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Muskrat Invasion of Europe

Skellam (1955)
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Questions regarding potential invaders

• Can the invader establish itself in the new environment?
• Will the invading species spread and, if so, at what speed?
• What is the effect of the invading species on the communities it

encounters?
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Fisher’s model (1937)

Rate of change = Growth + Dispersal
of density

∂u
∂t = ru(1− u) + D∂2u

∂x2

where
u(x, t) = Population density

r = Intrinsic growth rate (units 1/time)
D = Diffusion coefficient (units space2/time)

f (u) = ru(1− u) nonlinear growth function

f (u)

u
1

MARK A. LEWIS (UNIVERSITY OF ALBERTA) CRM-FIELDS-PIMS PRIZE TALK 2011 5 / 47



Fisher’s model (1937)

Rate of change = Growth + Dispersal
of density

∂u
∂t = ru(1− u) + D∂2u

∂x2

where
u(x, t) = Population density

r = Intrinsic growth rate (units 1/time)
D = Diffusion coefficient (units space2/time)

f (u) = ru(1− u) nonlinear growth function

f (u)

u
1

MARK A. LEWIS (UNIVERSITY OF ALBERTA) CRM-FIELDS-PIMS PRIZE TALK 2011 5 / 47



Spread with Fisher’s model

• Step function initial data converges wave with speed c∗ = 2
√

rD.
(Kolmogorov, Petrovskii and Piskunov, 1937).

• Compact initial data u0(x) converges to a wave expanding at speed c∗

(Aronson and Weinberger 1975, 1978).

c*
1

c*

• Proof uses a comparison theorem (solutions that are initially ordered
remain ordered for all time) plus super- and sub-solutions with speeds c∗

as t→∞

1
c*

c*

• Luther (1906) argued speed of a related chemical reaction was c∗ ∝
√

rD
using dimensional arguments.
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Definition of spread rate for Fisher’s model

The model has spread rate c∗ if, for any continuous initial function u0(x) with
compact support, the solution u(x, t) has the properties that for each 0 < ε� 1

lim
t→∞

[
sup

|x|≥t(c∗+ε)

u(x, t)

]
= 0, and lim

t→∞

[
sup

|x|≤t(c∗−ε)
|u(x, t)− 1|

]
= 0.
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√

rD.
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Travelling wave

• The model is
ut = f (u) + Duxx

where f (0) = f (1) = 0 and f > 0 for 0 < u < 1.

• A travelling wave solution takes the form u(x, t) = U(z) where z = x− ct

cU′ + DU′′ + f (u) = 0

plus boundary conditions U(−∞) = 1, U(∞) = 0.

for z -∞

∞for z

1

0

There is a family of travelling wave solutions. A solution exists for each
c ≥ c∗. Hence the spread rate coincides with the minimal travelling wave
speed.
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Linear determinacy
Nonlinear Model: ut = f (u) + Duxx
Linearized Model: ut = f ′(0)u + Duxx

f ’(0)u

f (u)

u

f (u) ≤ f ′(0)u

• The spread rate is linearly determined if spread rate of the nonlinear
system equals spread rate of the linearized system.

• With Fisher’s equation, the spread rate is linearly determined
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Spread rate of linear equations

ut = ru + Duxx

Initial data: δ(x)
Solution: ertN(0, 2Dt)
speed: c∗ = 2

√
Dr.

u

x
uc

x (t)c

limt→∞ ẋc(t) = c∗, independent of uc.

Jump to integrodifference model

Ansatz: u = αe−s(x−ct)

Dispersion relation:

cs = r + Ds2

c = r/s + Ds

Speed: c∗ = mins>0 c(s) = 2
√

Dr.

s

c

2(rD)

(r/D)0.5

0.5
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Condition for Linear Determinacy

Rate of change = Growth + Dispersal
of density

∂u
∂t = f (u) + D∂2u

∂x2

f ’(0) u

f’(0) u
f (u) f (u)

u u

• For the scalar model, f (u) ≤ f ′(0)u is sufficient for linear determinacy
(Aronson and Weinberger 1975).

• If this is violated (eg, reduced per capita growth at low density–Allee
effect) spread may not be linearly determined (Hadeler and Rothe 1975).

Jump to competition induced Allee example
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Comparison with data
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Outline

1 Fisher’s spread model and linear predictability

2 Nonlocal spread

3 Nonlinear stochastic effects

4 Population spread with multiple species

5 Discussion
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Spread of Oak in North America

North
American
Pollen
Database
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Modelling long-distance dispersal

• Implicit in the diffusion formulation is the assumption that, in a unit time
interval, propagules disperse according to a Gaussian distribution
k(x) = N(0, 2D).

• Rare, long distance dispersal events typically change the shape from
Gaussian to Leptokurtic. Eg.

k(x) = pk1(x) + (1− p)k2(x)

where

k(x) = Dispersal kernel
k1(x) = Local dispersal kernel
k2(x) = Long distance kernel
1− p = Probability long-distance
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Dispersal kernels can come directly from data

Neubert, Kot and Lewis (1995)
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Integrodifference models

un+1(x) = Q(un)(x) =
∫ +∞

−∞
k(x− y)f (un(y))dy,

where k is the dispersal kernel and f is the growth function.
∫ +∞
−∞ k(x)dx = 1.

k(x) f(u)

x

R0u

u

• At the leading edge un+1(x) ≈ R0
∫ +∞
−∞ k(x− y)un(y)dy = M(un)(x).

• Ansatz un = αe−s(x−nc) yields a dispersion relation between wave speed c
and steepness s

esc = M(e−sx)|x=0 = R0

∫ ∞
−∞

exp(su)k(u) du = R0b(s)

c =
1
s

ln (R0b(s)) Jump to Fisher dispersion relation
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Spread with integrodifference model

Theorem (Weinberger, 1982)
Assume f is monotonic and f (u) ≤ f ′(0)u. If the moment generating function b(s)
exists on an interval [0, s+) then the spread rate is linearly determined and given by

c∗ = min
s>0

1
s

log(R0b(s)).

where
s = wave steepness (un(x) ∝ exp(−sx))

R0 = f ′(0) =Basic reproductive rate

b(s) =
∫∞
−∞ exp(su)k(u) du (MGF for kernel)

Proof uses a comparison theorem for the discrete-time recursion relation, plus
construction of sub- and super-solutions, each of which spread asymptotically
at speed c∗. Jump to spread with spatial correlations
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Spread with the integrodifference model

• A Gaussian kernel gives Fisher’s
wave speed c∗ = 2

√
rD where the

variance of the dispersal kernel is
2D and the arithmetic growth rate
is r = log R0.

• Kernels that are exponentially
bounded but are leptokurtic can
give much higher spread rates c∗.

• “Fat-tailed kernels” that drop off
slower than exponentially give
constantly accelerating invasions

• For kernels with moments of all
order, this rate of acceleration can
be explicitly calculated.

Kot, Lewis and van den Driessche (1996)
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A resolution to Reid’s paradox

Stochastic simulation for Red Maple
(Acer rubrum)

Fat-tailed dispersal kernels are
consistent with measured seed rain
data and also with some observations
of long-distance dispersal.

Clark et al. (1998)
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Cheatgrass Invasion of North America

Mack (1981)
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Outline

1 Fisher’s spread model and linear predictability

2 Nonlocal spread

3 Nonlinear stochastic effects

4 Population spread with multiple species

5 Discussion
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An individual-based approach

• When observing invasions it is typical to see a series of invaded patches
which spread coalesce and spawn new patches.

• Monte-Carlo simulations of invasion processes produce similar results.
• In a homogeneous environment spatial correlations can give rise

nonlinear interactions at the leading edge of the spreading population

How does this relate to the mean field models we have already considered?
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Keeping track of correlations

Expected density of individuals: n(x)
Expected joint density of individuals: n(2)(x, y)
Spatial covariance density function: c(x, y) = n(2)(x, y)− n(x)n(y), x 6= y
Local spatial covariance c(x, x) = limy→x c(x, y)

nt+1(x) =

∫ ∞
−∞

R0 k(z− x)nt(z) dz

ct+1(x, y) =

∫ ∞
−∞

{
R0(R0 − 1) + σ2} nt(z) k(z− x) k(z− y) dz

+

∫ ∞
−∞

z2 6=z1

∫ ∞
−∞

R2
0 ct(z1, z2) k(z1 − x) k(z2 − y) dz1 dz2.

Thus an expanding wave in density is accompanied by an expanding wave in
covariance.
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Including weak nonlinear interactions

• Assume that each individual inspects an ε-neighborhood for other
individuals.

• If there are others in this neighborhood the individual does not
reproduce and dies.

• If there are no others in this neighborhood the individual has a Poisson
number of offspring with mean R0 and dies.

• These offspring then disperse according to the kernel k and become
parents.

The equivalent mean field model

nt+1(x) =
∫ ∞
−∞

R0 k(z− x)
(
nt(z)− εn2

t (z)
)

dz

is linearly determined (Li, Lewis and Weinberger, 2008), ie., the nonlinear
interactions have no effect. However...
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Effect of nonlinear interactions on expectation speed

time (t)
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The plot shows location of the neth furthest forward individual, averaged
over many realizations of the stochastic process.
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Including spatial correlations

nt+1(x) =

∫
Ω

R k(z− x)
(
nt(z)− ε

(
n2

t (z) + ct(z, z)
))

dz

ct+1(x, y) = . . .

Theorem (Lewis, 2000)
The expectation speed for this problem is bounded above by

c∗ε = min
s>0

1
s

log(R0b1(s, ε)).

where
b1(s, ε) =

∫ ∞
−∞

exp(su)
(
k(u)− εR0k2(u)

)
du

Jump to case with no correlations
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Including spatial correlations

• This is as for the linearly
determined speed c∗0 , but with the
dispersal kernel k(u) replaced by
k(u)− εR0k2(u). Hence
c∗ε < c∗0 = c∗.

• The proof involves moment
closure methods coupled to
comparison theorem methods.
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Outline

1 Fisher’s spread model and linear predictability

2 Nonlocal spread

3 Nonlinear stochastic effects

4 Population spread with multiple species

5 Discussion
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Grey Squirrel Invasion of the United Kingdom

The Mammal Society (2008)
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West Nile Virus Invasion of North America

Tachiiri et al. (2006)
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Spread with cooperative recursions

• Spread rate analysis of higher-dimensional can employ methods similar
to those used for the discrete-time integrodifference equation
(comparison theorem plus construction of sub- and super-solutions
whose spread rates can be calculated) providing dynamics are cooperative.

• Cooperative dynamics are required for the operator to be order
preserving and hence for the comparison theorem to hold.

• It is possible to translate partial differential equation models into
discrete-time recursions so as to facilitate such analysis.

• The theory for this area was initially formulated by Lui (1989), and
developed and extended in a series of five papers by Weinberger, Li and
Lewis (2002-8).

• It has been developed further by Thieme, Zhao and many others.
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Some questions addressed in the general theory

~un(x) = Q(~un)(x)

• When does a spreading speed exist?

• When do all components spread at the same speed?
• What conditions ensure a spreading speed is linearly determined? Eg.,

What is the condition equivalent to requiring that the growth function is
bounded above by its linearization at the leading edge of the invasion?

• How are the above conditions translated into constraints on the
interacting species?

• To what extent can these conditions be weakened so as to apply to a
broader class of problems? Eg., growth functions that are non-monotone
or are not strictly bounded above by their linearization.

• How can results from the theory of discrete-time recursions be translated
to partial differential equations?

• What is the connection to travelling waves?
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Spread of grey squirrels into red squirrel populations

∂u
∂t

= r1u(1− u− a1v) + d1
∂2u
∂x2

∂v
∂t

= r2v(1− v− a2u) + d2
∂2v
∂x2

v

1

u

a <1, a >12
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Theory versus numerical experiments

At the wave front of the invading species, u ≈ 0, v ≈ 1 and the linear
approximation for the u equation is

ut = r1(1− a1)u + d1uxx.

This predicts a spread rate for u of c∗ = 2
√

r1d1(1− a1).

• • • • • • • • • • •
•

•
•

•

C*

d2

speed

1/64 1/16 1/4 1 4 16 64

1.2

1.4

1.6

1.8

The speed is linearly determined for some parameters, but not for others
(Hosono, 1998). Jump to Lotka Volterra Theorem
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Two species cooperative model

Introduce the new variables p = u and q = 1− v which converts the
competitive system into a cooperative system.

A B

B

C

C

q

p

v

u
A
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Recursions

The Lotka-Volterra model becomes a recursion by letting Qτ = (Q1
τ ,Q2

τ ) be its
time τ map

pn+1(x) = Q1
τ (pn, qn)(x)

qn+1(x) = Q2
τ (pn, qn)(x).

or

~un+1(x) = Qτ (~un)(x)

Qτ is order-preserving nonlinear spatial operator.
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Spreading speed of the Lotka-Volterra model

Theorem (Lewis, Li, and Weinberger, 2002)
Suppose that grey squirrel is the better competitor (a1 < 1), and that growth rate r1
of the grey squirrel is sufficiently large and the diffusion coefficient d2 of the red
squirrel is sufficiently small (r1(2d1 − d2)(1− a1) ≥ max{d1r2(a1a2 − 1), 0}). Then
both components spread at the linearly predicted speed c∗ =

√
d1r1(1− a1).

Compare with Lotka Volterra Numerical

Example
A singular perturbation approach can
be used to connect to the scalar
problem. Hosono (1998) considered
d2 → 0, r2 →∞ and a1a2 > 1. This
yields

ut = d1uxx + F(u)

Which exhibits a weak Allee effect.
Go to Allee slide
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Spread of West Nile virus

Larvae
∂LV

∂t
= bV(SV + EV + IV)−mVLV − dLLV

Susceptible
∂SV

∂t
= −αVβR

IR

NR
SV + mVLV − dVSV + ε

∂2SV

∂x2

Exposed
∂EV

∂t
= αVβR

IR

NR
SV − (κV + dV)EV + ε

∂2EV

∂x2

Infected
∂IV

∂t
= κVEV − dVIV + ε

∂2IV

∂x2

Susceptible
∂SR

∂t
= −αRβR

SR

NR
IV + ηRRR + D

∂2SR

∂x2

Infected
∂IR

∂t
= αRβR

SR

NR
IV − (δR + γR)IR + D

∂2IR

∂x2
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Simplified West Nile virus model

• The model can be simplified and studied on an stable invariant manifold.
On this manifold, the model involves infected mosquitoes and birds.

• This simplified model is cooperative and lies below its linearization at
the leading edge of the wave.

• A unique spreading speed can be calculated from the linearized operator,
and the existence of a family of travelling waves can be proved with the
spread rate as the lowest wave speed.

• This spread rate for the simplified model depends on the bird movement
rate D, but for our best parameter estimates is approximately 1000 km/yr.

• A comparison method can be used to show that the spread rate for the
full, seven component model lies below that for the simplified model.

Lewis, Renclawowicz and van den Dreissche (2008)
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Discussion

• Linear predictability allows one to calculate the spread rate for a
nonlinear model, based on a calculation for a linear model. However,
conditions under which linear predictability applies are subtle and have
been subject to much mathematical research.

• Rare, long-distance dispersal events can drive invasion speeds but are
notoriously difficult to measure.

• However, when such events are included as fat-tailed dispersal kernels,
spread rates can increase by an order of magnitude.

• A more realistic model of an invasion is a stochastic process. Here,
correlations between individuals can be proved to slow population
spread, but there are many open questions.

• Linear predictability is not well-understood for multispecies models and
is a subject of ongoing research. When models are cooperative it is
possible to derive general results, but it is an open problem for
non-cooperative systems (eg., predator-prey).
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Predator-prey invasion

If a group of predators is introduced into a spatially uniform population of
prey, they invade the prey. Irregular spatiotemporal oscillations appear
behind the invasion front (animation courtesy of J. Sherratt).

Sherratt, Lewis and Fowler (1995)
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Thanks

• Linear predictability for non-cooperative systems (B. Li and others).
• Analysis of systems that are not linearly predictable (M. Kot, M.A. Lewis,

R. Lui and others).
• Spread in epidemic models (M.A. Lewis, R. Liu, J. Wu, H. Zhu and

others).
• Spread in spatially and temporally varying environments (H. Berestycki,

H. Caswell, X. Liang, S. Schreiber, N. Shigesada, H.F Weinberger and
others).

• Spread models with time delay ( J. So, H Theime, X. Zhao, X. Zou and
others).

• Spread in stage-structured populations (H. Caswell, R. Lui, M. Neubert
and others).

• Analysis of accelerating waves and asymptotically infinite spreading
speeds (X. Zhao, H.F. Weinberger and others).

• Spreading speeds and persistence in river environments with
unidirectional flow (M.A. Lewis, F. Lutscher, E. McCauley, R. Nisbet and
others).
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