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THE AGE OF THE ALGORITHM

In the 20th century, mathematical logicians (Gödel, Church,

Post, Turing, . . .) made rigorous the concept of algorithm:

An algorithm is a finite procedure, written in a fixed symbolic

vocabulary, governed by precise instructions, moving in discrete

steps, that eventually comes to an end (cf. Berlinski 2000).

This definition of effective computation led to digital computers.

whose speed in implementing algorithms continues to have

consequences that transform the human world.

Marshall McLuhan (1964) . “[T]he medium is the message . . .

The history of the arts and sciences could be written in terms

of the continuing process by which new technologies create

new environments for old technologies.”
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MULTI-WAY LAYOUTS

A fundamental data structure is the k-way layout of

observations, complete or incomplete, balanced or unbalanced.

The cells of the layout are indexed by all k-fold combinations

of the levels of the k covariates (or factors). Replication

of observations within cells may be rare or nonexistent.

Observations with error may be available for only a subset of

the cells. The problem is to estimate the mean observation, or

mean potential observable, for each cell in the k-way layout.

Equivalently, the problem is to estimate an unknown regression

function that depends on k covariates.

Remark : The number of means (cells) in the layout may be

large. Substantially many of the unknown means of interest

may lack noisy observations.
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SOME IDEAS IN STATISTICAL THEORY

Use of probability models in Statistics spans a spectrum:

• none in exploratory data analysis ⇔ fixed effects models ⇔

random effects models ⇔ Bayesian randomness.

• Statisticians distinguish among data, probability models,

pseudorandom numbers, and algorithms.

• Data is not certifiably random (e.g. Kolmogorov, Knuth on

definitions of randomness).

• Statistical estimation theory increasingly supports simpler fits

to data (e.g. through bias-variance tradeoff, sparsity).

• Ongoing is the evolution of Statistics from mathematical

philosophy to empirically supported information science.

(cf. the development of scientific Medicine).
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SOME HISTORICAL STEPS

Peter Peregrinus of Maricourt (1269). “[An investigator]

diligent in the use of his own hands . . . will then in a short time

be able to correct an error which he would never do in eternity

by his knowledge of natural philosophy and mathematics alone.

[However] there are many things subject to the rule of reason

that we cannot completely investigate by the hand.”

William of Ockham (early 14th century). “It is pointless to do

with more what can be done with fewer” (Frustra fit per plura

quod potest fieri per pauciora).

Andrey Kolmogorov (1963). “There arises a problem of finding

the reasons for applicability of the mathematical theory of

probability to the phenomena of the real world.”
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APPROACHES TO MULTI-WAY LAYOUTS

Statistical methodologies for estimating means in multi-way

layouts include:

• Unconstrained least squares fits;

• Submodel fits and model selection;

• Shrinkage estimators for balanced complete layouts with

nominal factors (e.g. Stein 1966);

• Functional data analysis (e.g. Wahba, Wang, Gu, Klein, Klein

1995, Ramsay and Silverman 1997, Lin 2000);

• Multiply penalized least squares estimators for discrete

incomplete layouts, including regression fits (Beran 2007).

Implicit or explicit in these fits is regularization .
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FIXED EFFECTS TWO-WAY LAYOUT

Observations {yijk: 1 ≤ k ≤ nij} are available at pairs

(i, j) ∈ B, a subset of {(i, j): 1 ≤ i ≤ p1, 1 ≤ j ≤ p2}.

Assumed is the Saturated Model :

yijk = mij + eijk, mij = µ(x1i, x2j), (i, j) ∈ B.

• The {xri} are the levels of factor r. They can be ordinal (their

values matter) or nominal (numerical labels).

• The function µ is unknown and unrestricted .

• Subscript k labels repeated observations.

• The {eijk} are identically distributed random variables, each

having mean 0, unknown variance σ2, and E(e4
ijk) < ∞

(a strong Gauss-Markov model).
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TWO DATA-SETS

• Coal Ash Data (Cressie 1993, p. 34). The geographical factors

are both ordinal with p1 = 23 and p2 = 16 levels. One coal ash

measurement is made at each of q = 208 level-pairs (locations)

out of p = p1p2 = 368 in the complete layout.

• Starch Data (Freeman 1942, pp. 120–121). Starch type is

nominal with p1 = 7. Thickness is ordinal with p2 = 69. One

or more strength measurements are made at q = 81 factor-level

pairs out of p = p1p2 = 483 in the complete layout.
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The Coal Ash data , its factor-level grid, the adaptive PLS

estimate m̂D(t̂), its extrapolation m̂(t̂), and a residual plot.
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extrapolated adaptive PLS estimate m̂(t̂) of mean breaking

strengths.
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VECTORIZED SATURATED MODEL FOR THE MEANS

Let m = {{mij: 1 ≤ i ≤ p1}, 1 ≤ j ≤ p2} be the vectorized

means of associated complete layout, a column vector of length

p = p1p2. Let q ≤ p be the cardinality of B.

Let the q×p means-incidence matrix D of zeroes and ones be

such that mD = Dm lists the means on which data is observed.

Let y = {{yijk: 1 ≤ k ≤ nij}, (i, j) ∈ B} denote the vectorized

observations, a column vector y of length n =
∑

(i,j)∈B nij.

Vectorize similarly the errors {eijk} into e.

The n × q data-incidence matrix C of zeroes and ones is such

that η = E(y) = CmD. The saturated model asserts:

y = η + e, where η = CmD = CDm

and e satisfies the strong Gauss-Markov model.
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In the saturated model, the least squares estimators of

η = E(y) and of mD are

η̂LS = CC+y = (CD)(CD)+y

m̂D,LS = C+η̂LS = C+y.

(a) When we have one observation at each (i, j) ∈ B, then

m̂D,LS = y (the raw data)—a provably inadequate estimator.

(b) We have not used the factor-levels much.

(c) How to extrapolate m̂D,LS to estimate m?

To quantify the performance of an estimator η̂ for η, we

consider its quadratic risk q−1E|η̂ − η|2.

The risk of η̂LS is σ2. For Gaussian e, Stein (1956) proved

existence of estimators with uniformly smaller risk if q ≥ 3.
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MULTIPLY PENALIZED LEAST SQUARES

For 1 ≤ s ≤ d, let ts ∈ [0, 1] and let Qs be a p×p symmetric psd

matrix with ρ(Qs) = supx 6=0
|Qsx|
|x| = 1.

For c > 0 large, ε > 0 very small, t = {ts}, define

Q(t) = εIp + c
∑d

s=1 tsQs.

For every t ∈ [0, 1]d, the penalized least squares (PLS)

estimator of m is

m̂(t) = argminm∈Rp[|y − CDm|2 + m′Q(t)m]

= [D′C ′CD + Q(t)]−1D′C ′y.

This yields the additional estimators

η̂(t) = CDm̂(t) = CD[D′C ′CD + Q(t)]−1D′C ′y

m̂D(t) = C+η̂(t) = Dm̂(t).

Choice of penalty weights t and matrices {Qs}?
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BAYES FOMULATION

Suppose that

y|m ∼ N(CDm,σ2In), m ∼ N(0, σ2Q−1(t)).

The implied candidate Bayes estimators (quadratic loss) are

m̂(t) = [D′C ′CD + Q(t)]−1D′C ′y,

which does imputation, and

m̂D(t) = D[D′C ′CD + Q(t)]−1D′C ′y

= [C ′C + (DQ−1(t)D′)−1]−1C ′y

η̂(t) = CD[D′C ′CD + Q−1(t)]D′C ′y

= C[C ′C + (DQ−1D′)−1]−1C ′y.

These candidate Bayes estimators for a Gaussian data model

coincide with the candidate PLS estimators.
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RISK. Let R = C ′C, U = CR−1/2,

S(t) = [Iq + V (t)]−1, and V (t) = R−1/2(DQ−1(t)D′)−1R−1/2.

Then

η̂(t) = US(t)U ′y

Let T (t) = S2(t), T̄ (t) = [Iq − S(t)]2 and ξ = U ′m.

The risk of η̂(t), calculated under the saturated model, is

r(t) = q−1E|η̂(t) − η|2 = q−1[σ2 tr{T (t)} + tr{T̄ (t)ξξ′}].

ESTIMATED RISK. Let z = U ′y and let σ̂2 estimate σ2. The

estimated risk of η̂(t) is

r̂(t) = q−1[σ̂2 tr{T (t)} + tr{T̄ (t)(zz′ − σ̂2Iq)}].

(cf. Mallows 1973, Stein 1981). We will use estimated risk as

surrogate for risk, seeking theoretical justification.
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ADAPTIVE CHOICE OF PENALTY WEIGHTS

Fix penalty matrices {Qs}. Picking penalty weights t to

minimize estimated risk yields the adaptive PLS estimator

η̂(t̂), t̂ = argmint∈[0,1]d r̂(t).

Correspondingly, we may estimate mD by m̂D(t̂)

and m by m̂(t̂).

Note. Without additional model assumptions, we cannot

estimate the risk of m̂(t̂) at factor level combinations that

lack data. The extrapolation of m̂D(t̂) to m̂(t̂) is a what-if

experiment that reveals the regression function implicit in the

adaptive PLS fit.
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ASYMPTOTICS (cf. Beran 2007)

Limits as q → ∞ support asymptotic trustworthiness of this

strategy under the saturated model. These results assess the

estimator at covariate-level combinations where observations

are available.

Fact 1. Assume that, for every finite a > 0 and σ2 > 0,

limq→∞ supq−1|η|2≤a E|σ̂2 − σ2| = 0.

Let W (t) denote either the loss q−1|η̂(t) − η|2 or the estimated

risk r̂(t) of candidate estimator η̂(t). Then, for every finite

c > 0, a > 0, and σ2 > 0,

limq→∞ supq−1|η|2≤a E[supt∈[0,1]d |W (t) − r(t)|] = 0.

In other words, the loss and estimated risk of η̂(t) both

converge to the risk function r(t) uniformly in t.
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Implied by Fact 1 is

Fact 2. Assume that, for every finite a > 0 and σ2 > 0,

limq→∞ supq−1|η|2≤a E|σ̂2 − σ2| = 0.

Then, for every finite c > 0, a > 0, and σ2 > 0,

limq→∞ supq−1|η|2≤a |q
−1E|η̂(t̂) − η|2 − r(t̃)| = 0.

where t̃ = argmint∈[0,1]d r(t).

Moreover,

limq→∞ supq−1|η|2≤a E|r̂(t̂) − r(t̃)| = 0.

In other words, the risk and estimated risk of the empirically

best adaptive estimator η̂(t̂) both converge to the oracle risk

r(t̃) = mint∈[0,1]d r(t) ≤ σ2.
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TENSOR-PRODUCT PENALTY MATRICES

For r = 1, 2, let

ur = p
−1/2
r (1, 1, . . . , 1)′, Jr = uru

′
r, Hr = Ipr

− Jr.

Jr and Hr are mutually orthogonal projections such that Ipr
=

Jr + Hr. Hence the ANOVA decomposition of m:

m = (Ip2
⊗ Ip1

)m = P0m + P1m + P2m + P12m,

where P0 = J2⊗J1, P1 = J2⊗H1, P2 = H2⊗J1, and P3 = H2⊗H1.

We construct penalty matrix Qs to act only on Psm:

m′Q(t)m = ε|m|2 + c
∑

s ts(Psm)′Qs(Psm).

Then η̂(t) penalizes departures in the ANOVA components

from attributes determined by the {Qs}. The nominal or ordinal

character of each factor is taken into account.
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Construction of Qs.

Let Ar be an annihilator for factor r: Arur = 0.

Let

Q1 = u2u
′
2 ⊗ A′

1A1, Q2 = A′
2A2 ⊗ u1u

′
1,

Q3 = A′
2A2 ⊗ A′

1A1.

Motivating this definition are:

m′Q1m = |(u′
2 ⊗ A1)m|2, m′Q2m = |(A2 ⊗ u′

1)m|2,

m′Q3m = |(A2 ⊗ A1)m|2.

Note thatPs2
Qs1

= Qs1
Ps2

= 0 if s1 6= s2.

Hence m′Qsm = (Psm)′Qs(Psm) as sought.
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Both factors nominal. Because the factor levels are labels,

η̂(t) should be invariant under such permutations of the levels.

Let Ar = Hr for r = 1, 2.

Both factors ordinal. Suppose that both sets of factor levels

are arranged in decreasing order. Construct annihilator A to

penalize departures from conjectured smoothness.

For instance, choose Ar to penalize departures from local

polynomial behavior of degree d − 1. The normalized d-th

difference operator does this for equally spaced factor levels

and generalizes to handle unequally spaced factor levels.

First factor nominal, second factor ordinal. Mix suitably the

preceding choices of Ar.
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Coal Ash Data. Both geographical factors are ordinal with

p1 = 23 and p2 = 16. One coal ash measurement is made

at each of q = 208 locations.

Set ε = 10−7, c = 104, and A1 = A2 = the first difference

operator.

The variance estimate σ̂2 = 1.038 uses first differences in rows

and columns. It assumes slow variation in the means.

The minimal estimated risk is r̂(t̂) = .117, achieved at

t̂ = (.000349, .000217, 1.)

The estimated risk of the adaptive estimator is one ninth that

of the least squares fit. The adaptive fit is nearly additive.
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estimate m̂D(t̂), its extrapolation m̂(t̂), and a residual plot.
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Starch Data. Starch type is nominal with p1 = 7. Thickness is

ordinal with p2 = 69. One or more strength measurements are

made at q = 81 factor-level pairs.

Set ε = 10−7, c = 105, A1 = H1, and A2 = the generalized

second difference operator.

The variance estimate σ̂2 = 13976 is based on straight line fits

to each starch.

The minimal estimated risk is r̂(t̂) = 4116, achieved at

t̂ = (1., .7707 × 10−6, 1.)

The estimated risk of the adaptive estimator is one third that of

the least squares fit. Note the curious data for starch five!
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Starch 1: Data and Extrapolated Fit
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HISTORY OF A SPECIAL CASE

Consider PLS candidate estimators of m in y = Cm + e when

• the design is balanced and complete: C ′C = n0Ip;

• penalty matrix Q(t) =
∑d

s=1 tsPs, where the {Ps} are mutually

orthogonal, symmetric, idempotent, p × p matrices with
∑d

s=1 Ps = Ip and ts ≥ 0. E.g. projections underlying ANOVA.

The LS estimator of m is m̂ls = n−1
0 C ′y.

For each t, the PLS estimator of m is

m̂(t) = argminm∈Rp[|y − Cm|2 + m′Q(t)m]

= [n0Ip + Q(t)]−1C ′y =
∑d

s=1(n0 + ts)
−1n0Psm̂ls,

Reparametrize and enlarge the candidate estimator class to

m̂(a) =
∑d

s=1 asPsm̂ls

where a = (a1, . . . , ad) ∈ [0, 1]s.
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Estimated Risk. Let

τ̂s = (n0p)−1σ̂2 tr(Ps), ŵs = [p−1|Psm̂ls|
2 − τ̂s]+.

By direct argument, the estimated risk of m̂(a) is

r̂(a) =
∑d

s=1[τ̂sa
2
s + ŵs(1 − as)

2].

Adaptive Estimator. The â ∈ [0, 1]d that minimizes estimated

risk has components

âs = ŵs(τ̂s + ŵs)
−1 = [1 − pτ̂s/|Psm̂ls|

2]+.

The adaptive estimator of m is thus

m̂(â) =
∑d

s=1[1 − pτ̂s/|Psm̂ls|
2]+Psm̂ls.

Remark. Stein (1966) already obtained a small p refinement of

this multiple shrinkage estimator through an exact study of the

quadratic risk when the errors e are Gaussian iid

Though highly effective in balanced, complete ANOVA models

(for instance), his estimator remains widely unused.
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EXTENSIONS AND LINKS

Larger Families of Penalty Matrices

For the one-way layout, we have considered adaptive PLS over

the penalty matrix family Q(t) = εIp + ctAA′, t ∈ [0, 1],

where A is an annihilator.

To enlarge this family, replace A by A(θ) =
∑g

i=1 θiAi,

where the {Ai} are annihilators, θ = (θ1, . . . , θg), and |θ| = 1.

• Adaptation by minimizing estimated risk over t and θ works

asymptotically (symmetric linear estimators, Beran 2006).

• On a continuous factor domain, the annihilators may be

derivatives as in Heckman and Ramsay 2000.

• The enlargement may be extended to multi-way layouts.
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Multi-way Layouts with Multivariate Responses

The model is Y = CDM + V Σ1/2, where

• the rows of n × h matrix Y are h-variate responses;

• the p × h mean matrix M is unknown;

• the h × h covariance matrix Σ may be unknown;

• data-incidence matrix C is n × p;

• the elements of n × h are iid with means 0, variance 1, and

finite 4-th moment.

When Σ = Ih, the candidate PLS estimator M̂(N) minimizes

|Y − CDM |2 +
∑d

s=1 |Q
1/2
s MN

1/2
s |2,

where the {Ns} are h × h psd affine penalty weights while

the {Qs} are p × p psd penalty matrices as in the univariate

case (cf. Beran 2008). Previous theory extends to this and to

general Σ. Efron-Morris (1972) estimator is a special case!
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SUMMARY

The Core Ideas

• Interactions are to be expected in multi-way layouts or multi-

covariate regression.

• Replication matters for trustworthy estimation of variability

(cf. R. A. Fisher’s development of ANOVA).

• Folk-practice advocates fitting simplified models. Done

mindfully, regularized fits reduce risk (cf. C. Stein on

shrinkage).

Now

• Adaptive PLS methodologies for estimating many means have

a variety of sources. Study of these methodologies in terms of

the core ideas sharpens their effectiveness and deepens our

understanding.
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