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Convex Floating Body

Convex Floating Body, Schütt and Werner (1990)

Let K be a convex body in Rn. The convex floating body Kδ is the
intersection of all halfspaces H+ whose defining hyperplanes H cut
off a set of volume at most δ from K ,

Kδ =
⋂

|H−∩K |≤δ

H+.

K0 = K , and Ks ⊂ Kt if s ≥ t ≥ 0.

Kδ is convex.

(Bn
2 )δ = c(δ, n)Bn

2 for all δ > 0.
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Properties of Convex Floating Body

For all (invertible) affine maps T : Rn → Rn and for all δ > 0,

(TK )δ = T
(
K δ

|det(T )|

)
.

Here |det(T )| is the absolute value of the determinant of T .

In particular, for an affine map T with |det(T )| = 1,
(TK )δ = T (Kδ) for all δ > 0.

An ellipsoid E ⊂ Rn equals T (Bn
2 ) for some (invertible) affine

map T on Rn. Then

Eδ = c
(
δ′, n

)
E , with δ′ = δ/|det(T )|.

Schütt and Werner (1994): Kδ is strictly convex for all δ > 0.
(If in addition K is origin-symmetric, Meyer and Reisner
(1991)). Hence Kδ cannot be a polytope for all δ > 0.
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Properties of Convex Floating Body

Connection with the classical affine surface area (Schütt and
Werner (1990)):

cn lim
δ→0

|K | − |Kδ|
δ

2
n+1

=

∫
∂K

κK (x)
1

n+1 dµK (x) = as(K ),

with cn = 2
(
|Bn−1

2 |
n+1

) 2
n+1

.

Connection with L−n(n+2)-affine surface area (Meyer and
Werner (2000), Werner and Ye (2008)):

cn lim
δ→0

|(Kδ)
◦| − |K ◦|
δ

2
n+1

=

∫
Sn−1

fK◦(u)
n+2
n+1 hK◦(u)2 dσ(u)

= as −n
n+2

(K ◦) = as−n(n+2)(K ),

for K smooth enough.
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Homothety Conjecture

Note that if K is an origin-symmetric ellipsoid, then, for all δ > 0,
Kδ is an ellipsoid that dilates to K .

Homothety Conjecture

Does K have to be an ellipsoid, if K is homothetic to Kδ for some
(fixed) δ > 0?

In this talk, we assume that the origin is in the interiors of K
and Kδ, and that K homothetic to Kδ is meant with the origin
as the center of homothety.

Hereafter, an ellipsoid means an origin-symmetric ellipsoid.
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What is known?

Schütt and Werner (1994)

If there is a sequence δi → 0, such that, Kδi
is homothetic to K for

all i ∈ N, then K is an ellipsoid.

Stancu (2009):

Let K be a convex body with boundary of class C 2
+. There exists a

positive number δ(K ), such that, Kδ is homothetic to K for some
δ < δ(K ), then and only then K is an ellipsoid.

Stancu (2006) proved similar results for K ∈ C≥4.
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Homothety Conjecture holds true in the class of Bn
p

Werner and Ye, 2010

Let Bn
p , 1 ≤ p ≤ ∞ be the unit ball of lnp . Let 0 < δ <

|Bn
p |
2 . Then

(Bn
p )δ = cBn

p for some 0 < c < 1 if and only if p = 2.

Recall (TK )δ = T
(
Kδ/|det(T )|

)
.

Let K = T
(
Bn

p

)
, 1 ≤ p ≤ ∞.

Let 0 < δ < |K |
2 be a constant. Kδ = cK for some constant

0 < c < 1 if and only if K is an ellipsoid.
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Proof by a “One direction technique”

For p = 1,∞: (Bn
p )δ is strictly convex, then (Bn

p )δ cannot be
homothetic to Bn

p .

For 1 < p < ∞: (Bn
p )δ ∈ C 2

+ for all 0 < δ < |Bn
p |/2. (Meyer and

Reisner (1991): Kδ ∈ C 2
+ if K is origin-symmetric, smooth, and

strictly convex.)

If 1 < p < 2: Bn
p is not of class C 2 at en = (0, · · · , 0, 1),

contradiction.

If 2 < p < ∞: Bn
p is not of C 2

+, as Bn
p has curvature 0 at

en = (0, · · · , 0, 1), contradiction.

The curvature κBn
p

at x ∈ ∂Bn
p has the following form (see Schütt

and Werner (2004))

κBn
p
(x) =

(p − 1)n−1
∏n

i=1 xp−2
i(∑n

i=1 |xi |2(p−1)
) 1

2

.
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Homothety Conjecture for General Convex Bodies

Werner and Ye, 2010

Let K be a convex body in Rn. There exists a positive number
δ(K ), such that, the following are equivalent:

(i) Kδ is homothetic to K for some 0 < δ < δ(K );

(ii) K is an ellipsoid.

We provide an estimate for δ(K ) if K ∈ C 3
+.
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Sketch of proof.

Step 1: We show that there exists δ0(K ) > 0, such that, if Kδ

is homothetic to K for some δ ≤ δ0(K ), then Kδ (and hence
K ) is of class C 2

+.

Step 2: Let {xδ} = ∂(Kδ) ∩ [0, x ], cn = 2
(
|Bn−1

2 |
n+1

) 2
n+1

, and

fδ(x) =
cn

n δ
2

n+1

[
1−

(
‖xδ‖
‖x‖

)n]
.

Schütt and Werner (1990) proved that for all x ∈ ∂K ,

lim
δ→0

fδ(x) =
(
κK (x)

) 1
n+1 〈x ,NK (x)〉−1 = f (x),
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Sketch of proof.

Step2: For all x ∈ ∂K ,

lim
δ→0

cn

n δ
2

n+1

[
1−

(
‖xδ‖
‖x‖

)n]
=

(
κK (x)

) 1
n+1

〈x ,NK (x)〉
= f (x),

Step 3: Suppose K is not an ellipsoid. Then, Petty’s
characterization of ellipsoid implies that f (x) is not a
constant.

Step 4: It follows that for δ small enough, fδ(x) is not
constant,

which is impossible if K is homothetic to Kδ.
Hence K is an ellipsoid.
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