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A genetic example: trait

Geneticists often study Sodium-lithium countertransport (SLC)
activity in red blood cells, since it

relates to blood pressure and the prevalence of hypertension;

is relatively easier to study than blood pressure.

A search of “Sodium-lithium countertransport” shows up 12,400
results. The leading one is cited 676 times.
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Population heterogeneity

One genetic hypothesis is that the SLC activity is determined by a
simple model of inheritance compatible with the action of a single
gene with two alleles.

Each observation (of SLC value) was composed of the sum of the
effect of a genetic component and a normally distributed fluctuation.

Thus, a general population may be divided into three subpopulations:
(1) those has two copies of the allele that elevates the SLC activity;
(2) those have one copy; and (3) those have 0 copies

Hence, a random sample from the population should behave as a
finite mixture of up to three components.
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Heterogeneity leads to mixture model

There are two competing genetic models: simple dominance model
and additive model.

If one allele is dominant, then the data are a random sample from a
two-component normal mixture model;

If the genetic effect is additive, then the data are a random sample
from a three-component normal mixture model.

The data will be shown in the next slide.
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SLC data

Figure: Histogram of 190 SLC measurements and suggestive normal mixture
models with 2 and 3 components.
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Reading from the histogram and fits

It is not apparent whether a 2-component or a 3-component model is
the “correct model”.

A rigorous statistical analysis would be helpful to shed light to the
preference of the two competing models.

One may take model selection approach, diagnostic approach and so
on to answer this question.

A statistical hypothesis test is likely the most desired approach.
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Density function of a finite mixture

Let {f (x ; θ) : θ ∈ Θ} be a parametric distribution family where Θ is
parameter space for θ.

A finite mixture model is a class of distributions with density function
in the form of

f (x ; Ψ) =
m

∑

h=1

αhf (x ; θh).

f (x ; θ): kernel/component density function.
m: order of the finite mixture model.
θh: the parameter of the hth sub-population.
αh: the proportion of the hth sub-population.
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Mixing distribution

One may put all parameters into a mixing distribution:

Ψ(θ) =
∑m

h=1 αhI (θh ≤ θ).

Ψ(θ) is a distribution on Θ with m support points.
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Density function of a 2-component normal
mixture
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Incomplete data structure

A random variable X from a finite mixture model can be regarded as
generated in two steps.

In the first step, a value of θ is generated from the mixing distribution
Ψ.
When Ψ is discrete, this θ is labelled by h, the hth subpopulation.
Given θh, X is a random outcome from sub-population f (x ; θh).

Thus, the data from mixture models are “by definite” incomplete
observations.
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Genetic example and the mixture model

An individual can have genotypes AA, Aa or aa.

The SLC activity level of a randomly selected individual has density
function

f (x ; Ψ) =
∑

h∈{AA,Aa,aa}

αhφ(x ;µh, σ
2
h).

where φ(x ;µh, σ
2
h) is the normal density with mean µh and variance

σ2
h.

The genotype of the sample individual is generally unknown,
particularly in this case.
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Genetic question in statistical terminology

Ignore some details, the statistical problem on the existence of a
major gene is to test the null hypothesis of m = 1 against m > 1.

This is homogeneity test.

To determine whether the major gene (allele) is additive or dominate,
the statistical problem is to test the null hypothesis of m = 2 against
m = 3.

This is to test the order of the mixture model.
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Two-component model

Given an iid sample X1, . . . ,Xn from a two-component mixture,

the log-likelihood function of the mixing distribution is given by

ℓn(α1, α2, θ1, θ2) =
∑

i

log{α1f (xi ; θ1) + α2f (xi ; θ2)}.

Is the underlying population in fact homogeneous?

That is, does θ1 = θ2?
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Likelihood ratio test (LRT) for homogeneity

The standard approach is to compute likelihood ratio test statistic:

Rn = 2{sup ℓn(α1, α2, θ1, θ2) − sup ℓn(α1, α2, θ, θ)}.

Reject H0 if Rn is larger than some threshold value.

It only leaves a technical issue of computing the proper threshold
value.
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The technical issue is challenging

For regular models, Rn has an asymptotic chisquared distribution
under the null hypothesis.

Chisquared distributions are well documented and easily computed
numerically.

Hence, a proper threshold value can be easily determined based on
chisquared distribution for hypothesis testing under regular models.
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Finite mixture model is not regular

Use α1f (x ; θ1) + α2f (x ; θ2) for illustration:

When α1 = 0, any θ1 value parameterizes the same distribution. There
is a loss of identifiability ( type I).

When θ1 = θ2, any (α1, α2) parameterize the same distribution. There
is again a loss of identifiability ( type II).

The null model is not an interior point in the set of alternative models.

All of these violate the “regularity conditions” for “good behaviors” of
classical likelihood approaches.
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Surprises on LRT, I

Researchers/geneticists believed the limiting distribution of Rn is still
chisquare, except the degree of freedom needs more research.

However,

For (1 − α)N(0, 1) + αN(θ, 1) and when Θ = R Hartigan (1985) found
that Rn → ∞ as n → ∞.

If the LRT statistics Rn is used, no finite threshold value is appropriate
from asymptotic point of view.
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Surprises on LRT, II

For (1 − α)N(µ1, σ
2
1) + αN(µ2, σ

2
2), the likelihood function is

unbounded (based on an iid sample).

See the plot of the density function of the two-component normal
mixture model again.

Jiahua Chen (UBC) Advances June 9-11, 2011 19 / 1



Density function of a 2-component normal
mixture
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Breakthroughs starts from a Binomial
mixture

Suppose we have iid observations from a 2-component binomial
distribution:

α1Bin(m, θ1) + α2Bin(m, θ2).

Using parameter transformation and for homogeneity test, Chernoff
and Lander (1995) obtained limiting distributions of the LRT
statistics Rn.

This is the first result without requiring “separation condition”
|θ1 − θ2| > ǫ.
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Immediate follow-up successes

The limiting distribution of Rn was derived without separation
condition by many authors soon after.

key conditions include
(1) Θ is compact,
(2) E{f (X ; θ)/f (X ; θ0)}

2 < ∞ for any θ ∈ Θ.

drawbacks of the limiting distribution include
(1) being a functional of Gaussian process,
(2) dependent on Θ and θ0.

So what? the limiting distribution is not too useful for determining
the threshold value.
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A meaningful step toward a statistical
solution

Let

pℓn(α1, α2, θ1, θ2) = ℓn(α1, α2, θ1, θ2) + C log{4α1α2}.

Similar to usual LRT, define

R̃n = 2{max
H1

pℓn(α1, α2, θ1, θ2) − max
H0

pℓn(α1, α2, θ1, θ2)}.

Chen (1995, CJS) shows that the limiting distribution of R̃n is
0.5χ2

0 + 0.5χ2
1.
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What is the significance?

The modified likelihood ratio statistic R̃n is an asymptotic pivot:
its distribution does not depend the null distribution.

The quantiles of 0.5χ2
0 + 0.5χ2

1 (rather than a functional of a
Gaussian process) can be easily computed.

Significance of this result: practically the first implementable
likelihood-based homogeneity test.
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Why properties make pℓn work?

The first helpful property is that ℓn is bounded under binomial
mixture model.

The second helpful property is C log{4α1α2} → −∞ as α1α2 → 0.

Thus, pℓn does not attain its maximum at small α1α2.

Because of these, the R̃n is practically confined on α1 ∈ [ǫ, 1 − ǫ].

On [ǫ, 1 − ǫ], the mixture model is almost “regular” which leads a
simple limiting behavior.
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Advance to homogeneity test to non-binomial
mixtures

The idea works for general homogeneity tests if ℓn is stochastically
bounded.

Boundedness comes under key conditions:

(1) Θ is compact,

(2) E{f (X ; θ)/f (X ; θ0)}
2 < ∞ for any θ ∈ Θ.
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Modified likelihood ratio test

As long as (1) and (2) hold, the MLRT idea works and the limiting
distributions are useful in applications:

Chen, Chen and Kalbfleisch (2001, JRSS, B) give the result for general
homogeneity tests.

Chen, Chen and Kalbfleisch (2004, JRSS, B) succeed at finding the
limiting distribution of R̃n for testing m = 2 against some m > 2.

Regretfully, these results are obtained when Θ is compact and is
one-dim.
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Something new is still desirable

Neither Chen, et al. (2001, 2004) is applicable to the genetic problem
on SLC activity data because:

its θ = (µ, σ) is 2-dimensional.

under normal mixture models, condition E{f (X ; θ)/f (X ; θ0)}
2 < ∞ is

not satisfied for all θ.

Moving MLRT forward is vital. How?
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An insight to the test of homogeneity, I

Suppose the data are from a homogeneous model f (x ; θ0) and we
want to examine the possibility that the actual model is a mixture
with m = 2.

Both LRT and MLRT let f (x ; θ0) compete against all potential
models with m = 2.
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An insight to the test of homogeneity, II

In particular, a model such as

(1 − ǫ)f (x ; θ0) + ǫf (x ; θ)

is a competitor.

Without compact assumption on Θ, there are “too many” competitors.

A competitor with θ-value such that

E{f (X ; θ)/f (X ; θ0)}
2 = ∞

has, in addition, unfair advantage!

They explain the two undesirable conditions behind LRT and MLRT.
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EM-test for homogeneity test, I

The key behind EM-test is to initially confine the range of Ha.

Here is a simplified illustration:

initially test H0 : f (x ; θ) against H ′

a : 0.30f (x ; θ1) + 0.70f (x ; θ2).

Under H0, this Rn has a simple 0.5χ2
0 + 0.5χ2

1 limiting distribution.

This test is not sensible, because the actual distribution of the data
could be 0.45f (x ; θ1) + 0.55f (x ; θ2).
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EM-test for homogeneity test, II

If the sample is from H0, both 0.45f (x ; θ1) + 0.55f (x ; θ2)
and 0.30f (x ; θ1) + 0.70f (x ; θ2) will fit data well.

If the sample is from 0.45f (x ; θ1) + 0.55f (x ; θ2),
fitting 0.30f (x ; θ1) + 0.70f (x ; θ2) should leave a lot of room for
further improvement.
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EM-test for homogeneity test, III

Thus, whether the data is from H0 or not can be judged on how big a
room there still is for improvement from the initially fit of a restrictive
model 0.30f (x ; θ1) + 0.70f (x ; θ2).

Our additional trick:
use EM-iteration to improve the initial fit gradually.

If a fixed number of EM-iteration increases the value of Rn

substantially, H0 is rejected.

Further enhancement: use multiple initial fits
βf (x ; θ1) + (1 − β)f (x ; θ2), such as β ∈ {0.1, 0.3, 0.5}.
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The EM-test statistic for homogeneity

Find the MLE of θ under the null hypothesis θ̂0.

Define two intervals I1 = (−∞, θ̂0) and I2 = [θ̂0,∞).

Find θ̂1 ∈ I1 and θ̂2 ∈ I2 that maximizes pℓn(0.3, 0.7, θ1 , θ2).

Let (α1, α2, θ1, θ2)
(0) = (0.3, 0.7, θ̂1 , θ̂2)

Perform EM-iteration k times.

Define

EM
(k)
n (0.3) = 2{pℓn((α1, α2, θ1, θ2)

(K)) − pℓn(0.5, 0.5, θ̂0 , θ̂0)}.

Finally, let EM
(k)
n = max{EM

(k)
n (0.1),EM

(k)
n (0.3),EM

(k)
n (0.5)}.
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Ugly definition, beautiful limiting
distribution

Theorem (Li, Chen and Marriott, 2008, Biometrika)

Given a random sample of size n from α1f (x ; θ1) + α2f (x ; θ2).

Assume that f (x ; θ) is smooth enough, makes the mixture model
identifiable, and so on.

Under the null distribution f (x ; θ0), and for any fixed finite k,

EM
(k)
n →0.5χ2

0 + 0.5χ2
1 in distribution as n → ∞.

This result is obtained without E{f (X ; θ)/f (X ; θ0)}
2 < ∞ nor

compact Θ.

Yet it is still for one-dim θ, and for homogeneity test only.

We cannot stop at this point!
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EM-test for H0 : m = m0

From homogeneity test to H0 : m = m0 can be technical challenging.

Li and Chen (2010, JASA) employed some special tricks to ensure the
success of generalizing the result.
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Define EM-test for H0 : m = m0, I

Consider the case when θ is one-dim, and an iid sample is given.

We first obtain the “MLE” Ψ̂0 under the null hypothesis (maximizing
pℓn).

Let θ̂j0, j = 1, 2, . . . ,m0 be estimated value of sub-population
parameters.

Let Ij ’s be the interval that contain θ̂j0 and partition Θ evenly.
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Define EM-test for H0 : m = m0, II

We define a specific class of order-2m0 mixture models

Ω2m0 = {

m0
∑

j=1

{βj f (x ; θj1) + (1 − βj)f (x ; θj2)} : θj ∈ Ij}.

where βj ∈ {0.1, 0.3, 0.5}.

Next, we find a Ψ̂(0) ∈ Ω2m0 that maximizes ℓn(Ψ).

Last, use EM-iteration to improve the fit of Ψ̂(k).

Multiple initial βj will be used.
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Define EM-test for H0 : m = m0, III

After a pre-chosen iterations k = K , the EM-statistic is

M
(K)
n = 2{ℓn(Ψ

(K)) − ℓn(Ψ̂0)}

(take the largest out of multiple initial β).

The EM-test rejects H0 : m = m0 in favour of m > m0 if M
(K)
n

exceeds some threshold value.
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“Tricks” in this EM-test

We confined the initial alternative to Ω2m0 .

It prevents wild models from being fitted.

For each sub-population fitted under null model, we examine its
possibility to be split into two sub-subpopulations.

We have a sub-homogeneity test within each initially fitted
sub-population.
If these initial subpopulations spread out far away from each other, the
limiting distribution would be a convolution of m0 0.5χ2

0 + 0.5χ2
1.
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EM-test: limiting distribution (1)

Theorem 2

Under some regularity conditions on f (x ; θ) and penalty function p(β),
and assume 0.5 ∈ B (set of initial values),

EM
(K)
n → sup

v≥0
(2vτw − vτΩv) =

m0
∑

h=0

ahχ
2
h

for some ah ≥ 0 and
∑m0

h=0 ah = 1, under Ψ0 and fixed K .

w = (w1, . . . ,wm0)
τ : a 0-mean multivariate normal random vector

with correlation matrix Ω = (ωij).

v = (v1, . . . , vm0)
τ and {v ≥ 0} = {v1 ≥ 0, . . . , vm0 ≥ 0}.

The weights (a0, . . . , am0) depend on Ω.

Ω can be calculated based on Ψ0 or Ψ̂0.
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EM-test: limiting distribution (2)

Theorem 2 (continued)

In particular,

1 when m0 = 1, a0 = a1 = 0.5;

2 when m0 = 2, a0 = (π − arccos ω12)/(2π), a1 = 0.5, and
a0 + a2 = 0.5;

3 when m0 = 3, a0 + a2 = a1 + a3 = 0.5 and

a0 = (2π − arccos ω12 − arccos ω13 − arccos ω23)/(4π),

a1 = (3π − arccos ω12:3 − arccos ω13:2 − arccos ω23:1)/(4π),

where

ωij :k =
(ωij − ωikωjk)

√

(1 − ω2
ik)(1 − ω2

jk)
.
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Further progress is desired

The previous result of Li and Chen (2010, JASA) succeeded at testing
hypothesis of H0 : m = m0 against Ha : m > m0.

Yet the result is only applicable for one-dim Θ.

The suggested model for SLC data is a finite normal mixture. Its
θ = (µ, σ2) is 2-dimensional.

Keep working!
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EM-test for normal mixture model

While the result of Li and Chen (2010, JASA) is not applicable, the
EM-test principle is.

Chen and Li (2009, AOS) worked out EM-test for homogeneity under
finite normal mixture models.

Surprisingly, the limiting distributions of EM
(k)
n (defined similarly) are

very simple and beautiful.
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EM-test for homogeneity with equal-variance
assumption

Theorem 3

Suppose the penalty function p(·) introduced in pℓn satisfies some
conditions.
The initial set of value B contains 0.5.
The alternative Ha is under equal-variance assumption.
Then under the homogeneous null distribution N(θ0, σ

2
0) and for any finite

K , as n → ∞,

Pr(EM
(K)
n ≤ x) → F (x − ∆){0.5 + 0.5F (x)},

where F (x) is the cumulative density function (cdf ) of the χ2
1 and

∆ = 2 max
αj 6=0.5

{p(αj) − p(0.5)}.
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EM-test for homogeneity without
equal-variance assumption

Theorem 4

Suppose the penalty function p(·) introduced in pℓn satisfies some
conditions.
The initial set of value B contains 0.5.
The alternative Ha is any two component normal mixture.

Under the homogeneous null distribution N(θ0, σ
2
0) and for any finite K , as

n → ∞,
EM

(K)
n → χ2

2.
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SLC data example again

The results in Chen and Li (2009) is designed for finite normal
mixture models. Hence model-wise, the method is applicable.

A simple application shows the homogeneity assumption is rejected
soundly.

We are more interested in checking whether H0 : m = 2 will be
rejected in favour of Ha : m > 2.

Charge forward further!
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rejected in favour of Ha : m > 2.

Charge forward further!
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EM-test on the order of finite normal
mixture model

Theorem 5 (Chen, Li and Fu, submitted)

Assume the same conditions on penalty functions placed in pℓn.
The initial set of value B contains 0.5.
Under the null distribution f (x ; Ψ0) of order m0, and for any fixed finite
K , as n → ∞,

EM
(K)
n → χ2

2m0
.

We have not worked on the case when σj are equal;

The statistic is defined similarly but needed special care on pℓn.

The method is fully applicable to the SLC data analysis.
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Back to SLC data, null-fit

We test the hypothesis of H0 : m = 2 against Ha : m = 3.

The best null model divides the population into two sub-populations
with proportions: 65.4% and 34.6%.

The fitted means and variances of two sub-populations are:

mean variance proportion

Comp 1 2.194 0.557 65.4%
Comp 2 3.457 1.081 34.6%
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Back to SLC data, conclusion

Whether or not we reject H0 : m = 2 in favor of Ha : m = 3 depends
on how much better higher order models can fit the data.

This question of ”how much better” is answered through
EM-statistics: we find

EM
(1)
n = 4.597, EM

(2)
n = 4.639, EM

(3)
n = 4.659.

So when H0 is true, EM-statistic can attain or exceed the above level
with probability 33%.

That is, such better fits as measured by EM-statistic can be easily
explained by random fluctuation. Hence, H0 is not rejected.
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Roeder’s conclusion

Roeder (1994) uses diagnostic tool and finds a 3-component model is
favoured.

The diagnostic tool requires equal-component-variance assumption
which is unfortunate.
A formal test can be easily deviced to show that the equal-variance
assumption is not plausible.

Her conclusion can be read as: if component variances must be equal,
then one needs a 3-component model to describe the data properly.

We believe that the EM-test is superior when applied to this and
many other real data examples.
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SLC data again

Figure: SLC and 2/3-component normal mixture models again.
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Thank you

Questions are welcome
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