



Theoretical ideas behind e-commerce and the Internet revolution

Avi Wigderson
Institute for Advanced Study

## Plan

- Cryptography before computational complexity
- The ambitions of modern cryptography
- The assumptions of modern cryptography
- The "digital envelope" abstraction
  Blackboard break: Formalizing some of the defs.
  Psudorandomness, and modern broader context.
  Hardness amplification proof.
- Zero-knowledge proofs

# Cryptography before 1970s

Alice

Secret communication

Bob











Assumes Alice and Bob share Information which no one else has

## Secret communication since 1970s

Alice and Bob want to have a completely private conversation.

They share no private printer information



Many in this audience has already faced and solved this problem often!



I want to purchase "War and Peace". My credit card is number is 1111 2222 3333 4444





#### Public-key encryption, e-commerce security

Diffie-Hellman, Merkle, Rivest-Shamir-Adleman, Rabin 1976-77 Key conceptual ideas: complexity-based crypto, one-way and trapdoor functions

Goldwasser-Micali, Blum-Micali, Yao 1981

Key formal definitions, techniques and proofs:

Computational indistinuishability, pseudorandomness

## Modern Cryptography

Any task with conflict between privacy and resilience.



#### Mathematics of SE(RETS & LIES

- Encryption
- Money transfer Public lottery
- Public bids

- Secret exchange
- Identification Poker game on the phone

  - Sign contracts

Digitally, with no trusted parties

Mostly developed before the Internet

## What are we assuming?

## Axiom 1: Agents are computationally limited (say, to polynomial time)

Consequence 1: Only tasks having efficient algorithms can be performed

## Easy and Hard Problems asymptotic complexity of functions

Multiplication mult(23,67) = 1541

Factoring factor(1541) = (23,67)

grade school algorithm: n<sup>2</sup> steps on n digit inputs

best known algorithm:  $exp(\sqrt{n})$  steps on n digits

EASY Can be performed quickly We don't know! for huge integers

HARD? We'll assume it.

Axiom 2: Factoring is hard!

### Axiom 1: Agents are computationally limited

Axiom 2: Factoring is hard



Theorem: Axioms  $\Rightarrow$  digital

### One-way functions

Axiom 1: Agents are computationally limited

Axiom 2': The exist one-way functions E



Example:  $E(p,q) = p \cdot q$ E is multiplication

We have other E's



Nature's one-way functions: 2<sup>nd</sup> law of Thermodynamics

#### Blum 1981

## Envelopes as commitments





if I get the car (else you do)



flipping...



What did you pick?









**CLOSED** 

- ·Alice can insert any x (even 1 bit)
- ·Bob cannot compute content (even partial info)
- ·Alice cannot change content (E(x) defines x)
- ·Alice can prove to Bob that x is the content

## Intermission – Switching to a black board lecture

- Formal definititions of computational pseudorandomness.
- Connections and generalizations of these defs to arithmetic combinatorics.
- Using these defs to define digital envelope (formally, a bit-commitment scheme)

#### Survey by Salil Vadhan:

http://people.seas.harvard.edu/~salil/pseudorandomness/

## Zero-knowledge proofs

## Copyrights

Dr. Alice: I can prove Riemann's Hypothesis

Prof. Bob: Impossible! What is the proof?

Dr. Alice: Lemma...Proof...Lemma...Proof...

Prof. Bob: Amazing!! I'll recommend tenure

Amazing!! I'll publish first

Goldwasser-Micali -Rackoff 1984

## Zero-Knowledge Proof



"Claim" true 

Bob accepts

Bob learns nothing\*

"Claim" false -> Bob rejects with high probability

Goldreich-Micali -Wigderson 1986

## The universality of Zero-Knowledge

Theorem: Everything you can prove at all, you can prove in Zero-Knowledge

## ZK-proofs of Map Coloring

Input: planar map M

Claim: M is 3-colorable

Natural mathematical Proof: 3-coloring of M (gives lots of info)



Theorem [GMW]: Such claims have ZK-proofs



Structure of proof: Repeat (until satisfied)

 I hide a random one of my 6 colorings in digital envelopes

- You pick a pair of adjacent countries



- I open this pair of envelopes

Reject if you see RR, YY, GG or illegal color

# Zero-knowledge proof demo

(open two adjacent envelopes on any subsequent slide)

























#### Why is it a Zero-Knowledge Proof?

- Exposed information is useless (random)
   Non-exposed info is useless (pseudorandom)
   (Bob learns nothing)\*
- M 3-colorable → Probability [Accept] = 1
   (Alice always convinces Bob)
- M not 3-colorable→ Prob [Accept] < 1-1/n</li>
   → Prob [Accept in n² trials] < exp(-n)</li>
   (Alice rarely convince Bob)

[Formalizing this argument is quite complex!]

## What does it have to do with Riemann's Hypothesis?

Theorem: There is an efficient algorithm A:

A is the Cook-Karp-Levin "dictionary", Proving that 3-coloring is NP-complete

### Theorem [GMW]: + short proof ⇒ efficient ZK proof





Theorem [GMW]: 

→ fault-tolerant protocols

### Summary

Practically every cryptographic task can be performed securely & privately

Assuming that players are computationally bounded, and that Factoring is hard.

- Computational complexity is essential!
- Randomness is essential for defining secrets
- Pseudorandomness essential for security proofs
- Hard problems can be useful!
- The theory predated (& enabled) the Internet
- What if factoring is easy? Few alternatives!
- Open Q1: Base cryptography on proven hardness
- Open Q2: Model physical attacks realistically