Expander graphs - a ubiquitous pseudorandom structure (applications \& constructions)

Avi Wigderson
IAS, Princeton

Monograph: [Hoory, Linial, W. 2006] "Expander graphs and applications"
Bulletin of the AMS.
Tutorial: [W'10]
www.math.ias.edu/~avi

Applications

in Math \& CS

Applications of Expanders

In CS

- Derandomization
- Circuit Complexity
- Error Correcting Codes
- Communication \& Sorting Networks
- Approximate Counting
- Computational Information
- Data Structures

Applications of Expanders

In Pure Math

- Topology - expanding manifolds [Brooks]
- Baum-Connes Conjecture [Gromov]
- Group Theory - generating random group elements
[Babai,Lubotzky-Pak]
- Measure Theory - Ruziewicz Problem [Drinfeld, Lubotzky-Phillips-Sarnak], F-spaces [Kalton-Rogers]
- Number Theory Thin Sets [Ajtai-Iwaniec-Komlos-PintzSzemeredi] -Sieve method [Bourgain-Gamburd-Sarnak]
- Distribution of integer points on spheres [Venkatesh]
- Graph Theory - ...

Expander graphs:

Definition and basic properties

Expanding Graphs - Properties

- Combinatorial/Goemetric
- Probabilistic
- Algebraic

Theorem. [Cheeger, Buser, Tanner, Alon-Milman, Alon, Jerrum-Sinclair, ...]: All properties are equivalent!

Expanding Graphs - Properties

G(V,E)
V vertices, E edges
$|V|=n(\infty)$
d-regular (d fixed)
$\forall S|S|<n / 2$
$\left|E\left(S, S^{c}\right)\right|>\alpha|S| d$ (what we expect in a random graph)
a constant

- Combinatorial: no small cuts, high connectivity
- Geometric: high isoperimetry

Expanding Graphs - Properties

$G(V, E)$
d-regular

$v_{1}, v_{2}, v_{3}, \ldots, v_{t}, \ldots$
v_{k+1} a random neighbor of v_{k}
v_{\dagger} converges to the uniform distribution in $O(\log n)$ steps (as fast as possible)

- Probabilistic: rapid convergence of random walk

Expanding Graphs - Properties

$1=\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n} \geq-1$
$\lambda(G)=\max _{i>1}\left|\lambda_{i}\right|=$
$\boldsymbol{A}_{G}(u, v)=\begin{gathered}0 \quad(u, v) \notin E \\ 1 / d \quad(u, v) \in E\end{gathered}$ $\max \left\{\left\|A_{G} v\right\|:\|v\|=1, v \perp u\right\}$ $\lambda(G) \leq \delta<1$

- Algebraic: small second eigenvalue

Expanders - Definition \& Existence

Undirected, regular (multi)graphs.
G is [n, d]-graph: n vertices, d -regular.
G is $[n, d, \delta]$-graph: $\lambda(G) \leq \delta . G$ expander if $\delta<1$.
Definition: An infinite family $\left\{G_{i}\right\}$ of $\left[n_{i}, d, \delta\right]$-graphs is an expander family if for all $i \delta<1$.

Theorem [Pinsker] Most 3-regular graphs are expanders.
Challenge: Construct Explicit (small degree) expanders!

Pseudorandomness: $G[n, d, \delta]$-graph

Thm. For all $S, T \subseteq V, \quad|E(S, T)|=d|S||T| / n \quad \pm \quad \delta d n$ edges from expectation in small S to T random graph error

Cor 1: Every set of size > δ contains an edge.
Chromatic number (G) > $1 / \delta$
Graphs of large girth and chromatic number
Cor 2: Removing any fraction $\gamma<\delta$ of the edges leaves a connected component of $1-O(\gamma)$ of the vertices.

Networks

- Fault-tolerance
- Routing
- Distributed computing
- Sorting

Infection Processes: $G[n, d, \delta]$-graph, $\delta<1 / 4$

Cor 3: Every set S of size $s<\delta n / 2$ contains at most $s / 2$ vertices with a majority of neighbors in S
Infection process 1: Adversary infects $I_{0},\left|I_{0}\right| \leq \delta n / 4$.
$I_{0}=S_{0}, S_{1}, S_{2}, \ldots S_{+}, \ldots$ are defined by:
$v \in S_{t+1}$ iff a majority of its neighbors are in S_{t}.
Fact: $S_{\dagger}=\varnothing$ for $\dagger>\log n \quad$ [infection dies out]
Infection process 2: Adversary picks $I_{0}, I_{1}, \ldots,\left|I_{+}\right| \leq \delta n / 4$.
$I_{0}=R_{0}, R_{1}, R_{2}, \ldots R_{+}, \ldots$ are defined by $R_{t}=S_{+} \cup I_{+}$
Fact: $\left|R_{+}\right| \leq \delta n / 2$ for all \dagger [infection never spreads]

Reliable circuits from unreliable components [von Neumann]

Given, a circuit C for f of size s
Every gate fails with prob $p<1 / 10$
Construct C^{\prime} for $C^{\prime}(x)=f(x)$ whp.
Possible? With small s'?

Reliable circuits from unreliable components [von Neumann]

Given, a circuit C for f of size s
Every gate fails with prob p < $1 / 10$
Construct C^{\prime} for $C^{\prime}(x)=f(x)$ whp.
Possible? With small s'?

- Add Identity gates

Reliable circuits from unreliable components

 [von Neumann]Given, a circuit C for f of size s
Every gate fails with prob $p<1 / 10$
Construct C^{\prime} for $C^{\prime}(x)=f(x)$ whp.
Possible? With small s'?
-Add Identity gates
-Replicate circuit
-Reduce errors

Reliable circuits from unreliable components [von Neumann, Dobrushin-Ortyukov, Pippenger]

Given, a circuit C for f of size s
Every gate fails with prob $p<1 / 10$
Construct C^{\prime} for $C^{\prime}(x)=f(x)$ whp.
Possible? With small s'?

Majority "expanders" of size $O(\log s)$

Analysis:
Infection
Process 2

Derandomization

Deterministic error reduction

Thm [Chernoff] $r_{1} r_{2} \ldots . r_{k}$ independent (kn random bits)
Thm [AKS] $r_{1} r_{2} \ldots r_{k}$ random path ($n+O(k)$ random bits) then $\operatorname{Pr}[$ error $\left.]=\operatorname{Pr}\left[\mid\left\{r_{1} r_{2} \ldots . r_{k}\right\} \cap B_{x}\right\} \mid>k / 2\right]<\exp (-k)$

Metric embeddings

Metric embeddings (into I_{2})

Def: A metric space ($X, \mathrm{~d}$) embeds with distortion Δ into I_{2} if $\exists f: X \rightarrow I_{2}$ such that for all x, y

$$
d(x, y) \leq\|f(x)-f(y)\| \leq \Delta d(x, y)
$$

Theorem: [Bourgain] Every n-point metric space has a $\mathrm{O}(\log n)$ embedding into I_{2}
Theorem: [Linial-London-Rabinovich] This is tight! Let (X, d) be the distance metric of an $[n, d]$-expander G.
Proof: $\left\langle f,\left(A_{G}-J / n\right) f\right\rangle \leq \lambda(G)\|f\|^{2}$
$\left(2 a b=a^{2}+b^{2}-(a-b)^{2}\right)$
$(1-\lambda(G)) E_{x, y}\left[(f(x)-f(y))^{2}\right] \leq E_{x \sim y}\left[(f(x)-f(y))^{2}\right]$ (Poincare inequality)
$(c \log n)^{2} \leq$

Neighbor

Metric embeddings (into I_{2})

Def: A metric space (X, d) has a coarse embedding into I_{2} if $\exists f: X \rightarrow I_{2}$ and increasing, unbounded functions $\phi, \sigma: R \rightarrow R$ such that for all x, y

$$
\phi(d(x, y)) \leq\|f(x)-f(y)\|_{2} \leq \sigma(d(x, y))
$$

Theorem: [Gromov] There exists a finitely generated, finitely presented group, whose Cayley graph metric has no coarse embedding into I_{2}
Proof: Uses an infinite sequence of Cayley expanders...
Comment: Relevant to the Novikov \& Baum-Connes conjectures
Extensions: Poincare inequalities for any uniformly convex norms ("super expander" [Lafforgue, Mendel-Naor])

Constructions

Expansion of Finite Groups

G finite group, $S \subseteq G$, symmetric. The Cayley graph $\operatorname{Cay}(G ; S)$ has $x s x$ for all $x \in G, s \in S$.

$\operatorname{Cay}\left(C_{n}:\{-1,1\}\right)$
$\lambda(G) \approx 1-1 / n^{2}$

Basic Q: for which G,S is Cay(G;S) expanding ?

Algebraic explicit constructions [Margulis,GaberGali, Alon-Milman,Lubotzky-Philips-Sarnak,...Nikolov,Kassabov,..]
$A=S L_{2}(p)$: group 2×2 matrices of $\operatorname{det} 1$ over Z_{p}.
$S=\left\{M_{1}, M_{2}\right\}: M_{1}=\binom{11}{01}, M_{2}=\binom{10}{11}$
Theorem. [LPS] Cay (A,S) is an expander family.
Proof: "The mother group approach":
Appeals to a property of $S L_{2}(Z)$ [Selberg's $3 / 16$ thm]

Strongly explicit: Say that we need n bits to describe a matrix M in $S L_{2}(p)$. $|V|=\exp (n)$
Computing the 4 neighbors of M requires poly (n) time!

Algebraic Constructions (cont.)

Very explicit
-- computing neighbourhoods in logspace
Gives optimal results G_{n} family of $[n, d]$-graphs
-- Theorem. [AB] $d \lambda\left(G_{n}\right) \geq 2 \sqrt{ }(d-1)$
--Theorem. [LPS,M] Explicit $d \lambda\left(G_{n}\right) \leq 2 \sqrt{ }(d-1)$
(Ramanujan graphs)
Recent results:
-- Theorem [KLN] All* finite simple groups expand.
-- Theorem [H,BG] $S L_{2}(p)$ expands with most generators.
-- Theorem [BGT] same for all Chevalley groups

Zigzag graph product

Combinatorial construction of expanders

Explicit Constructions (Combinatorial) -Zigzag Product [Reingold-Vadhan-W]

Gan $[n, m, \alpha]$-graph. Han $[m, d, \beta]$-graph.
Definition. G(Z) H has vertices $\{(v, k): v \in G, k \in H\}$.

Thm. [RVW] G(2) His an $\left[n m, \alpha^{2}, \alpha+\beta\right]$-graph,
G(2) 4 is an expander iff G and H are.
Combinatorial construction of expanders.

Iterative Construction of Expanders

G an $[n, m, \alpha]$-graph. H an $[m, d, \beta]$-graph.
Theorem. $[R V W] G(2) H$ is an $\left[n m, \alpha^{2}, \alpha+\beta\right]$-graph.
The construction:
Start with a constant size $\mathrm{Ha}\left[d^{4}, d, 1 / 4\right]$-graph.

- $G_{1}=H^{2}$
- $G_{k+1}=G_{k}^{2}(Z) H$

Theorem. [RVW] G_{k} is a $\left[d^{4 k}, d^{2}, \frac{1}{2}\right]$-graph.
Proof: G_{k}^{2} is a $\left[d^{4 k}, d^{4}, \frac{1}{4}\right]$-graph.
H is a $\left[d^{4}, d, \frac{1}{4}\right]$-graph.
G_{k+1} is a $\left[d^{4(k+1)}, d^{2}, \frac{1}{2}\right]$-graph.

Consequences of the zigzag product

- Isoperimetric inequalities beating e-value bounds
[Reingold-Vadhan-W, Capalbo-Reingold-Vadhan-W]
- Connection with semi-direct product in groups [Alon-Lubotzky-W]
- New expanding Cayley graphs for non-simple groups
[Meshulam-W]: Iterated group algebras
[Rozenman-Shalev-W]: Iterated wreath products
- SL=L: Escaping every maze deterministically [Reingold '05]
- Super-expanders [Mendel-Naor]
- Monotone expanders [Dvir-W]

Beating eigenvalue expansion

Lossless expanders (perfect isoperimetry) [Capalbo-Reingold-Vadhan-W]

Task: Construct an [$n, d]$-graph in which every set S,
$|S| \ll n / d$ has > c|S| neighbors. Max c (vertex expansion)
Upper bound: csd
Ramanujan graphs: [Kahale] $c \leq d / 2$
Random graphs: $c \geq(1-\varepsilon) d \quad$ Lossless
Zig-zag graphs: [CRVW] $c \geq(1-\varepsilon) d$ Lossless
Use zig-zag product on conductors!
Extends to unbalanced bipartite graphs.
Applications (where the factor of 2 matters):
Data structures, Network routing, Error-correcting codes

Error correcting codes

Error Correcting Codes [Shannon, Hamming]

$C:\{0,1\}^{\mathrm{k}} \rightarrow\{0,1\}^{\mathrm{n}} \quad C=\operatorname{Im}(C)$
Rate $(C)=k / n \quad \operatorname{Dist}(C)=\min d_{H}(C(x), C(y))$
C good if Rate (C) $=\Omega(1)$, Dist $(C)=\Omega(n)$
Theorem: [Shannon '48] Good codes exist (prob. method)
Challenge: Find good, explicit, efficient codes.

- Many explicit algebraic constructions: [Hamming, BCH, Reed-Solomon, Reed-muller, Goppa,...]
- Combinatorial constructions [Gallager, Tanner, Luby-Mitzenmacher-Shokrollahi-Spielman, Sipser-Spielman..]

Thm: [Spielman] good, explicit, $O(n)$ encoding \& decoding

Graph-based Codes [Gallager'60s]

$C:\{0,1\}^{k} \rightarrow\{0,1\}^{n} \quad C=\operatorname{Im}(C)$
$\operatorname{Rate}(C)=k / n \quad \operatorname{Dist}(C)=\min _{\mathrm{H}}(C(x), C(y))$
C good if Rate $(C)=\Omega(1)$, $\operatorname{Dist}(C)=\Omega(n)$

$z \in C$ iff $P z=0$
C is a linear code
LDPC: Low Density Parity Check (G has constant degree)
Trivial Rate $(C) \geq k / n$, Encoding time $=O\left(n^{2}\right)$
G lossless \rightarrow Dist $(C)=\Omega(n)$, Decoding time $=O(n)$

Decoding

Thm [CRVW] Can explicitly construct graphs: $k=n / 2$, bottom deg =10, $\forall B \subseteq[n],|B| \leq n / 200,|\Gamma(B)| \geq 9|B|$

Decoding algorithm [Sipser-Spielman]: while $\mathrm{P} w \neq 0$ flip all w_{i} with $\mathbf{i} \in \operatorname{FLIP}=\left\{\mathbf{i}: \Gamma(\mathbf{i})\right.$ has more 1's than $\left.\mathrm{O}^{\prime} \mathrm{s}\right\}$
$B=$ corrupted positions ($|B| \leq n / 200$)
$\mathrm{B}^{\prime}=$ set of corrupted positions after flip
Claim [SS]: $\left|B^{\prime}\right| \leq|B| / 2$
Proof: $|B \backslash F L I P| \leq|B| / 4, \quad|F L I P \backslash B| \leq|B| / 4$

