
Expander graphs – a ubiquitous
pseudorandom structure

(applications & constructions)

Avi Wigderson

IAS, Princeton

Monograph: [Hoory, Linial, W. 2006] 
“Expander graphs and applications”
Bulletin of the AMS. 
Tutorial: [W’10]    
www.math.ias.edu/~avi                  



Applications 

in Math & CS



Applications of Expanders

In CS

• Derandomization

• Circuit Complexity

• Error Correcting Codes

• Data Structures

• …

• Computational Information

• Approximate Counting

• Communication & Sorting Networks



Applications of Expanders

In Pure Math

• Graph Theory - …

• Group Theory – generating random group elements   
[Babai,Lubotzky-Pak]

• Number Theory Thin Sets [Ajtai-Iwaniec-Komlos-Pintz-
Szemeredi]  -Sieve method [Bourgain-Gamburd-Sarnak]

- Distribution of integer points on spheres [Venkatesh]

• Measure Theory – Ruziewicz Problem [Drinfeld,
Lubotzky-Phillips-Sarnak], F-spaces [Kalton-Rogers]

• Topology – expanding manifolds [Brooks]

- Baum-Connes Conjecture [Gromov]



Expander graphs:

Definition and 
basic properties



Expanding Graphs - Properties

• Combinatorial/Goemetric

• Probabilistic

• Algebraic

Theorem. [Cheeger, Buser, Tanner, Alon-Milman, Alon, 
Jerrum-Sinclair,…]:  All properties are equivalent!



Expanding Graphs - Properties

• Combinatorial: no small cuts, high connectivity

• Geometric: high isoperimetry

G(V,E)

V vertices, E edges

|V|=n  ( àààà ∞ )

d-regular (d fixed)d

∀∀∀∀S |S|< n/2

|E(S,Sc)| > α|S|d  (what we expect in a random graph)

α constant

S



Expanding Graphs - Properties

• Probabilistic: rapid convergence of random walk

G(V,E)

d-regular

v1, v2, v3,…, vt,…

vk+1 a random neighbor of vk

vt converges to the uniform distribution

in O(log n) steps  (as fast as possible) 



Expanding Graphs - Properties

• Algebraic: small second eigenvalue

G(V,E)            V

V       AG

AG(u,v) =

normalized adjacency matrix

(random walk matrix)

0     (u,v) ∉ E
1/d  (u,v) ∈ E

1 = λλλλ1 ≥ λλλλ2 ≥ … ≥ λλλλn ≥ -1

λλλλ(G) = maxi>1 |λλλλi| =

max { ||||||||AG v|||||||| : ||||||||v|||||||| =1, v⊥⊥⊥⊥u }

λλλλ(G) ≤ δ < 1

1-λλλλ(G)    “spectral gap”



Expanders – Definition & Existence

Undirected, regular (multi)graphs.

G is [n,d]-graph: n vertices, d-regular.

G is [n,d, δδδδ ]-graph: λ(G)≤≤≤≤ δ . G expander if δ <1.

Definition:  An infinite family {Gi} of [ni,d, δδδδ]-graphs is an 
expander family if for all i  δ <1 . 

Theorem [Pinsker]  Most 3-regular graphs are expanders.

Challenge: Construct Explicit (small degree) expanders!



Pseudorandomness: G [n,d,δ]-graph

Thm. For all S,T⊆ V,    |E(S,T)|  =  d|S||T|/n ± δδδδdn

edges from   expectation in      small 

S to T random graph      error

Cor 1: Every set of size > δδδδn contains an edge. 

à Chromatic number (G) > 1/δδδδ

à Graphs of large girth and chromatic number

Cor 2: Removing any fraction γγγγ < δδδδ of the edges leaves a 
connected component of 1-O(γγγγ) of the vertices.



Networks

- Fault-tolerance
- Routing
- Distributed computing
- Sorting



Infection Processes: G [n,d,δ]-graph, δ<1/4

Cor 3: Every set S of size s < δδδδn/2 contains at most s/2 
vertices with a majority of neighbors in S

Infection process 1: Adversary infects I0,  |I0| ≤ δδδδn/4.

I0=S0, S1, S2, …St,… are defined by:

v ∈∈∈∈ St+1 iff a majority of its neighbors are in St. 

Fact: St=∅ for t > log n       [infection dies out]

Infection process 2: Adversary picks I0, I1,… , |It|≤ δδδδn/4.

I0=R0, R1, R2, …Rt,… are defined by Rt = St ∪ It

Fact: |Rt|≤ δδδδn/2 for all t    [infection never spreads]
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Reliable circuits from unreliable components
[von Neumann]

X2 X3

f

V

V

V
V
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V

Given, a circuit C for f of size s

Every gate fails with prob p < 1/10

Construct C’ for C’(x)=f(x) whp.

Possible? With small s’? 
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Reliable circuits from unreliable components
[von Neumann]

f

Given, a circuit C for f of size s

Every gate fails with prob p < 1/10

Construct C’ for C’(x)=f(x) whp.

Possible? With small s’? 

-Add Identity gates

-Replicate circuit

-Reduce errors
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Reliable circuits from unreliable components
[von Neumann, Dobrushin-Ortyukov, Pippenger]

Given, a circuit C for f of size s

Every gate fails with prob p < 1/10

Construct C’ for C’(x)=f(x) whp.

Possible? With small s’? 

Majority “expanders”

of size O(log s)   à

Analysis:

Infection

Process 2
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Derandomization



Deterministic error reduction

Algx→

r

↓

{0,1}
n

random
strings

Thm [Chernoff] r1 r2…. rk independent  (kn random bits) 
Thm [AKS] r1 r2…. rk random path  (n+ O(k) random bits)

Algx→

rk

↓

Algx→

r1

↓

Majority

G [2n,d, 1/8]-graph
G explicit! Bx

Pr[error] < 1/3

then Pr[error] = Pr[|{r1 r2…. rk  }∩Bx}| > k/2] < exp(-k)    

|Bx|<2n/3



Metric embeddings



Metric embeddings (into l2)

Def: A metric space (X,d) embeds with distortion ∆

into l2 if ∃ f : X → l2    such that for all x,y

d(x,y) ≤ |||||||| f(x)-f(y) |||||||| ≤ ∆ d(x,y) 

Theorem: [Bourgain]      Every  n-point  metric  space has a 
O(log n) embedding into l2

Theorem: [Linial-London-Rabinovich] This is tight! Let (X,d) 
be the distance metric of an [n,d]-expander G.

Proof: 〈f,(AG-J/n)f 〉 ≤ λλλλ(G) ||||||||f|||||2 ( 2ab = a2+b2-(a-b)2 )

(1-λλλλ(G))Ex,y [(f(x)-f(y))2] ≤ Ex~y [(f(x)-f(y))2] (Poincare inequality)

(clog n)2 ≤≤≤≤

≤≤≤≤

∆2
All 

pairs

Neighbor

s



Metric embeddings (into l2)

Def: A metric space (X,d) has a coarse embedding into l2 if 
∃ f : X → l2   and increasing, unbounded functions φ,σ:R→R 

such that for all x,y

φ(d(x,y)) ≤ |||||||| f(x)-f(y) ||||||||2 ≤ σ(d(x,y))

Theorem: [Gromov]  There exists a finitely generated, 
finitely presented group, whose Cayley graph metric has no  
coarse embedding into l2

Proof: Uses an infinite sequence of Cayley expanders…

Comment: Relevant to the Novikov & Baum-Connes 
conjectures 

Extensions: Poincare inequalities for any uniformly convex 
norms (“super expander” [Lafforgue, Mendel-Naor] )



Constructions



Expansion of Finite Groups
G finite group, S⊆⊆⊆⊆G, symmetric. The Cayley graph
Cay(G;S) has xàààà sx for all x∈∈∈∈G, s∈∈∈∈S.

Cay(Cn ; {-1,1})           Cay(F2
n ; {e1,e2,…,en})

λλλλ(G) ≈ 1-1/n2                   λλλλ(G) ≈ 1-1/n

Basic Q: for which G,S is Cay(G;S) expanding ?



Algebraic explicit constructions [Margulis,Gaber-
Galil,Alon-Milman,Lubotzky-Philips-Sarnak,…Nikolov,Kassabov,..]

Theorem. [LPS]  Cay(A,S) is an expander family.

Proof: “The mother group approach”:

Appeals to a property of SL2(Z) [Selberg’s 3/16 thm]

Strongly explicit: Say that  we need n bits to 
describe a matrix M in SL2(p) .  |V|=exp(n)

Computing the 4 neighbors of M requires poly(n) time!

A = SL2(p) :  group 2 x 2 matrices of det 1 over Zp.

S = { M1 , M2 }  :  M1  = (   ) , M2  = (    ) 1 1
0 1

1 0
1 1



Algebraic Constructions (cont.)

Very explicit
-- computing neighbourhoods in logspace

Gives optimal results Gn family of [n,d]-graphs
-- Theorem. [AB]                dλλλλ(Gn) ≥≥≥≥ 2√√√√ (d-1)
--Theorem. [LPS,M]  Explicit dλλλλ(Gn) ≤≤≤≤ 2√√√√ (d-1) 

(Ramanujan graphs)

Recent results:
-- Theorem [KLN] All* finite simple groups expand.
-- Theorem [H,BG] SL2(p) expands with most generators.
-- Theorem [BGT] same for all Chevalley groups



Zigzag graph product

Combinatorial construction 
of expanders



Explicit Constructions  (Combinatorial)
-Zigzag Product [Reingold-Vadhan-W]

G an [n, m, α]-graph.  H an [m, d, β]-graph.

Combinatorial construction of expanders.

H

v-cloud Edges

Step in cloud

Step between clouds

Step In cloud

v u
u-cloud

(v,k)

Thm. [RVW]   G z H is an [nm,d2,α+β]-graph,                                                

Definition.  G z H has vertices {(v,k) : v∈G, k∈H}.

G z H is an expander iff G and H are.



Iterative Construction of Expanders

G an [n,m,α]-graph.  H an [m,d,β] -graph.

The construction:

Start with a constant size H a [d4,d,1/4]-graph.

• G1 = H 2

Theorem. [RVW] Gk is a [d4k, d2, ½]-graph.

Proof: Gk
2 is a [d 4k,d 4, ¼]-graph.

H is a [d 4, d, ¼]-graph.
Gk+1 is a [d 4(k+1), d 2, ½]-graph.

Theorem. [RVW] G z  H is an [nm,d2,α+β]-graph.

• Gk+1 = Gk
2 z  H



Consequences of the zigzag product

- Isoperimetric inequalities beating e-value bounds 

[Reingold-Vadhan-W, Capalbo-Reingold-Vadhan-W]

- Connection with semi-direct product in groups 

[Alon-Lubotzky-W]

- New expanding Cayley graphs for non-simple groups

[Meshulam-W] :  Iterated group algebras 

[Rozenman-Shalev-W] : Iterated wreath products

- SL=L :  Escaping every maze deterministically [Reingold ’05]

- Super-expanders [Mendel-Naor]

- Monotone expanders [Dvir-W]



Beating eigenvalue
expansion



Lossless expanders  
(perfect isoperimetry) 
[Capalbo-Reingold-Vadhan-W]

Task:  Construct an [n,d]-graph in which every set S, 

|S|<<n/d has > c|S| neighbors.  Max c (vertex expansion)

Upper bound:  c≤d
Ramanujan graphs: [Kahale]  c ≤ d/2

Random graphs: c ≥ (1-ε)d                  Lossless
Zig-zag graphs: [CRVW] c ≥ (1-ε)d     Lossless

Use zig-zag product on conductors!

Extends to unbalanced bipartite graphs.

Applications (where the factor of 2 matters):
Data structures, Network routing, Error-correcting codes



Error correcting codes



Error Correcting Codes  [Shannon, Hamming]

C: {0,1}k → {0,1}n C=Im(C) 

Rate (C) = k/n Dist (C) = min dH(C(x),C(y))

C good if Rate (C) = Ω(1), Dist (C) = Ω(n)

Theorem: [Shannon ‘48] Good codes exist (prob. method)

Challenge: Find good, explicit, efficient codes.

- Many explicit algebraic constructions: [Hamming, BCH, 
Reed-Solomon, Reed-muller, Goppa,…]

- Combinatorial constructions [Gallager, Tanner, Luby-
Mitzenmacher-Shokrollahi-Spielman, Sipser-Spielman..]

Thm: [Spielman] good, explicit, O(n) encoding & decoding



Graph-based Codes  [Gallager’60s]
C: {0,1}k → {0,1}n C=Im(C) 

Rate (C) = k/n    Dist (C) = min dH(C(x),C(y))

C good if Rate (C) = Ω(1), Dist (C) = Ω(n)

z∈C  iff  Pz=0 C is a linear code

LDPC: Low Density Parity Check    (G has constant degree)

Trivial Rate (C) ≥ k/n , Encoding time = O(n2)

G lossless → Dist (C) = Ω(n), Decoding time = O(n)

n

n-k

1          1          0         1          0         0          1         1      z

0         0         0         0         0         0 Pz

+       +        +        +        +       +
G



Decoding 

Thm [CRVW] Can explicitly construct graphs:  k=n/2, 

bottom deg = 10,  ∀B⊆[n],  |B|≤ n/200,  |Γ(B)| ≥ 9|B| 

B = corrupted positions  (|B| ≤ n/200)

B’ = set of corrupted positions after flip

Decoding algorithm [Sipser-Spielman]: while Pw≠0 flip all 
wi with i ∈ FLIP = { i : Γ(i)  has more 1’s than 0’s }

Claim [SS] :   |B’| ≤ |B|/2

Proof: |B \ FLIP | ≤ |B|/4,   |FLIP \ B | ≤ |B|/4

n

n-k

1      1     1     0     1 0     1     1      w

0      0      1      0      1      1        Pw
+       +        +       +        +       +


