED

# SNPs NOT SELECTED
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TABLE 1. BIOMEDICAL MODEL FDR∗

WHEN R = 1 ALL H0i HOLD NO ASSOCIATION.
BH = BENJAMINI AND HOCHBERG

SET FDR = 0.2

EIGENSTRAT t LOGISTIC t
BH, FDR = 0.2 0.21 0.11

SPJ, γ = 0.5 0.40 0.26
SPJ, γ = 1.0 0.59 0.43
SPJ, γ = 1.5 0.75 0.56
SPJ, γ = 2.0 0.87 0.71
SPJ, γ = 3.0 0.96 0.87

EFRON BAYES ≤ 0.2 0.11 0.06

RECALL THAT FDR∗ IS EITHER 0 OR 1. IN EACH TRIAL, FDR∗ IS
EITHER 0 OR 1.

SPJ LEVEL AND FDR LEVELS HAVE SIMILAR PROPERTIES.
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RECALL: SPJ LEVEL γ MEANS CUT OFF POINT γ/10000
FOR THE iTH P-VALUE.

THE SMALLER γ IS, THE MORE CONSERVATIVE THE
TEST IS.
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TABLE 2. 100 TIMES FDR∗,FNR∗ AND SPJφTVOLL POWER

WHEN R = 1.75, d = 50.

EIGENSTRAT t STATISTIC

FDR∗ FNR∗ POWER∗

BH FDR = 0.2 19.8 0.03 94.0
SPJ, γ = 0.5 1.1 0.08 83.6
SPJ, γ = 1.0 1.2 0.07 86.5
SPJ, γ = 1.5 2.9 0.06 88.2
SPJ, γ = 2.0 4.1 0.06 89.0
SPJ, γ = 3.0 6.0 0.05 90.0

EFRON BAYES 2.0 0.06 88.1

POWER∗ = 100(ESTIMATEDPOWER)/d
HERE FDR∗, FNR∗ AND POWER∗ ARE IN HARMONY.
FNR∗ IS WORSE IN THE CONSERVATIVE CASE AS IS THE POWER.

SPJ LEVEL AND FDR LEVEL BEHAVE THE SAME WAY.
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TABLE 3. SPJ γ-LEVEL ×104.
HERE p = #SNP’s = 104, d = 50, NOMINAL γ = 2.5, 200 MC TRIALS

METHOD R = 1.00 R = 1.25 R = 1.75 R = 2.00
(1) EIGEN: p < 2.5/104 2.44 2.45 2.45 2.46
(2) LOGREG: p < 2.5/104 1.47 1.47 1.48 1.47
(3) EIGEN+EFRON 2.49 2.49 2.50 2.50
(4) LOGREG+EFRON 2.48 2.52 2.50 2.50

LESSON: SPJ γ-LEVEL CORRECT FOR (1),(3),(4)

AND STABLE AS A FUNCTION OF R = ODDS RATIO.
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TABLE 4. COMPARISONS OF THREE CRITERIA FOR
METHODS WITH SPJ γ = 2.5

R = 1.25 R = 1.75
METHOD POWER∗FDR∗FNR∗ ∗ 100 POWER∗FDR∗FNR∗ ∗ 100
(1)EIGEN: p < 2.5/104 0.071 0.40 0.65 0.90 0.51 0.53
(3)EIGEN+EFRON 0.084 0.30 0.58 0.91 0.49 0.46
(4)LOGREGR+EFRON 0.085 0.30 0.58 0.91 0.49 0.47

THE THREE CRITERIA ARE CONSISTENT. THEY FAVOR (3) AND (4).

THESE ARE “ADAPTIVE COMPOUND” RULES, WHICH MEANS THEY

USE DATA FROM ALL SNPS WHEN DECIDING WHETHER THE iTH SNP

IS RELEVANT.
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