

Theoretical ideas behind e-commerce and the Internet revolution

Avi Wigderson
Institute for Advanced Study

Plan

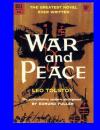
- Cryptography before computational complexity
- The ambitions of modern cryptography
- The assumptions of modern cryptography
- The "digital envelope" abstraction
 Blackboard break: Formalizing some of the defs.
 Psudorandomness, and modern broader context.
 Hardness amplification proof.
- Zero-knowledge proofs

Cryptography before 1970s

Alice

Secret communication

Bob



Assumes Alice and Bob share Information which no one else has

Secret communication since 1970s

Alice and Bob want to have a completely private conversation.

They share no private printer information

Many in this audience has already faced and solved this problem often!

I want to purchase "War and Peace". My credit card is number is 1111 2222 3333 4444

Public-key encryption, e-commerce security

Diffie-Hellman, Merkle, Rivest-Shamir-Adleman, Rabin 1976-77 Key conceptual ideas: complexity-based crypto, one-way and trapdoor functions

Goldwasser-Micali, Blum-Micali, Yao 1981

Key formal definitions, techniques and proofs:

Computational indistinuishability, pseudorandomness

Modern Cryptography

Any task with conflict between privacy and resilience.

Mathematics of SE(RETS & LIES

- Encryption
- Money transfer Public lottery
- Public bids

- Secret exchange
- Identification Poker game on the phone

 - Sign contracts

Digitally, with no trusted parties

Mostly developed before the Internet

What are we assuming?

Axiom 1: Agents are computationally limited (say, to polynomial time)

Consequence 1: Only tasks having efficient algorithms can be performed

Easy and Hard Problems asymptotic complexity of functions

Multiplication mult(23,67) = 1541

Factoring factor(1541) = (23,67)

grade school algorithm: n² steps on n digit inputs

best known algorithm: $exp(\sqrt{n})$ steps on n digits

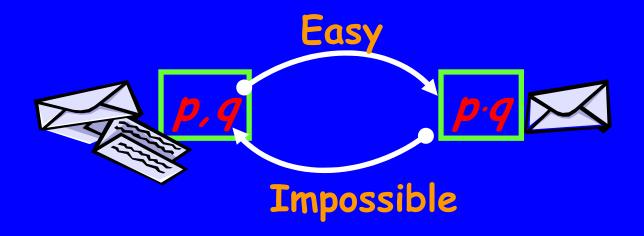
EASY Can be performed quickly We don't know! for huge integers

HARD? We'll assume it.

Axiom 2: Factoring is hard!

Axiom 1: Agents are computationally limited

Axiom 2: Factoring is hard

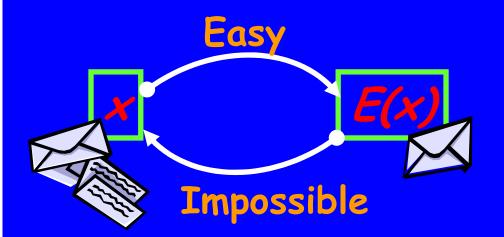


Theorem: Axioms \Rightarrow digital

One-way functions

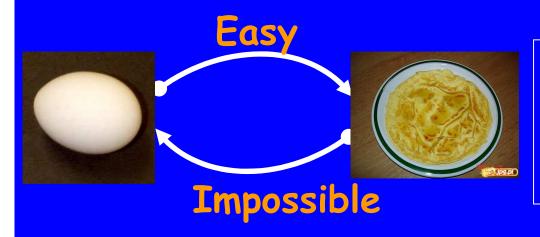
Axiom 1: Agents are computationally limited

Axiom 2': The exist one-way functions E



Example: $E(p,q) = p \cdot q$ E is multiplication

We have other E's



Nature's one-way functions: 2nd law of Thermodynamics

Blum 1981

Envelopes as commitments

if I get the car (else you do)

flipping...

What did you pick?

CLOSED

- ·Alice can insert any x (even 1 bit)
- ·Bob cannot compute content (even partial info)
- ·Alice cannot change content (E(x) defines x)
- ·Alice can prove to Bob that x is the content

Intermission – Switching to a black board lecture

- Formal definititions of computational pseudorandomness.
- Connections and generalizations of these defs to arithmetic combinatorics.
- Using these defs to define digital envelope (formally, a bit-commitment scheme)

Survey by Salil Vadhan:

http://people.seas.harvard.edu/~salil/pseudorandomness/

Zero-knowledge proofs

Copyrights

Dr. Alice: I can prove Riemann's Hypothesis

Prof. Bob: Impossible! What is the proof?

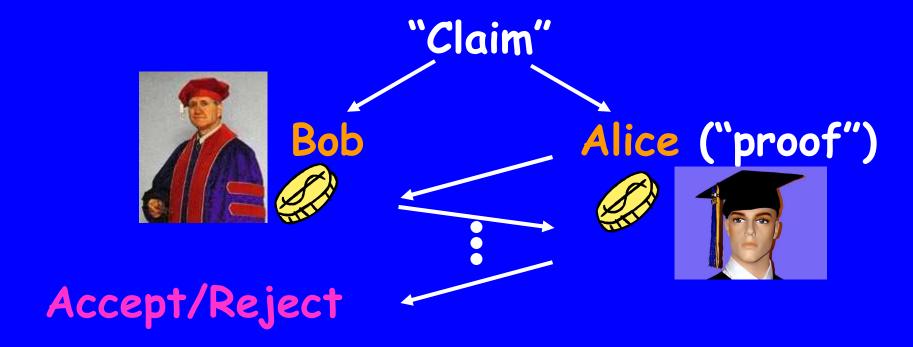
Dr. Alice: Lemma...Proof...Lemma...Proof...

Prof. Bob: Amazing!! I'll recommend tenure

Amazing!! I'll publish first

Goldwasser-Micali -Rackoff 1984

Zero-Knowledge Proof



"Claim" true

Bob accepts

Bob learns nothing*

"Claim" false -> Bob rejects with high probability

Goldreich-Micali -Wigderson 1986

The universality of Zero-Knowledge

Theorem: Everything you can prove at all, you can prove in Zero-Knowledge

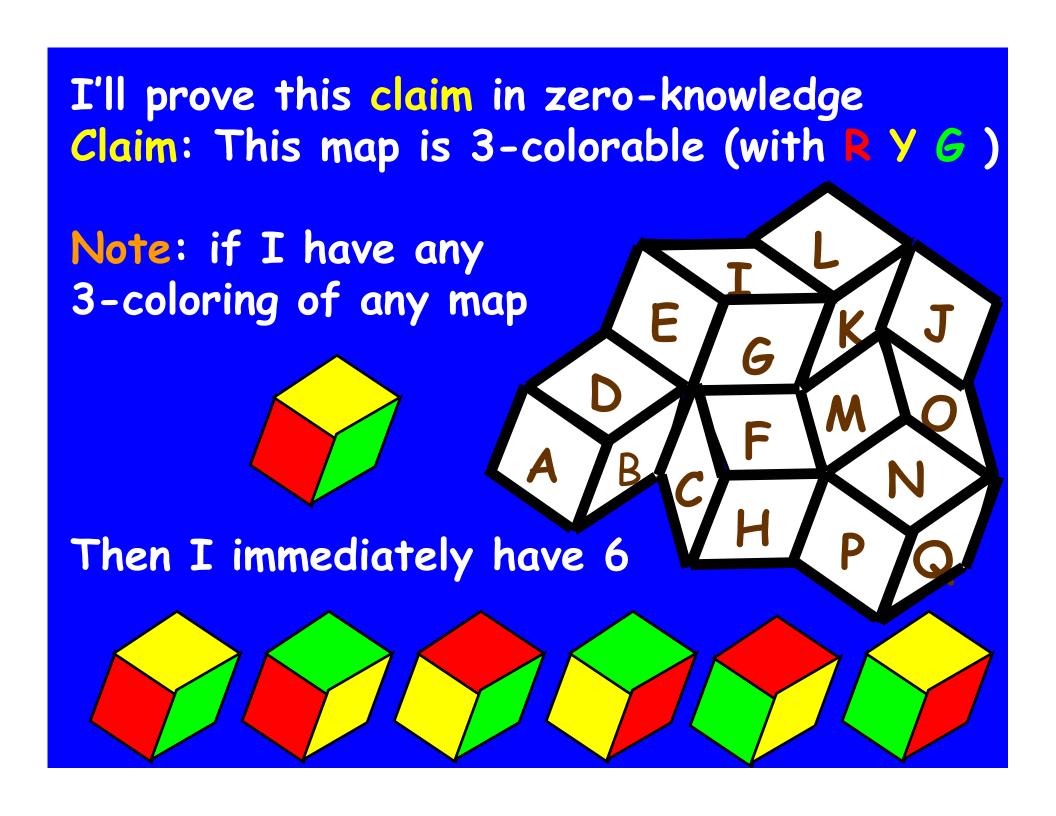
ZK-proofs of Map Coloring

Input: planar map M

Claim: M is 3-colorable

Natural mathematical Proof: 3-coloring of M (gives lots of info)

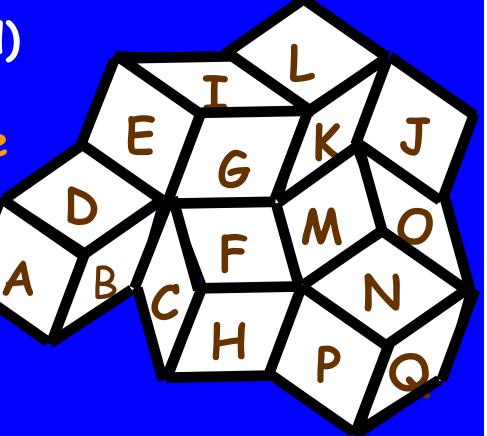
Theorem [GMW]: Such claims have ZK-proofs



Structure of proof: Repeat (until satisfied)

 I hide a random one of my 6 colorings in digital envelopes

- You pick a pair of adjacent countries

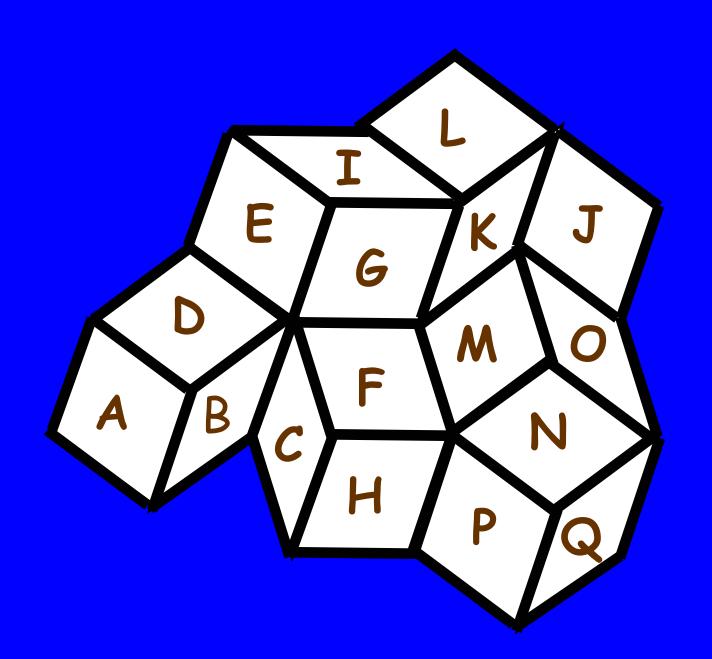


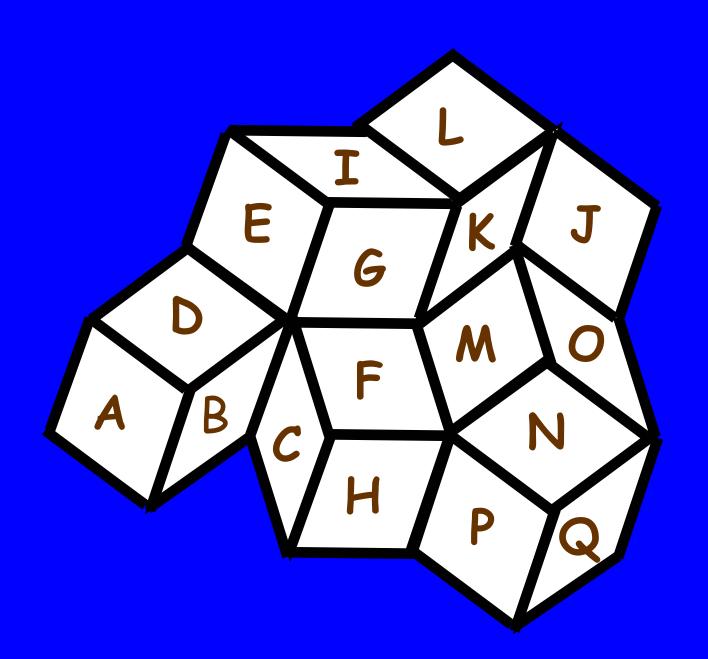
- I open this pair of envelopes

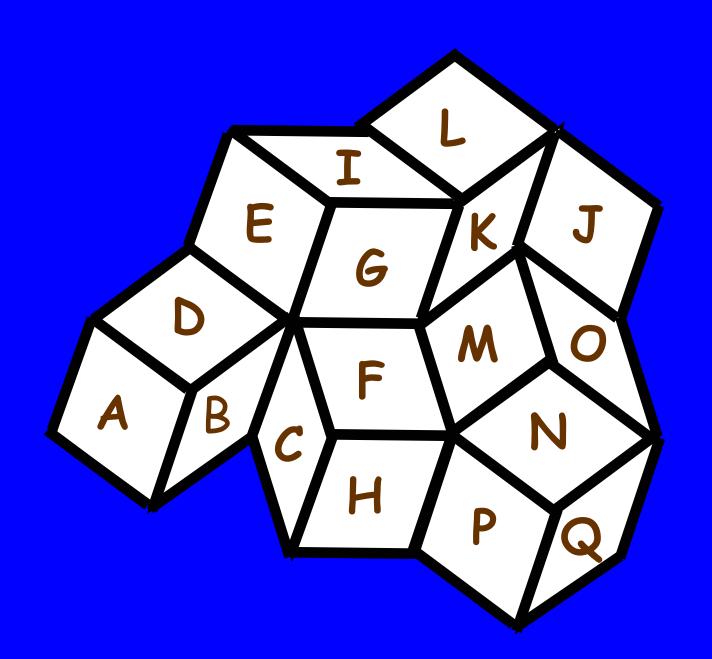
Reject if you see RR, YY, GG or illegal color

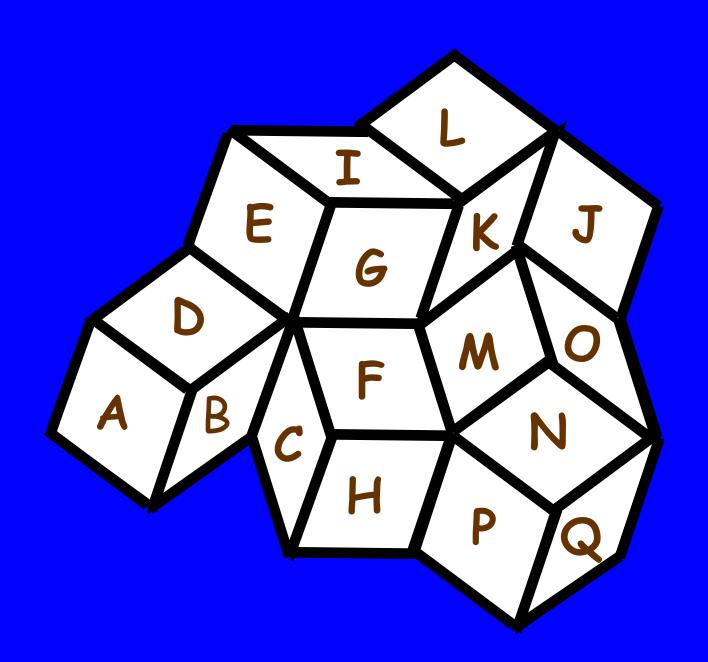
Zero-knowledge proof demo

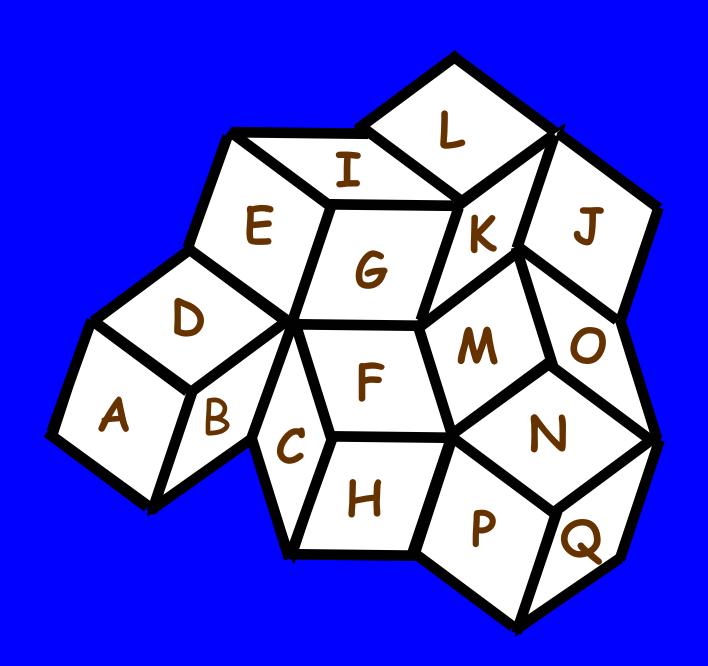
(open two adjacent envelopes on any subsequent slide)

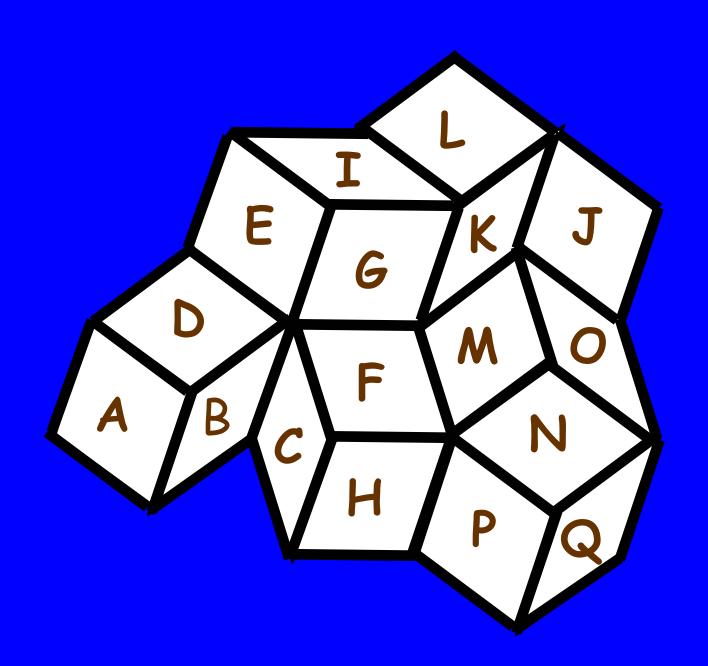


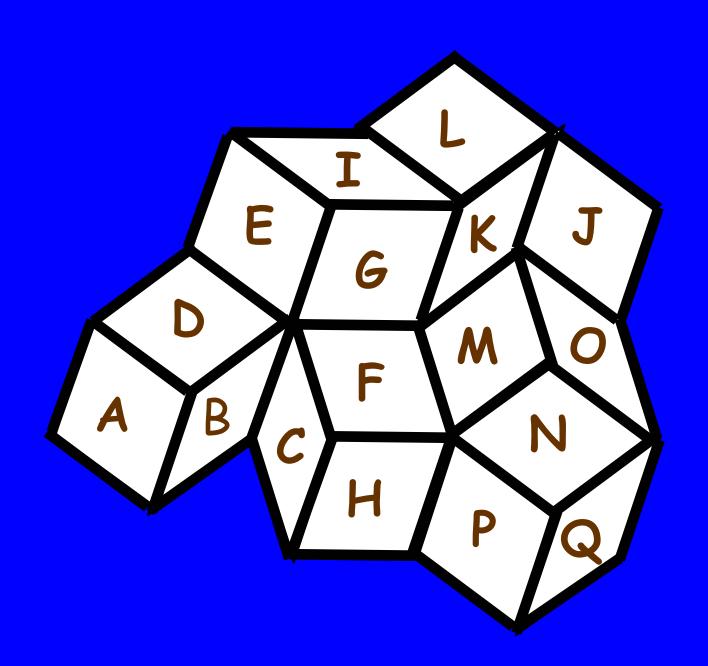


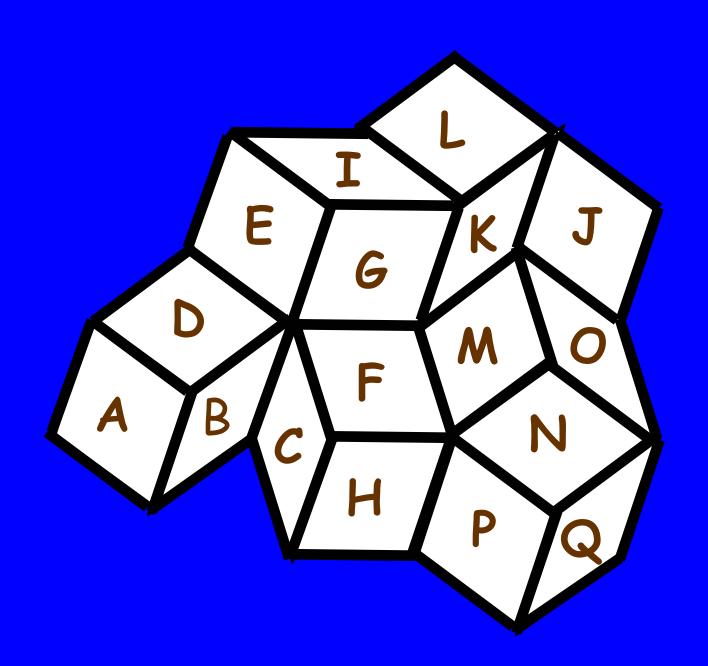


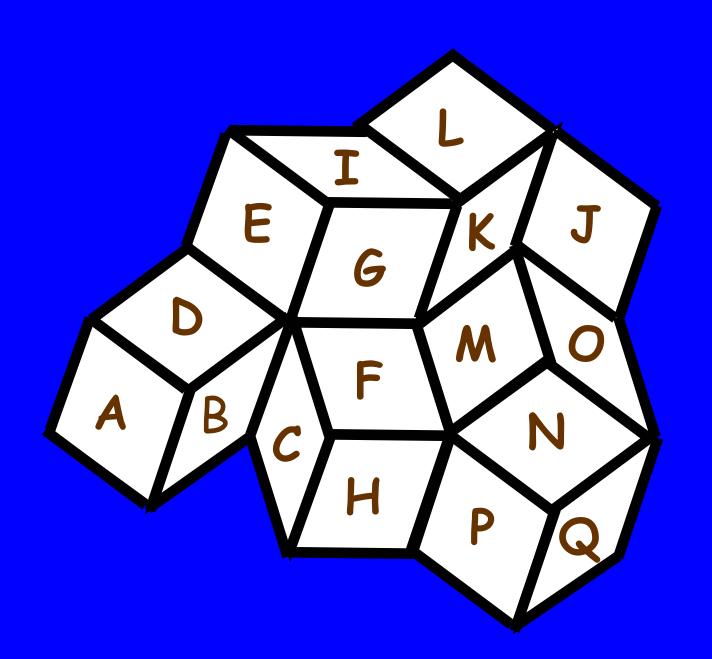


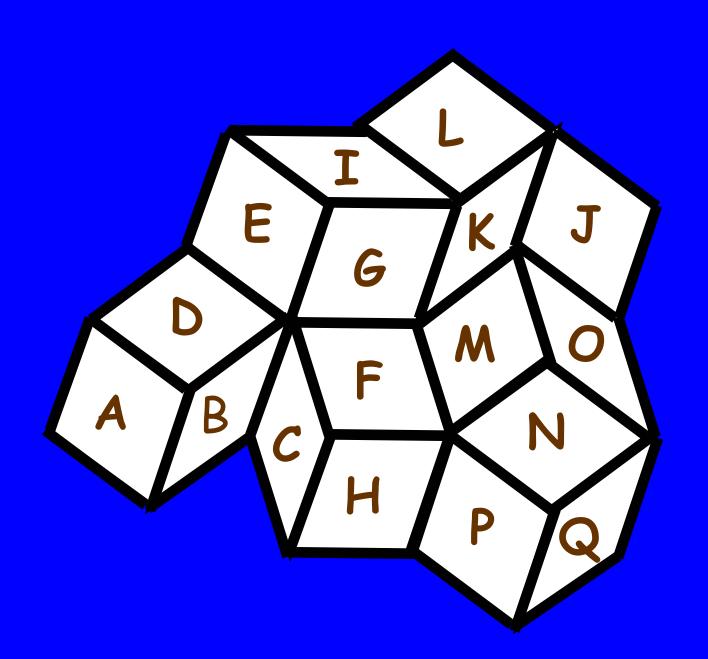


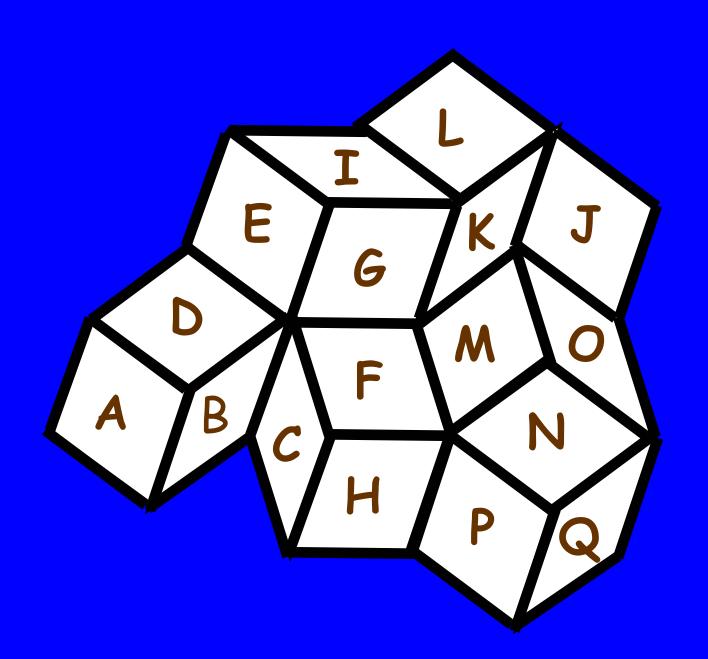


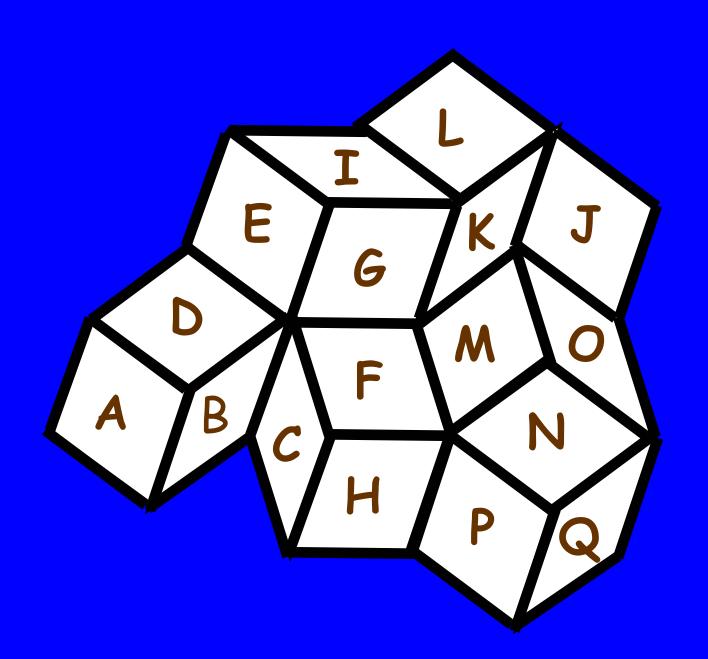












Why is it a Zero-Knowledge Proof?

- Exposed information is useless (random)
 Non-exposed info is useless (pseudorandom)
 (Bob learns nothing)*
- M 3-colorable → Probability [Accept] = 1
 (Alice always convinces Bob)
- M not 3-colorable→ Prob [Accept] < 1-1/n
 → Prob [Accept in n² trials] < exp(-n)
 (Alice rarely convince Bob)

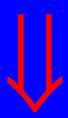
[Formalizing this argument is quite complex!]

What does it have to do with Riemann's Hypothesis?

Theorem: There is an efficient algorithm A:

A is the Cook-Karp-Levin "dictionary", Proving that 3-coloring is NP-complete

Theorem [GMW]: + short proof ⇒ efficient ZK proof



Theorem [GMW]:

→ fault-tolerant protocols

Summary

Practically every cryptographic task can be performed securely & privately

Assuming that players are computationally bounded, and that Factoring is hard.

- Computational complexity is essential!
- Randomness is essential for defining secrets
- Pseudorandomness essential for security proofs
- Hard problems can be useful!
- The theory predated (& enabled) the Internet
- What if factoring is easy? Few alternatives!
- Open Q1: Base cryptography on proven hardness
- Open Q2: Model physical attacks realistically