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A GENETIC EXAMPLE: TRAIT

@ Geneticists often study Sodium-lithium countertransport (SLC)
activity in red blood cells, since it

o relates to blood pressure and the prevalence of hypertension;
e is relatively easier to study than blood pressure.

@ A search of “Sodium-lithium countertransport” shows up 12,400
results. The leading one is cited 676 times.
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POPULATION HETEROGENEITY

@ One genetic hypothesis is that the SLC activity is determined by a
simple model of inheritance compatible with the action of a single
gene with two alleles.
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@ Each observation (of SLC value) was composed of the sum of the
effect of a genetic component and a normally distributed fluctuation.
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@ One genetic hypothesis is that the SLC activity is determined by a
simple model of inheritance compatible with the action of a single
gene with two alleles.

@ Each observation (of SLC value) was composed of the sum of the
effect of a genetic component and a normally distributed fluctuation.

@ Thus, a general population may be divided into three subpopulations:
(1) those has two copies of the allele that elevates the SLC activity;
(2) those have one copy; and (3) those have 0 copies
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POPULATION HETEROGENEITY

@ One genetic hypothesis is that the SLC activity is determined by a
simple model of inheritance compatible with the action of a single
gene with two alleles.

@ Each observation (of SLC value) was composed of the sum of the
effect of a genetic component and a normally distributed fluctuation.

@ Thus, a general population may be divided into three subpopulations:
(1) those has two copies of the allele that elevates the SLC activity;
(2) those have one copy; and (3) those have 0 copies

@ Hence, a random sample from the population should behave as a
finite mixture of up to three components.
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HETEROGENEITY LEADS TO MIXTURE MODEL

@ There are two competing genetic models: simple dominance model
and additive model.

@ If one allele is dominant, then the data are a random sample from a
two-component normal mixture model;

o If the genetic effect is additive, then the data are a random sample
from a three-component normal mixture model.
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HETEROGENEITY LEADS TO MIXTURE MODEL

@ There are two competing genetic models: simple dominance model
and additive model.

@ If one allele is dominant, then the data are a random sample from a
two-component normal mixture model;

o If the genetic effect is additive, then the data are a random sample
from a three-component normal mixture model.

The data will be shown in the next slide.
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SLC pATA

F1GURE: Histogram of 190 SLC measurements and suggestive normal mixture
models with 2 and 3 components.

--- Two-component mixture with unequal variances
—— Three-component mixture with equal variance
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READING FROM THE HISTOGRAM AND FITS

@ It is not apparent whether a 2-component or a 3-component model is
the “correct model”.

@ A rigorous statistical analysis would be helpful to shed light to the
preference of the two competing models.

@ One may take model selection approach, diagnostic approach and so
on to answer this question.

@ A statistical hypothesis test is likely the most desired approach.
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DENSITY FUNCTION OF A FINITE MIXTURE

o Let {f(x;0):6 € ©} be a parametric distribution family where © is
parameter space for 6.

@ A finite mixture model is a class of distributions with density function
in the form of

fix; V) = Zahf x; 0p).

f(x;0): kernel/component density function.
m: order of the finite mixture model.

Op: the parameter of the hth sub-population.
ap: the proportion of the hth sub-population.

¢ ¢ ¢ ¢
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MIXING DISTRIBUTION

@ One may put all parameters into a mixing distribution:

° \11(6) = thzl Och/(eh < 9)

o W(#) is a distribution on © with m support points.
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DENSITY FUNCTION OF A 2-COMPONENT NORMAL

MIXTURE
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INCOMPLETE DATA STRUCTURE

@ A random variable X from a finite mixture model can be regarded as
generated in two steps.

o In the first step, a value of @ is generated from the mixing distribution
v,
o When V is discrete, this 8 is labelled by h, the hth subpopulation.
o Given 65, X is a random outcome from sub-population f(x; 65).
@ Thus, the data from mixture models are “by definite” incomplete
observations.
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(GENETIC EXAMPLE AND THE MIXTURE MODEL

@ An individual can have genotypes AA, Aa or aa.

@ The SLC activity level of a randomly selected individual has density
function

f(X; w) — Z ahqﬁ(X;Mh,U%)-

he{AA,Aa,aa}
where ¢(x; ,uh,a%) is the normal density with mean up, and variance
2
o
@ The genotype of the sample individual is generally unknown,
particularly in this case.
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(GENETIC QUESTION IN STATISTICAL TERMINOLOGY

@ Ignore some details, the statistical problem on the existence of a
major gene is to test the null hypothesis of m =1 against m > 1.

@ This is homogeneity test.

@ To determine whether the major gene (allele) is additive or dominate,
the statistical problem is to test the null hypothesis of m = 2 against
m=3.

o This is to test the order of the mixture model.
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TWO-COMPONENT MODEL

@ Given an iid sample Xi, ..., X, from a two-component mixture,

@ the log-likelihood function of the mixing distribution is given by

Z,,(al, oo, 01, 02) = Z Iog{oqf(x,-; 91) + a2f(x,-; 02)}

@ Is the underlying population in fact homogeneous?

@ That is, does 61 = 6,7
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LIKELIHOOD RATIO TEST (LRT) FOR HOMOGENEITY

@ The standard approach is to compute likelihood ratio test statistic:

R, = 2{suplp(a1, s, 61,02) — suplp(a1,a2,6,6)}.
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LIKELIHOOD RATIO TEST (LRT) FOR HOMOGENEITY

@ The standard approach is to compute likelihood ratio test statistic:

R, = 2{suplp(a1, s, 61,02) — suplp(a1,a2,6,6)}.

@ Reject Hy if R, is larger than some threshold value.

@ It only leaves a technical issue of computing the proper threshold
value.
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THE TECHNICAL ISSUE IS CHALLENGING

@ For regular models, R, has an asymptotic chisquared distribution
under the null hypothesis.

@ Chisquared distributions are well documented and easily computed
numerically.

@ Hence, a proper threshold value can be easily determined based on
chisquared distribution for hypothesis testing under regular models.
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FINITE MIXTURE MODEL IS NOT REGULAR

@ Use ayf(x;61) + aaf(x; 02) for illustration:

@ When a3 =0, any 61 value parameterizes the same distribution. There
is a loss of identifiability ( type I).

o When 60; = 6, any (a1, an) parameterize the same distribution. There
is again a loss of identifiability ( type II).

@ The null model is not an interior point in the set of alternative models.

@ All of these violate the “regularity conditions” for “good behaviors” of
classical likelihood approaches.
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SURPRISES ON LRT, I

@ Researchers/geneticists believed the limiting distribution of R, is still
chisquare, except the degree of freedom needs more research.

@ However,
o For (1 —a)N(0,1) +aN(f,1) and when © = R Hartigan (1985) found
that R, — o0 as n — oo.

o If the LRT statistics R, is used, no finite threshold value is appropriate
from asymptotic point of view.
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SURPRISES ON LRT, II

@ For (1 — a)N(u1,02) + aN(u2,03), the likelihood function is
unbounded (based on an iid sample).

@ See the plot of the density function of the two-component normal
mixture model again.
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DENSITY FUNCTION OF A 2-COMPONENT NORMAL

MIXTURE
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BREAKTHROUGHS STARTS FROM A BINOMIAL

MIXTURE

@ Suppose we have iid observations from a 2-component binomial

distribution:
a1Bin(m, 01) + axBin(m, ).

@ Using parameter transformation and for homogeneity test, Chernoff
and Lander (1995) obtained limiting distributions of the LRT
statistics R,.

@ This is the first result without requiring “separation condition”
|91 — 92| > €.
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IMMEDIATE FOLLOW-UP SUCCESSES

@ The limiting distribution of R, was derived without separation
condition by many authors soon after.
o key conditions include
(1) © is compact,
(2) E{f(X;0)/f(X;60)}? < oo for any 6 € ©.
o drawbacks of the limiting distribution include

(1) being a functional of Gaussian process,
(2) dependent on © and 6.

@ So what? the limiting distribution is not too useful for determining
the threshold value.
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A MEANINGFUL STEP TOWARD A STATISTICAL

SOLUTION

o Let
pln(aa, az,01,02) = £p(, az,01,02) + Clog{4aias}.
@ Similar to usual LRT, define

R, = Q{m,_fxpfn(aL az,01,602) — m,fxpfn(al,azﬂl, 62)}.
1 0

@ Chen (1995, CJS) shows that the limiting distribution of R, is
0.5x3 + 0.5x3.
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WHAT IS THE SIGNIFICANCE?

@ The modified likelihood ratio statistic R, is an asymptotic pivot:
its distribution does not depend the null distribution.

@ The quantiles of O.SXg + 0.5x2 (rather than a functional of a
Gaussian process) can be easily computed.

@ Significance of this result: practically the first implementable
likelihood-based homogeneity test.
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WHY PROPERTIES MAKE p{,, WORK?

@ The first helpful property is that ¢, is bounded under binomial
mixture model.

@ The second helpful property is C log{4aiar} — —00 as ayap — 0.

e Thus, pf, does not attain its maximum at small ajaso.
@ Because of these, the R, is practically confined on ay € [e,1 — €].

@ On [¢,1 — €], the mixture model is almost “regular” which leads a
simple limiting behavior.
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ADVANCE TO HOMOGENEITY TEST TO NON-BINOMI

MIXTURES

@ The idea works for general homogeneity tests if ¢, is stochastically
bounded.

@ Boundedness comes under key conditions:
(1) © is compact,

(2) E{f(X;0)/f(X;00)}* < oo for any 6 € ©.
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MODIFIED LIKELIHOOD RATIO TEST

@ As long as (1) and (2) hold, the MLRT idea works and the limiting
distributions are useful in applications:

o Chen, Chen and Kalbfleisch (2001, JRSS, B) give the result for general
homogeneity tests.

o Chen, Chen and Kalbfleisch (2004, JRSS, B) succeed at finding the
limiting distribution of R, for testing m = 2 against some m > 2.

@ Regretfully, these results are obtained when © is compact and is
one-dim.
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SOMETHING NEW IS STILL DESIRABLE

@ Neither Chen, et al. (2001, 2004) is applicable to the genetic problem
on SLC activity data because:

o its 0 = (i, o) is 2-dimensional.

o under normal mixture models, condition E{f(X;6)/f(X;600)}? < oo is
not satisfied for all 6.

@ Moving MLRT forward is vital. How?
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AN INSIGHT TO THE TEST OF HOMOGENEITY, I

@ Suppose the data are from a homogeneous model f(x;6y) and we
want to examine the possibility that the actual model is a mixture
with m = 2.

@ Both LRT and MLRT let f(x;6y) compete against all potential
models with m = 2.
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AN INSIGHT TO THE TEST OF HOMOGENEITY, II

@ In particular, a model such as
(1 —e)f(x;00) + ef(x;0)

is a competitor.
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@ In particular, a model such as
(1 —e)f(x;00) + ef(x;0)

is a competitor.

o Without compact assumption on ©, there are “too many”’ competitors.

o A competitor with #-value such that
E{f(X;0)/f(X;00)}* = o0

has, in addition, unfair advantage!
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AN INSIGHT TO THE TEST OF HOMOGENEITY, II

@ In particular, a model such as
(1 —e)f(x;00) + ef(x;0)

is a competitor.

o Without compact assumption on ©, there are “too many”’ competitors.

o A competitor with #-value such that
E{f(X;0)/f(X;00)}* = o0
has, in addition, unfair advantage!

@ They explain the two undesirable conditions behind LRT and MLRT.
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EM-TEST FOR HOMOGENEITY TEST, I

@ The key behind EM-test is to initially confine the range of H,.

@ Here is a simplified illustration:
o initially test Hp : f(x; 0) against H, : 0.30f(x; 61) + 0.70f(x; 62).
o Under Hy, this R, has a simple 0.5x3 + 0.5x? limiting distribution.

@ This test is not sensible, because the actual distribution of the data
could be 0.45f(x; 61) + 0.55f (x; 62).
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EM-TEST FOR HOMOGENEITY TEST, II

@ If the sample is from Hp, both 0.45f(x; 61) + 0.55f(x; 62)
and 0.30f(x; 61) + 0.707 (x; 62) will fit data well.

@ If the sample is from 0.45f(x; 01) + 0.55f(x; 62),
fitting 0.30f (x; 61) + 0.707 (x; 62) should leave a lot of room for
further improvement.
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EM-TEST FOR HOMOGENEITY TEST, III

@ Thus, whether the data is from Hy or not can be judged on how big a
room there still is for improvement from the initially fit of a restrictive
model 0.307(x; 61) + 0.70f (x; 62).

@ Our additional trick:
use EM-iteration to improve the initial fit gradually.

o If a fixed number of EM-iteration increases the value of R,
substantially, Hp is rejected.

@ Further enhancement: use multiple initial fits
Bf(x;01) + (1 — B)f(x;62), such as 3 € {0.1,0.3,0.5}.
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THE EM-TEST STATISTIC FOR HOMOGENEITY

@ Find the MLE of 8 under the null hypothesis bo.

o Define two intervals I} = (—o0, ) and kb = [0, 00).

o Find 6y € Iy and 6, € I that maximizes p/,(0.3,0.7,61,65).
o Let (a1, a,61,60,)0 = (0.3,0.7,9A1,§2)

@ Perform EM-iteration k times.

@ Define

EMS(0.3) = 2{pln((e1, a2, 01,02)5)) — p,(0.5,0.5, g, Bo)}.

Finally, let EM{) = max{EM{”(0.1), EM{¥ (0.3), EMS (0.5)}.

(]
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UGLY DEFINITION, BEAUTIFUL LIMITING
DISTRIBUTION

THEOREM (L1, CHEN AND MARRIOTT, 2008, BIOMETRIKA )

@ Given a random sample of size n from a;f(x; 01) + aaf(x; 62).

o Assume that f(x; ) is smooth enough, makes the mixture model
identifiable, and so on.

@ Under the null distribution f(x; ), and for any fixed finite k,
EM,(,k)—>0.5xg +0.5x2 in distribution as n — oc.

@ This result is obtained without E{f(X;8)/f(X;00)}? < co nor
compact ©.

@ Yet it is still for one-dim 6, and for homogeneity test only.

@ We cannot stop at this point!
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EM-TEST FOR Hy: m = myg

@ From homogeneity test to Hy : m = mg can be technical challenging.

@ Li and Chen (2010, JASA) employed some special tricks to ensure the
success of generalizing the result.
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DEFINE EM-TEST FOR Hy : m = mg, 1

o Consider the case when 6 is one-dim, and an iid sample is given.

@ We first obtain the “MLE” Wy under the null hypothesis (maximizing
pln).

o Let éjo, j=1,2,...,mg be estimated value of sub-population
parameters.

@ Let /i's be the interval that contain éjo and partition © evenly.
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DEFINE EM-TEST FOR Hy : m = mg, 11

@ We define a specific class of order-2mg mixture models

mg
Qome = {)_{Bf(x:0j1) + (1 = B)F(x: 022)} - 0; € I;}.
j=1
where §; € {0.1,0.3,0.5}.
o Next, we find a W0 ¢ Qom, that maximizes £,(V).
@ Last, use EM-iteration to improve the fit of Wk,
@ Multiple initial 3; will be used.
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DEFINE EM-TEST FOR Hy : m = mg, 111

@ After a pre-chosen iterations k = K, the EM-statistic is
M) = 202,(WK)) — ¢, (Fo))
(take the largest out of multiple initial 3).

@ The EM-test rejects Hy : m = mg in favour of m > myq if I\/I,(,K)

exceeds some threshold value.
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“TRICKS” IN THIS EM-TEST

@ We confined the initial alternative to {2, .
o It prevents wild models from being fitted.

@ For each sub-population fitted under null model, we examine its
possibility to be split into two sub-subpopulations.
@ We have a sub-homogeneity test within each initially fitted
sub-population.
o If these initial subpopulations spread out far away from each other, the
limiting distribution would be a convolution of mg 0.5x2 + 0.5x3.
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EM-TEST: LIMITING DISTRIBUTION (1)

THEOREM 2

Under some regularity conditions on f(x;6) and penalty function p((3),
and assume 0.5 € B (set of initial values),

mg
M — sup(2v’w — v Qv) = Z anxs
V=0 h=0

for some ap, > 0 and Y}, ap = 1, under Wy and fixed K.

® W= (Wi,...,Wn,)": a 0-mean multivariate normal random vector
with correlation matrix Q = (wj;).
o v=(v1,...,Vmy)  and {v>0} ={v1 >0,...,vp, >0}

@ The weights (ao, ..., am,) depend on Q.

@ (2 can be calculated based on Vg or \ifo.
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EM-TEST: LIMITING DISTRIBUTION (2)

THEOREM 2 (CONTINUED)
In particular,
@ when mg =1, ag = a; = 0.5;

© when mg =2, a9 = (7 — arccoswi2)/(27), a1 = 0.5, and
ag + a» =0.5;

© when mg =3, ag + a» = a; + a3z = 0.5 and

ap = (27 — arccoswip — arccoswiz — arccos wp3)/(4m),
a; = (37 — arccoswin.3 — arccos wis.o — arccos wos.1)/(47),
where

_ (wij — wikwix)
w,-j;k = > > .
\/(1 —wy)(1 - ij)
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FURTHER PROGRESS IS DESIRED

@ The previous result of Li and Chen (2010, JASA) succeeded at testing
hypothesis of Hy : m = mg against H; : m > mg.

@ Yet the result is only applicable for one-dim ©.

@ The suggested model for SLC data is a finite normal mixture. Its
0 = (u,0?) is 2-dimensional.
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FURTHER PROGRESS IS DESIRED

@ The previous result of Li and Chen (2010, JASA) succeeded at testing
hypothesis of Hy : m = mg against H; : m > mg.

@ Yet the result is only applicable for one-dim ©.

@ The suggested model for SLC data is a finite normal mixture. Its
0 = (u,0?) is 2-dimensional.
o Keep working!
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EM-TEST FOR NORMAL MIXTURE MODEL

@ While the result of Li and Chen (2010, JASA) is not applicable, the
EM-test principle is.

@ Chen and Li (2009, AOS) worked out EM-test for homogeneity under
finite normal mixture models.

@ Surprisingly, the limiting distributions of EI\/I,(,k) (defined similarly) are
very simple and beautiful.
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EM-TEST FOR HOMOGENEITY WITH EQUAL-VARIANCE
ASSUMPTION

THEOREM 3

Suppose the penalty function p(-) introduced in p/, satisfies some
conditions.

The initial set of value B contains 0.5.

The alternative H, is under equal-variance assumption.

Then under the homogeneous null distribution N(fo,c3) and for any finite
K, as n — oo,

Pr(EMS) < x) — F(x — A){0.5 + 0.5F (x)},

where F(x) is the cumulative density function (cdf) of the x? and

A= 2a?1;0>§5{p(aj) — p(0.5)}.
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EM-TEST FOR HOMOGENEITY WITHOUT
EQUAL-VARIANCE ASSUMPTION

THEOREM 4

Suppose the penalty function p(-) introduced in p/, satisfies some
conditions.

The initial set of value B contains 0.5.

The alternative H, is any two component normal mixture.

Under the homogeneous null distribution N(6p,o3) and for any finite K, as
n— oo,

E/\//,(7K) — X%'
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SLLC DATA EXAMPLE AGAIN

@ The results in Chen and Li (2009) is designed for finite normal
mixture models. Hence model-wise, the method is applicable.

@ A simple application shows the homogeneity assumption is rejected
soundly.
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SLLC DATA EXAMPLE AGAIN

@ The results in Chen and Li (2009) is designed for finite normal
mixture models. Hence model-wise, the method is applicable.

@ A simple application shows the homogeneity assumption is rejected
soundly.

@ We are more interested in checking whether Hy : m = 2 will be
rejected in favour of H, : m > 2.
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SLLC DATA EXAMPLE AGAIN

@ The results in Chen and Li (2009) is designed for finite normal
mixture models. Hence model-wise, the method is applicable.

@ A simple application shows the homogeneity assumption is rejected
soundly.

@ We are more interested in checking whether Hy : m = 2 will be
rejected in favour of H, : m > 2.

@ Charge forward further!
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EM-TEST ON THE ORDER OF FINITE NORMAL
MIXTURE MODEL

THEOREM 5 (CHEN, L1 AND FU, SUBMITTED)

Assume the same conditions on penalty functions placed in pf,.
The initial set of value B contains 0.5.

Under the null distribution f(x; Wo) of order mg, and for any fixed finite
K, as n — oo,

EMY) — 3.

@ We have not worked on the case when o; are equal;
@ The statistic is defined similarly but needed special care on pf,,.
@ The method is fully applicable to the SLC data analysis.
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BAack TO SLC DATA, NULL-FIT

@ We test the hypothesis of Hy : m = 2 against H, : m = 3.

@ The best null model divides the population into two sub-populations
with proportions: 65.4% and 34.6%.

@ The fitted means and variances of two sub-populations are:

mean variance proportion
Comp 12194 0.557 65.4%
Comp 2 | 3.457  1.081 34.6%
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BAack TO SLC DATA, CONCLUSION

@ Whether or not we reject Hy : m = 2 in favor of H, : m = 3 depends
on how much better higher order models can fit the data.

@ This question of "how much better” is answered through
EM-statistics: we find

EMSY) = 4597, EMY = 4.639, EMSY = 4.659.

@ So when Hj is true, EM-statistic can attain or exceed the above level
with probability 33%.

@ That is, such better fits as measured by EM-statistic can be easily
explained by random fluctuation. Hence, Hp is not rejected.
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ROEDER’S CONCLUSION

@ Roeder (1994) uses diagnostic tool and finds a 3-component model is
favoured.

@ The diagnostic tool requires equal-component-variance assumption
which is unfortunate.
A formal test can be easily deviced to show that the equal-variance
assumption is not plausible.

@ Her conclusion can be read as: if component variances must be equal,
then one needs a 3-component model to describe the data properly.

@ We believe that the EM-test is superior when applied to this and
many other real data examples.
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SLC DATA AGAIN

Fraurg: SLC and 2/3-component normal mixture models again.

--- Two-component mixture with unequal variances
—— Three-component mixture with equal variance

Density
0.3 0.4
|

0.2

0.1

0.0
|

SLC measurement
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Thank you

Questions are welcome

Jiahua Chen (UBC) Advances June 9-11, 2011 55 /1



