验

Cryptography and
Pseudorandomness
Theoretical ideas behind e-commerce and the Internet revolution

Avi Wigderson
Institute for Advanced Study

Plan

- Cryptography before computational complexity
- The ambitions of modern cryptography
- The assumptions of modern cryptography
- The "digital envelope" abstraction

Blackboard break: Formalizing some of the defs. Psudorandomness, and modern broader context. Hardness amplification proof

- Zero-knowledge proofs

Cryptography before 1970s

Assumes Alice and Bob share
Information which no one else has

Secret communication since 1970 s

Alice and Bob want to have a completely private conversation.

They share no private information

Ies inssibilités sunt infinias...

Many in this audience has already faced and solved this problem often!

I want to purchase "War and Peace". My credit card is number is 1111222233334444

Public-key encryption, e-commerce security
Diffie-Hellman, Merkle, Rivest-ShamirAdleman, Rabin 1976-77
Key conceptual ideas: complexity-based crypto, one-way and trapdoor functions
Goldwasser-Micali, Blum-Micali, Yao 1981 Key formal definitions, techniques and proofs: Computational indistinuishability, pseudorandomness

Modern

Any task with conflict between privacy and resilience.

Mathematics of SECRETS \& LIES

- Encryption
- Secret exchange
- Identification - Poker game on the phone
- Money transfer - Public lottery
- Public bids - Sign contracts

Digitally, with no trusted parties
Mostly developed before the Internet

What are we assuming?

Axiom 1: Agents are computationally limited (say, to polynomial time)

Consequence 1: Only tasks having efficient algorithms can be performed

Easy and Hard Problems asymptotic complexity of functions

Multiplication
mult $(23,67)=1541$
grade school algorithm:
n^{2} steps on n digit inputs
EASY
Can be performed quickly for huge integers

Factoring
factor $(1541)=(23,67)$
best known algorithm:
$\exp (\sqrt{ } n)$ steps on n digits

HARD?

We don't know!
We'll assume it.

Axiom 2: Factoring is hard!

Axiom 1: Agents are computationally limited Axiom 2: Factoring is hard

Theorem: Axioms \Rightarrow digital \longrightarrow

One-way functions

Axiom 1: Agents are computationally limited Axiom 2': The exist one-way functions E

Example: $E(p, q)=p \cdot q$ E is multiplication We have other Es

Nature's one-way functions: $2^{\text {nd }}$ law of Thermodynamics

Blum 1981
 Envelopes as commitments

Alice

if I get the car (else you do)

What did you pick?

OPEN

CLOSED

- Alice can insert any \times (even 1 bit)
- Bob cannot compute content (even partial info)
- Alice cannot change content ($E(x)$ defines x)
- Alice can prove to Bob that x is the content

Intermission - ing to a black board lecture

- Formal definititions of computational pseudorandomness.
- Connections and generalizations of these defs to arithmetic combinatorics.
- Using these defs to define digital envelope (formally, a bit-commitment scheme)

Survey by Salil Vadhan: http://people.seas.harvard.edu/~salil/pseudorandomness/

Zero-knowledge proofs

Copyrights

Dr. Alice: I can prove Riemann's Hypothesis
Prof. Bob: Impossible! What is the proof?
Dr. Alice: Lemma...Proof...Lemma...Proof...
Prof. Bob: Amazing! I'll recommend tenure
 Amazing! I'll publish first

Goldwasser-Micali -Rackoff 1984

Zero-Knowledge Proof

"Claim" true $\rightarrow \begin{aligned} & \text { Bob accepts } \\ & \text { Bob learns nothing** }\end{aligned}$
"Claim" false \rightarrow Bob rejects with high probability

Goldreich-Micali
-Wigderson 1986

The universality of Zero-Knowledge

Theorem: Everything you can prove at all, you can prove in Zero-Knowledge

ZK-proofs of Map Coloring

Input: planar map
Claim: is 3 -colorable
Natural mathematical Proof: 3-coloring of (gives lots of info)

Theorem [GMW]: Such claims have ZK-proofs

I'll prove this claim in zero-knowledge Claim: This map is 3 -colorable (with R Y G)

Note: if I have any
3-coloring of any map

Then I immediately have 6

Structure of proof:

Repeat (until satisfied)

- I hide a random one of my 6 colorings in digital envelopes
- You pick a pair of adjacent countries
- I open this pair of envelopes

Reject if you see RR,YY,GG or illegal color

Zero-knowledge proof demo

(open two adjacent envelopes on any subsequent slide)

Why is it a Zero-Knowledge Proof?

- Exposed information is useless (random)

Non-exposed info is useless (pseudorandom) (Bob learns nothing)

- M 3-colorable \rightarrow Probability [Accept] =1 (Alice always convinces Bob)
- M not 3 -colorable \rightarrow Prob [Accept] < 1-1/n \rightarrow Prob [Accept in n^{2} trials] < $\exp (-n)$ (Alice rarely convince Bob)
[Formalizing this argument is quite complex!]

What does it have to do with Riemann's Hypothesis?

Theorem: There is an efficient algorithm A :

> "Claim" +
> "Proof length"

Map M
"Claim" true $\longleftrightarrow \mathrm{M} 3$-colorable "Proof" $\longrightarrow 3$-coloring of M
is the Cook-Karp-Levin "dictionary", Proving that 3 -coloring is NP-complete

Theorem [GMW]: + short proof \Rightarrow efficient ZK proof

Theorem [GMW]: \Longrightarrow fault-tolerant protocols

Summary

Practically every cryptographic task can be performed securely \& privately
Assuming that players are computationally bounded, and that Factoring is hard.

- Computational complexity is essential!
- Randomness is essential for defining secrets
- Pseudorandomness essential for security proofs
- Hard problems can be useful!
- The theory predated (\& enabled) the Internet
- What if factoring is easy? Few alternatives!

Open Q1: Base cryptography on proven hardness
Open Q2: Model physical attacks realistically

