Some geometric properties of Intersection Body Operator.

Artem Zvavitch

Kent State University

Workshop on Asymptotic Geometric Analysis and Convexity, Fields Institute, September 13-17 2010.

Radial function:
$$\rho_K(\xi) = \sup\{a : a\xi \in K\}$$
, for $\xi \in S^{n-1}$.

Radial function: $\rho_K(\xi) = \sup\{a : a\xi \in K\}$, for $\xi \in S^{n-1}$.

Also $\rho_K(\xi) = \|\xi\|_K^{-1}$, where $\|\xi\|_K^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

Radial function: $\rho_K(\xi) = \sup\{a : a\xi \in K\}$, for $\xi \in S^{n-1}$.

Also $\rho_K(\xi) = \|\xi\|_K^{-1}$, where $\|\xi\|_K^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

• K is a star body if $\rho_K(\xi)$ is positive and continuous function on S^{n-1} .

Radial function: $\rho_K(\xi) = \sup\{a : a\xi \in K\}$, for $\xi \in S^{n-1}$.

Also $\rho_K(\xi) = \|\xi\|_K^{-1}$, where $\|\xi\|_K^{-1}$ is a Minkowski functional, or, in convex symmetric case, just a norm for which K is a unit ball.

- K is a star body if $\rho_K(\xi)$ is positive and continuous function on S^{n-1} .
- $\xi^{\perp} = \{ x \in \mathbb{R}^n : x \cdot \xi = 0 \}.$

E. Lutwak: Intersection body, of a body K

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

Why do we need them?

Solution of Busemann-Petty problem. Definition of L_{-1} . Very nice questions in Harmonic Analysis & just for fun.

E. Lutwak: Intersection body, of a body K

E. Lutwak: Intersection body, of a body K

R. Gardner, G. Zhang: More general definition: L is intersection body if it is limit in radial metric of IK.

• $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.

E. Lutwak: Intersection body, of a body K

- $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.
- $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, then

E. Lutwak: Intersection body, of a body K

- $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.
- $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, then $IB_2^n = Vol_{n-1}(B_2^{n-1})B_2^n = c_nB_2^n$.

E. Lutwak: Intersection body, of a body K

- $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.
- $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, then $IB_2^n = Vol_{n-1}(B_2^{n-1})B_2^n = c_nB_2^n$.
- R. Gardner, A. Koldobsky, T. Schlumprecht: All convex symmetric bodies are intersection bodies in \mathbb{R}^n , $n \le 4$. NOT true for $n \ge 5$.

E. Lutwak: Intersection body, of a body K

- $K \subset \mathbb{R}^2$, symmetric, then IK is just a rotation of 2K by $\pi/2$.
- $B_2^n = \{x \in \mathbb{R}^n : |x| \le 1\}$, then $IB_2^n = Vol_{n-1}(B_2^{n-1})B_2^n = c_nB_2^n$.
- R. Gardner, A. Koldobsky, T. Schlumprecht: All convex symmetric bodies are intersection bodies in \mathbb{R}^n , $n \le 4$. NOT true for $n \ge 5$.
- A. Koldobsky: B_p^n intersection body for $p \in (0,2]$; NOT intersection body for p > 2, $n \ge 5$.

Connection to Spherical Radon Transform

Spherical coordinates in ξ^{\perp}

$$\rho_{\mathrm{I}K}(\xi) = \mathrm{Vol}_{n-1}(K \cap \xi^{\perp}) = \frac{1}{n-1} \int\limits_{S^{n-1} \cap \xi^{\perp}} \rho_K^{n-1}(\theta) d\theta = \frac{1}{n-1} R \rho_K^{n-1}(\xi).$$

Connection to Spherical Radon Transform

Spherical coordinates in ξ^{\perp}

$$\rho_{{\rm I} {\rm K}}(\xi) = {\rm Vol}_{n-1}({\rm K} \cap \xi^\perp) = \tfrac{1}{n-1} \int\limits_{S^{n-1} \cap \xi^\perp} \rho_{\rm K}^{n-1}(\theta) d\theta = \tfrac{1}{n-1} R \rho_{\rm K}^{n-1}(\xi).$$

Spherical Radon Transform:

$$Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$$

Many geometric questions about intersection bodies can be rewritten as questions about R.

Connection to Spherical Radon Transform

Spherical coordinates in ξ^{\perp}

$$\rho_{{\rm I} {\rm K}}(\xi) = {\rm Vol}_{n-1}({\rm K} \cap \xi^\perp) = \frac{1}{n-1} \int\limits_{S^{n-1} \cap \xi^\perp} \rho_{\rm K}^{n-1}(\theta) d\theta = \frac{1}{n-1} R \rho_{\rm K}^{n-1}(\xi).$$

Spherical Radon Transform:

$$Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$$

Many geometric questions about intersection bodies can be rewritten as questions about R.

More general definition of Intersection Body (C^{∞} -case).

A symmetric star body L is an intersection body if $R^{-1}\rho_L \ge 0$.

Intersection Bodies: Fix $\varepsilon \in (0, 1/10)$

Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Intersection Bodies: Fix $\varepsilon \in (0, 1/10)$

Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in (0, 1/10)$

Consider a symmetric function f on S^{n-1} , such that for every $u \in S_{n-1}$ there exits a function f_u , which is equal to f on a ε -neighborhood of u and $R^{-1}f_u > 0$. Is it true that $R^{-1}f > 0$?

Intersection Bodies: Fix $\varepsilon \in (0, 1/10)$

Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in (0, 1/10)$

Consider a symmetric function f on S^{n-1} , such that for every $u \in S_{n-1}$ there exits a function f_u , which is equal to f on a ε -neighborhood of u and $R^{-1}f_u > 0$. Is it true that $R^{-1}f > 0$?

F. Nazarov, D. Ryabogin, A. Z., 2008:

NO!

Intersection Bodies: Fix $\varepsilon \in (0, 1/10)$

Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in (0, 1/10)$

Consider a symmetric function f on S^{n-1} , such that for every $u \in S_{n-1}$ there exits a function f_u , which is equal to f on a ε -neighborhood of u and $R^{-1}f_u > 0$. Is it true that $R^{-1}f > 0$?

F. Nazarov, D. Ryabogin, A. Z., 2008:

- NO!
- If we instead of regular neighborhoods around points would take neighborhood around equators then YES for even n and NO for odd n!!!

Intersection Bodies: Fix $\varepsilon \in (0, 1/10)$

Consider body K such that for every $u \in S_{n-1}$ there exits an intersection body K_u , which coincide with K on a ε -neighborhood of u. Is it true that K must be an intersection body itself?

Radon Transform: Fix $\varepsilon \in (0, 1/10)$

Consider a symmetric function f on S^{n-1} , such that for every $u \in S_{n-1}$ there exits a function f_u , which is equal to f on a ε -neighborhood of u and $R^{-1}f_u > 0$. Is it true that $R^{-1}f > 0$?

F. Nazarov, D. Ryabogin, A. Z., 2008:

- NO!
- If we instead of regular neighborhoods around points would take neighborhood around equators then YES for even n and NO for odd n!!!

Original Dual problem for Zonoids: The same answer: Local - W. Weil; Local equatorial: G. Panina; W. Weil and P. Goodey – even dimensions; F. Nazarov, D. Ryabogin, A.Z. – odd dimensions.

E. Lutwak: Intersection body, of a body K

Interesting facts:

• Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.

E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

Banach-Mazur distance: $d_{BM}(K, L) = \inf\{b/a : \exists T \in GL(n) : aK \subset TL \subset bK\}.$

• $d_{BM}(ITK,ITL) = d_{BM}(IK,IL)$.

E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

- $d_{BM}(ITK,ITL) = d_{BM}(IK,IL)$.
- $d_{BM}(B_2^n, IB_2^n) = 1.$

E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

- $d_{BM}(ITK,ITL) = d_{BM}(IK,IL)$.
- $d_{BM}(B_2^n, IB_2^n) = 1.$
- $d_{BM}(E, IE) = 1$.

E. Lutwak: Intersection body, of a body K

Interesting facts:

- Take $T \in GL(n)$, then $I(TK) = |\det T|(T^*)^{-1}IK$.
- $E = TB_2^n$ Ellipsoid. Then IE is an Ellipsoid!

- $d_{BM}(ITK,ITL) = d_{BM}(IK,IL)$.
- $d_{BM}(B_2^n, IB_2^n) = 1.$
- $d_{BM}(E, IE) = 1$.
- $d_{BM}(K, IK) = 1$, $K \subset \mathbb{R}^2$, K-symmetric.

Questions:

Examples:

- $d_{BM}(E, IE) = 1$.
- $d_{BM}(K, IK) = 1$, $K \subset \mathbb{R}^2$, K-symmetric.

Questions:

Examples:

- $d_{BM}(E, IE) = 1$.
- $d_{BM}(K, IK) = 1$, $K \subset \mathbb{R}^2$, K-symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to d_{BM}) of I in \mathbb{R}^n , $n \geq 3$?

Questions:

Examples:

- $d_{BM}(E, IE) = 1$.
- $d_{BM}(K, IK) = 1$, $K \subset \mathbb{R}^2$, K-symmetric.

E. Lutwak:

Do there exists other fixed points (with respect to d_{BM}) of I in \mathbb{R}^n , $n \geq 3$?

A. Fish, F. Nazarov, D. Ryabogin, A.Z.:

Consider a star body $K \subset \mathbb{R}^n$, $n \ge 3$, is it true that

$$d_{BM}(I^mK, B_2^n) \to 1$$
, as $m \to \infty$,

i.e. iterations of intersection body operator of a star body K will converge to B_2^n in d_{BM} ?

Dual story - Projection body (convex, sets only!)

Support function: $h_L(\theta) = \sup\{x \cdot \theta, x \in L\}.$

Dual story – Projection body (convex, sets only!)

Support function: $h_L(\theta) = \sup\{x \cdot \theta, x \in L\}.$

ΠL – projection body of L:

$$h_{\Pi L}(\theta) = \operatorname{Vol}_{n-1}(L|\theta^{\perp}).$$

Dual story – Projection body (convex, sets only!)

Support function: $h_L(\theta) = \sup\{x \cdot \theta, x \in L\}.$

ΠL – projection body of L:

$$h_{\Pi L}(\theta) = \operatorname{Vol}_{n-1}(L|\theta^{\perp}).$$

Examples:

$$\bullet \ \Pi B_2^n = c_n B_2^n.$$

Dual story – Projection body (convex, sets only!)

Support function: $h_L(\theta) = \sup\{x \cdot \theta, x \in L\}.$

ΠL – projection body of L:

$$h_{\Pi L}(\theta) = \operatorname{Vol}_{n-1}(L|\theta^{\perp}).$$

Examples:

- $\bullet \ \Pi B_2^n = c_n B_2^n.$
- $\Pi B_{\infty}^n = c_n B_{\infty}^n$, where $B_{\infty}^n = [-1, 1]^n$.

Fixed point is NOT unique! W. Weil (71) described polytopes that satisfy this property. General case is still open.

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

$$d_{BM}(I^mK, B_2^n) \to 1$$
, as $m \to \infty$.

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

$$d_{BM}(I^mK, B_2^n) \to 1$$
, as $m \to \infty$.

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

$$d_{BM}(I^mK, B_2^n) \to 1$$
, as $m \to \infty$.

Remarks:

 We do not assume convexity of K. Such an assumption will much simplify the proofs.

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

$$d_{BM}(I^mK, B_2^n) \to 1$$
, as $m \to \infty$.

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- ullet Busemann theorem: If K-convex symmetric, then IK is convex symmetric.

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

$$d_{BM}(I^mK, B_2^n) \to 1$$
, as $m \to \infty$.

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- ullet Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then $d_{BM}(K, B_2^n) \leq \sqrt{n}$, which is very far from ε_n .

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

$$d_{BM}(I^mK, B_2^n) \to 1$$
, as $m \to \infty$.

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- ullet Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then $d_{BM}(K, B_2^n) \leq \sqrt{n}$, which is very far from ε_n .
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / J. Bourgain/V. Milman & A. Pajor): $d_{BM}(IK, B_2^n) \leq C$ (i.e. independent of dimension).

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

$$d_{BM}(I^mK, B_2^n) \to 1$$
, as $m \to \infty$.

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- ullet Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then $d_{BM}(K, B_2^n) \leq \sqrt{n}$, which is very far from ε_n .
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / J. Bourgain/V. Milman & A. Pajor): $d_{BM}(IK, B_2^n) \leq C$ (i.e. independent of dimension). No idea how to use the above VERY useful fact for this particular problem!!

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

$$d_{BM}(I^mK, B_2^n) \to 1$$
, as $m \to \infty$.

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- ullet Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then $d_{BM}(K, B_2^n) \leq \sqrt{n}$, which is very far from ε_n .
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / J. Bourgain/V. Milman & A. Pajor): $d_{BM}(IK, B_2^n) \leq C$ (i.e. independent of dimension). No idea how to use the above VERY useful fact for this particular problem!!
- Big hope: $d_{BM}(IK, B_2^n) < d_{BM}(K, B_2^n)$, for all $K: d_{BM}(K, B_2^n) \neq 1$?

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

$$d_{BM}(I^mK, B_2^n) \to 1$$
, as $m \to \infty$.

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- ullet Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then $d_{BM}(K, B_2^n) \leq \sqrt{n}$, which is very far from ε_n .
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / J. Bourgain/V. Milman & A. Pajor): $d_{BM}(IK, B_2^n) \leq C$ (i.e. independent of dimension). No idea how to use the above VERY useful fact for this particular problem!!
- Big hope: $d_{BM}(IK, B_2^n) < d_{BM}(K, B_2^n)$, for all $K: d_{BM}(K, B_2^n) \neq 1$?
- Not known for convex symmetric case!

A. Fish, F, Nazarov, D. Ryabogin, A.Z., (2009)

 $\exists \varepsilon_n > 0$ such that $\forall K \subset \mathbb{R}^n$ such that K-start body, $d_{BM}(K, B_2^n) < 1 + \varepsilon_n$, we get

$$d_{BM}(I^mK, B_2^n) \to 1$$
, as $m \to \infty$.

- We do not assume convexity of K. Such an assumption will much simplify the proofs.
- ullet Busemann theorem: If K-convex symmetric, then IK is convex symmetric.
- Even if K is convex symmetric, then $d_{BM}(K, B_2^n) \leq \sqrt{n}$, which is very far from ε_n .
- Convex, symmetric case: (D. Hensley theorem), using isotropic position (+ ideas from K. Ball / J. Bourgain/V. Milman & A. Pajor): $d_{BM}(IK, B_2^n) \leq C$ (i.e. independent of dimension). No idea how to use the above VERY useful fact for this particular problem!!
- Big hope: $d_{BM}(IK, B_2^n) < d_{BM}(K, B_2^n)$, for all $K: d_{BM}(K, B_2^n) \neq 1$?
- Not known for convex symmetric case!
- (J. Kim, V. Yaskin, A.Z.) Wrong without assumption of convexity! there is a star body (p-convex) K such that $d_{BM}(IK, B_2^n) >> d_{BM}(K, B_2^n)$.

Main Idea: Spherical Radon Transform

Spherical Radon Transform:

$$Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(\theta) d\theta$$

Main Idea: Spherical Radon Transform

Spherical Radon Transform:

$$Rf(\xi) = \int\limits_{S^{n-1}\cap \xi^{\perp}} f(\theta)d\theta$$

Denote by $\mathcal{R} = \frac{1}{\text{Vol}_{n-2}(S^{n-2})}R$, i.e. $\mathcal{R}1 = 1$.

Question: $(n \ge 3)$

Consider symmetric function $f: S^{n-1} \to \mathbb{R}^+$, such that $f = \mathcal{R}f^{n-1}$, is it true that then f = 1?

 \mathcal{H}_k – space of Spherical Harmonics of degree k.

 \mathcal{H}_k- space of Spherical Harmonics of degree k. H_k^f the projection of f to $\mathcal{H}_k,$ so

 \mathcal{H}_k- space of Spherical Harmonics of degree k. H_k^f the projection of f to $\mathcal{H}_k,$ so

$$f \sim \sum_{k \geq 0} H_k^f$$

(Note: f-symmetric, we need only even k.)

 \mathcal{H}_k – space of Spherical Harmonics of degree k. H_k^f the projection of f to \mathcal{H}_k , so

$$f \sim \sum_{k \ge 0} H_k^f$$

(Note: f-symmetric, we need only even k.)

Assume that $n \geq 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi) = v_{n,k}H_k(\xi)$$
, for all $\xi \in S^{n-1}$,

where $v_{n,0} = 1$ and

$$v_{n,k} = \frac{1 \cdot 3 \cdot \cdots \cdot (k-1)}{(n-1)(n+1) \cdot \cdots \cdot (n+k-3)}.$$

 \mathcal{H}_k – space of Spherical Harmonics of degree k. H_k^f the projection of f to \mathcal{H}_k , so

$$f \sim \sum_{k \ge 0} H_k^f$$

(Note: f-symmetric, we need only even k.)

Assume that $n \ge 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi) = v_{n,k}H_k(\xi)$$
, for all $\xi \in S^{n-1}$,

where $v_{n,0} = 1$ and

$$v_{n,k}=\frac{1\cdot 3\cdots \cdot (k-1)}{(n-1)(n+1)\ldots (n+k-3)}.$$

$$v_{n,2} = \frac{1}{n-1}$$
 and $v_{n,k} \approx k^{-n-2}$.

 \mathcal{H}_k – space of Spherical Harmonics of degree k. H_k^f the projection of f to \mathcal{H}_k , so

$$f \sim \sum_{k \ge 0} H_k^f$$

(Note: f-symmetric, we need only even k.)

Assume that $n \ge 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi) = v_{n,k}H_k(\xi)$$
, for all $\xi \in S^{n-1}$,

where $v_{n,0} = 1$ and

$$v_{n,k} = \frac{1 \cdot 3 \cdot \cdots \cdot (k-1)}{(n-1)(n+1) \cdot \cdots \cdot (n+k-3)}.$$

$$v_{n,2} = \frac{1}{n-1}$$
 and $v_{n,k} \approx k^{-n-2}$.

• $\mathcal{R}f = \mathcal{R}g$, then f = g.

 \mathcal{H}_k – space of Spherical Harmonics of degree k. H_k^f the projection of f to \mathcal{H}_k , so

$$f \sim \sum_{k \ge 0} H_k^f$$

(Note: f-symmetric, we need only even k.)

Assume that $n \ge 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi) = v_{n,k}H_k(\xi)$$
, for all $\xi \in S^{n-1}$,

where $v_{n,0} = 1$ and

$$v_{n,k} = \frac{1 \cdot 3 \cdot \cdots \cdot (k-1)}{(n-1)(n+1) \cdot \cdots \cdot (n+k-3)}.$$

$$v_{n,2} = \frac{1}{n-1}$$
 and $v_{n,k} \approx k^{-n-2}$.

- $\mathcal{R}f = \mathcal{R}g$, then f = g.
- $\mathcal{R}f = f$. then f = 1

 \mathcal{H}_k – space of Spherical Harmonics of degree k. H_k^f the projection of f to \mathcal{H}_k , so

$$f \sim \sum_{k \ge 0} H_k^f$$

(Note: f-symmetric, we need only even k.)

Assume that $n \ge 3$. If $H_k \in \mathcal{H}_k$, k-even, then

$$\mathcal{R}H_k(\xi) = v_{n,k}H_k(\xi)$$
, for all $\xi \in S^{n-1}$,

where $v_{n,0} = 1$ and

$$v_{n,k} = \frac{1 \cdot 3 \cdot \cdots \cdot (k-1)}{(n-1)(n+1) \cdot \cdots \cdot (n+k-3)}.$$

$$v_{n,2} = \frac{1}{n-1}$$
 and $v_{n,k} \approx k^{-n-2}$.

- $\mathcal{R}f = \mathcal{R}g$, then f = g.
- $\mathcal{R}f = f$, then f = 1 (o.k. f = const).

THE MAIN PROBLEM:

$$f \sim \sum_{k \geq 0} H_k^f \Rightarrow$$

THE MAIN PROBLEM:

$$f \sim \sum_{k \ge 0} H_k^f \Rightarrow$$
$$f^{n-1} \sim ????$$

THE MAIN PROBLEM:

$$f \sim \sum_{k \ge 0} H_k^f \Rightarrow$$
$$f^{n-1} \sim ????$$

Formulas Exists: Clebsch–Gordan coefficients — but they are hard, not clear (to me!) how to use for this problem.

 $f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}}\phi=0$.

 $f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}}\phi=0$. $\mathcal{R}f^{n-1}=1+(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$

 $f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}}\phi=0$. $\mathcal{R}f^{n-1}=1+(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ is "very small".

$$f=1+\phi$$
, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}}\phi=0$. $\mathcal{R}f^{n-1}=1+(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ is "very small".

Problems:

1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game.

$$f=1+\phi$$
, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}}\phi=0$. $\mathcal{R}f^{n-1}=1+(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ is "very small".

Problems:

- 1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game.
- 2) The crucial step is to show that

$$\|(n-1)\mathcal{R}\phi\|_{L_2} \le \lambda \|\phi\|_{L_2}$$
, for some $\lambda < 1$.

$$f=1+\phi$$
, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}}\phi=0$. $\mathcal{R}f^{n-1}=1+(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ is "very small".

Problems:

- 1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game.
- 2) The crucial step is to show that

$$\|(n-1)\mathcal{R}\phi\|_{L_2} \leq \lambda \|\phi\|_{L_2}, \text{ for some } \lambda < 1.$$

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$).

 $f=1+\phi$, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}}\phi=0$. $\mathcal{R}f^{n-1}=1+(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ is "very small".

Problems:

- 1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game.
- 2) The crucial step is to show that

$$\|(n-1)\mathcal{R}\phi\|_{L_2} \leq \lambda \|\phi\|_{L_2}, \text{ for some } \lambda < 1.$$

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write

$$\phi \sim \sum H_{2k}^{\phi}$$

$$f=1+\phi$$
, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}}\phi=0$. $\mathcal{R}f^{n-1}=1+(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ is "very small".

Problems:

- 1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game.
- 2) The crucial step is to show that

$$\|(n-1)\mathcal{R}\phi\|_{L_2} \leq \lambda \|\phi\|_{L_2}, \text{ for some } \lambda < 1.$$

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write

$$\phi \sim \sum H_{2k}^{\phi}$$
 then $(n-1)\mathcal{R}\phi \sim \sum (n-1)\mathsf{v}_{n,2k}H_{2k}^{\phi}.$

$$f=1+\phi$$
, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}}\phi=0$. $\mathcal{R}f^{n-1}=1+(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ is "very small".

Problems:

- 1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game.
- 2) The crucial step is to show that

$$\|(n-1)\mathcal{R}\phi\|_{L_2} \le \lambda \|\phi\|_{L_2}, \text{ for some } \lambda < 1.$$

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write

$$\phi \sim \sum H_{2k}^{\phi} \qquad \text{ then } \qquad (\textit{n}-1)\mathcal{R}\phi \sim \sum (\textit{n}-1)\textit{v}_{\textit{n},2k}H_{2k}^{\phi}.$$

If $(n-1)v_{n,2k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1)v_{n,2}=1$ (but $(n-1)v_{n,2k}\leq 3/4$ for all k>1).

$$f=1+\phi$$
, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}}\phi=0$. $\mathcal{R}f^{n-1}=1+(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ is "very small".

Problems:

- 1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game.
- 2) The crucial step is to show that

$$\|(n-1)\mathcal{R}\phi\|_{L_2} \le \lambda \|\phi\|_{L_2}$$
, for some $\lambda < 1$.

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write

$$\phi \sim \sum H_{2k}^{\phi}$$
 then $(n-1)\mathcal{R}\phi \sim \sum (n-1)v_{n,2k}H_{2k}^{\phi}.$

If $(n-1)v_{n,2k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1)v_{n,2}=1$ (but $(n-1)v_{n,2k}\leq 3/4$ for all k>1).

Thus we need to KILL H_2^{ϕ} .

$$f=1+\phi$$
, where ϕ is even with small L_{∞} norm, $\int_{S^{n-1}}\phi=0$. $\mathcal{R}f^{n-1}=1+(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ So our main goal is to show that $(n-1)\mathcal{R}\phi+\mathcal{R}O(\phi^2)$ is "very small".

- 1) Working with Spherical Harmonics we need to talk about L_2 norm! If we assume convexity, then those are "almost" equivalent. Much more work required to "prepare" the function to be ready for the L_2 , L_∞ game.
- 2) The crucial step is to show that

$$\|(n-1)\mathcal{R}\phi\|_{L_2} \le \lambda \|\phi\|_{L_2}$$
, for some $\lambda < 1$.

Indeed, then $\|\mathcal{R}\phi^2\|_{L_2} \leq \|\phi\|_{L_\infty} \|\phi\|_{L_2}$ (do not forget $\|\mathcal{R}\|_{L_2 \to L_2} \leq 1$). Write

$$\phi \sim \sum H_{2k}^{\phi} \qquad \text{ then } \qquad (n-1)\mathcal{R}\phi \sim \sum (n-1) \nu_{n,2k} H_{2k}^{\phi}.$$

If $(n-1)v_{n,2k}$ are small then we are DONE! Unfortunately this is NOT the case $(n-1)v_{n,2}=1$ (but $(n-1)v_{n,2k}\leq 3/4$ for all k>1).

Thus we need to KILL H_2^{ϕ} . HOW ? Main idea – in the end of the day, H_2^{ϕ} is just quadratic polynomial make it constant on S^{n-1} , using linear transformation. YES, "like" isotropic position, BUT in Fourier coordinates.

$$\rho_{T^{-1}K}(\xi) = \|T\xi\|_K^{-1} = \left\|\frac{T\xi}{|T\xi|}\right\|_K^{-1} |T\xi|^{-1} = \rho_K\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}.$$

$$\begin{split} \rho_{T^{-1}K}(\xi) &= \|T\xi\|_K^{-1} = \left\|\frac{T\xi}{|T\xi|}\right\|_K^{-1} |T\xi|^{-1} = \rho_K\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}. \end{split}$$
 It is logical to define $Tf(\xi) = f\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}.$

$$\begin{split} \rho_{T^{-1}K}(\xi) &= \|T\xi\|_K^{-1} = \left\|\frac{T\xi}{|T\xi|}\right\|_K^{-1} |T\xi|^{-1} = \rho_K\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}. \end{split}$$
 It is logical to define $Tf(\xi) = f\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}.$

Classes \mathcal{U}_{α} of bounded functions on S^{n-1} :

 $||f||_{\mathcal{U}_{\alpha}}$ is a least constant M:

- $||f||_{L_{\infty}} \leq M$
- For all $k \in N$, there exists polynomial p_k of degree k so that $\|f p_k\|_{L_2} \le Mk^{-\alpha}$.

$$f \in \mathcal{U}_{\alpha}$$
 if $||f||_{\mathcal{U}_{\alpha}} < \infty$.

$$\begin{split} \rho_{T^{-1}K}(\xi) &= \|T\xi\|_K^{-1} = \left\|\frac{T\xi}{|T\xi|}\right\|_K^{-1} |T\xi|^{-1} = \rho_K\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}. \end{split}$$
 It is logical to define $Tf(\xi) = f\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}.$

Classes \mathcal{U}_{α} of bounded functions on S^{n-1} :

 $||f||_{\mathcal{U}_{\alpha}}$ is a least constant M:

- $||f||_{L_{\infty}} \leq M$
- For all $k \in N$, there exists polynomial p_k of degree k so that $\|f p_k\|_{L_2} \le Mk^{-\alpha}$.

 $f \in \mathcal{U}_{\alpha}$ if $||f||_{\mathcal{U}_{\alpha}} < \infty$.

Theorem (\mathcal{U}_{α} is very good for us!)

• If $f,g \in \mathcal{U}_{\alpha}$, then $fg \in \mathcal{U}_{\alpha}$ and $\|fg\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}$.

$$\begin{split} \rho_{T^{-1}K}(\xi) &= \|T\xi\|_K^{-1} = \left\|\frac{T\xi}{|T\xi|}\right\|_K^{-1} |T\xi|^{-1} = \rho_K\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}. \end{split}$$
 It is logical to define $Tf(\xi) = f\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}.$

Classes \mathcal{U}_{α} of bounded functions on S^{n-1} :

 $||f||_{\mathcal{U}_{\alpha}}$ is a least constant M:

- $||f||_{L_{\infty}} \leq M$
- For all $k \in N$, there exists polynomial p_k of degree k so that $\|f p_k\|_{L_2} \le Mk^{-\alpha}$.

 $f \in \mathcal{U}_{\alpha}$ if $||f||_{\mathcal{U}_{\alpha}} < \infty$.

Theorem (\mathcal{U}_{α} is very good for us!)

- If $f,g \in \mathcal{U}_{\alpha}$, then $fg \in \mathcal{U}_{\alpha}$ and $\|fg\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}$.
- Let $T \in GL(n)$ with $||T||, ||T^{-1}|| \le 2$. Then if, $f \in \mathcal{U}_{\alpha}$, we have $Tf \in \mathcal{U}_{\alpha-1/2}$ and $||Tf||_{\mathcal{U}_{\alpha-1/2}} \le C_{1/2} ||f||_{\mathcal{U}_{\alpha}}$.

$$\begin{split} \rho_{T^{-1}K}(\xi) &= \|T\xi\|_K^{-1} = \left\|\frac{T\xi}{|T\xi|}\right\|_K^{-1} |T\xi|^{-1} = \rho_K\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}. \end{split}$$
 It is logical to define $Tf(\xi) = f\left(\frac{T\xi}{|T\xi|}\right) |T\xi|^{-1}.$

Classes \mathcal{U}_{α} of bounded functions on S^{n-1} :

 $||f||_{\mathcal{U}_{\alpha}}$ is a least constant M:

- $||f||_{L_{\infty}} \leq M$
- For all $k \in N$, there exists polynomial p_k of degree k so that $\|f p_k\|_{L_2} \le Mk^{-\alpha}$.

 $f \in \mathcal{U}_{\alpha}$ if $||f||_{\mathcal{U}_{\alpha}} < \infty$.

Theorem (\mathcal{U}_{α} is very good for us!)

- If $f,g \in \mathcal{U}_{\alpha}$, then $fg \in \mathcal{U}_{\alpha}$ and $||fg||_{\mathcal{U}_{\alpha}} \leq C||f||_{\mathcal{U}_{\alpha}}||g||_{\mathcal{U}_{\alpha}}$.
- Let $T \in GL(n)$ with $||T||, ||T^{-1}|| \le 2$. Then if, $f \in \mathcal{U}_{\alpha}$, we have $Tf \in \mathcal{U}_{\alpha-1/2}$ and $||Tf||_{\mathcal{U}_{\alpha-1/2}} \le C_{1/2} ||f||_{\mathcal{U}_{\alpha}}$.
- If $f \in \mathcal{U}_{\alpha}$, then $\mathcal{R}f \in \mathcal{U}_{\alpha+n-2}$ and $\|\mathcal{R}f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}$.

- $\textbf{ 1} \ \, \text{If} \, \, f,g \in \mathcal{U}_{\alpha} \text{, then} \, \, \textit{fg} \in \mathcal{U}_{\alpha} \, \, \text{and} \, \, \|\textit{fg}\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{\mathcal{U}_{\alpha}} \|g\|_{\mathcal{U}_{\alpha}}.$
- ② If $f \in \mathcal{U}_{\alpha}$, then $\mathcal{R}f \in \mathcal{U}_{\alpha+n-2}$ and $\|\mathcal{R}f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}$.

- $\textbf{ 1} \text{ If } f,g \in \mathcal{U}_{\alpha} \text{, then } fg \in \mathcal{U}_{\alpha} \text{ and } \|fg\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}.$
- $\textbf{ 1 If } f \in \mathcal{U}_{\alpha} \text{, then } \mathcal{R}f \in \mathcal{U}_{\alpha+n-2} \text{ and } \|\mathcal{R}f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}.$
- **①** Let $\beta > \alpha$. Then for every $\delta > 0$, there exists $C = C_{\alpha,\beta,\delta}$, such that $\|f\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{L_{\infty}} + \delta\|f\|_{\mathcal{U}_{\beta}}$.

Fix $\beta > \alpha > 0$. Let $f = 1 + \varphi$, $\|\varphi\|_{L^{\infty}} < \varepsilon < 1/2$.

- $\textbf{ 1} \text{ If } f,g \in \mathcal{U}_{\alpha} \text{, then } fg \in \mathcal{U}_{\alpha} \text{ and } \|fg\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{\mathcal{U}_{\alpha}} \|g\|_{\mathcal{U}_{\alpha}}.$
- $\textbf{ 2} \ \text{ If } f \in \mathcal{U}_{\alpha} \text{, then } \mathcal{R}f \in \mathcal{U}_{\alpha+n-2} \text{ and } \|\mathcal{R}f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}.$
- **①** Let $\beta > \alpha$. Then for every $\delta > 0$, there exists $C = C_{\alpha,\beta,\delta}$, such that $\|f\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{L_{\infty}} + \delta\|f\|_{\mathcal{U}_{\beta}}$.

Fix $\beta > \alpha > 0$. Let $f = 1 + \varphi$, $\|\varphi\|_{L^{\infty}} < \varepsilon < 1/2$. Define f_k : $f_0 = f$, $f_{k+1} = \mathcal{R}f_k^{n-1}$.

- $\textbf{ 1} \text{ If } f,g \in \mathcal{U}_{\alpha} \text{, then } fg \in \mathcal{U}_{\alpha} \text{ and } \|fg\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{\mathcal{U}_{\alpha}} \|g\|_{\mathcal{U}_{\alpha}}.$
- $\textbf{ 0} \ \text{ If } f \in \mathcal{U}_{\alpha} \text{, then } \mathcal{R}f \in \mathcal{U}_{\alpha+n-2} \text{ and } \|\mathcal{R}f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}.$
- **Q** Let $\beta > \alpha$. Then for every $\delta > 0$, there exists $C = C_{\alpha,\beta,\delta}$, such that $\|f\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{L_{\infty}} + \delta\|f\|_{\mathcal{U}_{\beta}}$.

Fix $\beta>\alpha>0$. Let $f=1+\varphi$, $\|\varphi\|_{L^\infty}<\varepsilon<1/2$.

Define f_k : $f_0 = f$, $f_{k+1} = \mathcal{R} f_k^{n-1}$.

Using (1) and (2): $f_k \in \mathcal{U}_\beta$ for sufficiently large k and $||f_k||_{\mathcal{U}_\beta} \leq C(k)$. Note

$$(1-\varepsilon)^{(n-1)^k} \leq f_k \leq (1+\varepsilon)^{(n-1)^k}.$$

- $\textbf{ 1} \text{ If } f,g \in \mathcal{U}_{\alpha} \text{, then } fg \in \mathcal{U}_{\alpha} \text{ and } \|fg\|_{\mathcal{U}_{\alpha}} \leq C \|f\|_{\mathcal{U}_{\alpha}} \|g\|_{\mathcal{U}_{\alpha}}.$
- $\textbf{ 0 If } f \in \mathcal{U}_{\alpha} \text{, then } \mathcal{R} f \in \mathcal{U}_{\alpha+n-2} \text{ and } \|\mathcal{R} f\|_{\mathcal{U}_{\alpha+n-2}} \leq C \|f\|_{\mathcal{U}_{\alpha}}.$
- **9** Let $\beta > \alpha$. Then for every $\delta > 0$, there exists $C = C_{\alpha,\beta,\delta}$, such that $\|f\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{L_{\infty}} + \delta\|f\|_{\mathcal{U}_{\beta}}$.

Fix $\beta > \alpha > 0$. Let $f = 1 + \varphi$, $\|\varphi\|_{L^{\infty}} < \varepsilon < 1/2$.

Define f_k : $f_0 = f$, $f_{k+1} = \mathcal{R}f_k^{n-1}$.

Using (1) and (2): $f_k \in \mathcal{U}_\beta$ for sufficiently large k and $||f_k||_{\mathcal{U}_\beta} \leq C(k)$. Note

$$(1-\varepsilon)^{(n-1)^k} \leq f_k \leq (1+\varepsilon)^{(n-1)^k}.$$

Let $\mu=\int f_k$. If $\varepsilon>0$ is sufficiently small, then $|\mu-1|$ is small and $\mu^{-1}f_k=1+\psi$ where $\int \psi=0$ and $\|\psi\|_{L^\infty}$ is small. Note that

$$\|\psi\|_{\mathcal{U}_{\beta}} \leq 1 + \mu^{-1} \|f_k\|_{\mathcal{U}_{\beta}} \leq C'(k),$$

by (3), $\|\psi\|_{\mathcal{U}_{\alpha}}$ is also small $(\|\psi\|_{\mathcal{U}_{\beta}} < C(k)$ and $\|\psi\|_{L^{\infty}} \to 0$ as $\varepsilon \to 0$).

- $\textbf{0} \ \text{ If } f,g \in \mathcal{U}_{\alpha} \text{, then } fg \in \mathcal{U}_{\alpha} \text{ and } \|fg\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{\mathcal{U}_{\alpha}}\|g\|_{\mathcal{U}_{\alpha}}.$
- ② If $f \in \mathcal{U}_{\alpha}$, then $\mathcal{R}f \in \mathcal{U}_{\alpha+n-2}$ and $\|\mathcal{R}f\|_{\mathcal{U}_{\alpha+n-2}} \leq C\|f\|_{\mathcal{U}_{\alpha}}$.
- **Q** Let $\beta > \alpha$. Then for every $\delta > 0$, there exists $C = C_{\alpha,\beta,\delta}$, such that $\|f\|_{\mathcal{U}_{\alpha}} \leq C\|f\|_{L_{\infty}} + \delta\|f\|_{\mathcal{U}_{\beta}}$.

Fix $\beta > \alpha > 0$. Let $f = 1 + \varphi$, $\|\varphi\|_{L^{\infty}} < \varepsilon < 1/2$.

Define f_k : $f_0 = f$, $f_{k+1} = \mathcal{R}f_k^{n-1}$.

Using (1) and (2): $f_k \in \mathcal{U}_\beta$ for sufficiently large k and $||f_k||_{\mathcal{U}_\beta} \leq C(k)$. Note

$$(1-\varepsilon)^{(n-1)^k} \leq f_k \leq (1+\varepsilon)^{(n-1)^k}.$$

Let $\mu=\int f_k$. If $\varepsilon>0$ is sufficiently small, then $|\mu-1|$ is small and $\mu^{-1}f_k=1+\psi$ where $\int \psi=0$ and $\|\psi\|_{L^\infty}$ is small. Note that

$$\|\psi\|_{\mathcal{U}_{\beta}} \leq 1 + \mu^{-1} \|f_k\|_{\mathcal{U}_{\beta}} \leq C'(k),$$

by (3), $\|\psi\|_{\mathcal{U}_{\alpha}}$ is also small $(\|\psi\|_{\mathcal{U}_{\beta}} < C(k)$ and $\|\psi\|_{L^{\infty}} \to 0$ as $\varepsilon \to 0$). Applying this to the function ρ_K , we conclude that if K is sufficiently close to B_n , then, after proper normalization, $\rho_{\mathrm{I}^k K}$ can be written as $1+\varphi$ with $\|\varphi\|_{\mathcal{U}_{\alpha}}$ as small as we want,