Shadow boundaries and the Fourier transform.

Maryna Yaskina

University of Alberta
Grant MacEwan University

joint work with P. Goodey and V. Yaskin

September 13, 2010

Toronto, Fields Institute

Uniqueness results

Convex centrally symmetric bodies are uniquely determined by:

- Volumes of central sections (Minkowski's theorem)
- Volumes of projections (Aleksandrov's theorem)

Uniqueness results

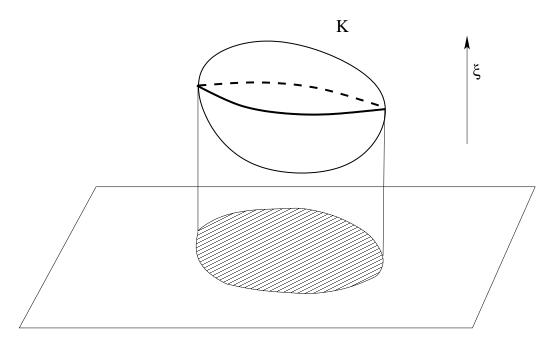
Convex bodies (not necessarily centrally symmetric):

- Falconer, Gardner: volumes of hyperplane sections passing through any two fixed points in the interior of the body
- Böröczky, Schneider: volumes and centroids of sections through 0
- Schneider: mean widths and Steiner points of projections

and many others...

Shadow boundaries

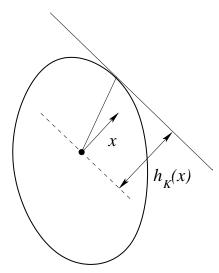
Let K be a convex body in \mathbb{R}^n . The shadow boundary of K under illumination parallel to $\xi \in S^{n-1}$ is defined as the set of all boundary points of K at which there are support lines of K parallel to ξ .



The support function of a convex body K is defined by

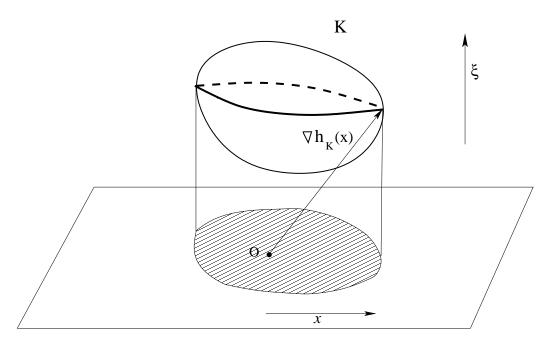
$$h_K(x) = \max_{\xi \in K} (x, \xi), \qquad x \in \mathbb{R}^n.$$

The geometric meaning of $h_K(x)$ if $x \in S^{n-1}$:



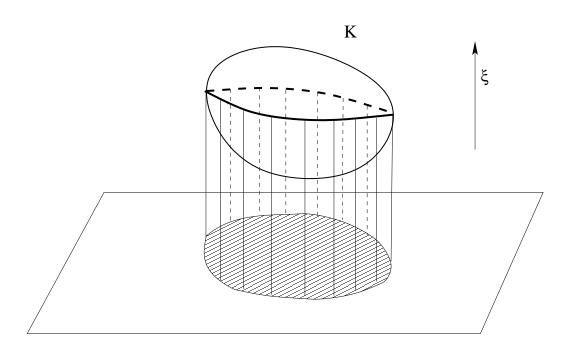
Let K be a strictly convex convex.

Fact: $\nabla h_K(x)$ is the point of contact with K of the support plane with outward normal x.



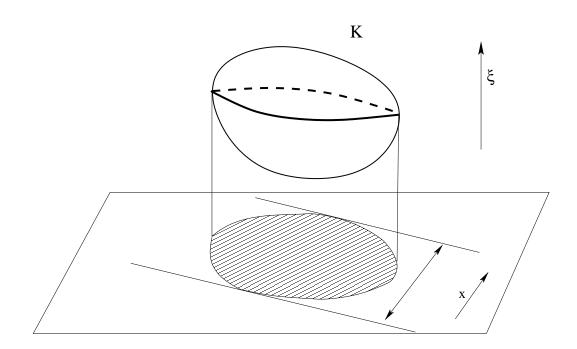
The average height of the shadow boundary of K in the direction of ξ :

$$H_K(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} (\nabla h_K(x), \xi) \, dx.$$



The average width of the shadow boundary of K in the direction of ξ :

$$W_K(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} (\nabla h_K(x), x) \, dx = \int_{S^{n-1} \cap \xi^{\perp}} h_K(x) \, dx.$$



Theorem [P. Goodey, V. Yaskin, MY].

Let K be a strictly convex body. K is uniquely determined by the average height and average width of all its shadow boundaries.

Let f be an infinitely smooth function on the sphere S^{n-1} . Denote

$$f_p(x) = f(x/|x|)|x|^{-n+p}$$

its homogeneous extension to \mathbb{R}^n of degree -n+p.

We will be interested in its Fourier transform.

For $f \in C^{\infty}\left(S^{n-1}\right)$ and $\xi \in S^{n-1}$ define

$$F_{\xi}(t) = (1 - t^2)^{(n-3)/2} \int_{S^{n-1} \cap \xi^{\perp}} f(t \, \xi + \sqrt{1 - t^2} \, \zeta) \, d\zeta.$$

Theorem. [GKS] Let f be an even function. The Fourier transform of f_p is given by the following formulas.

i) If $0 , <math>p \neq n$, p is not an odd integer, then

$$(f_p)^{\wedge}(\xi) = \cos\frac{p\pi}{2}\Gamma(p)\Big(\int_{-1}^{1} |t|^{-p} (F_{\xi}(t) - F_{\xi}(0) - \cdots - F_{\xi}^{(2k-2)}(0) \frac{t^{2k-2}}{(2k-2)!})dt + \sum_{m=1}^{2k-2} F_{\xi}^{(m)}(0) \frac{2}{m!(1+m-p)}\Big)$$

ii) if $p = 2k - 1 \neq n$, then

$$(f_{2k-1})^{\wedge}(\xi) = \pi(-1)^{k+1} F_{\xi}^{(2k-2)}(0).$$

Theorem. Let f be an odd function.

iii) If $0 , <math>p \neq n$, p is not an even integer, then

$$(f_p)^{\wedge}(\xi) = i \sin \frac{p\pi}{2} \Gamma(p) \left(\int_{-1}^{1} |t|^{-p} \operatorname{sgn} t \ (F_{\xi}(t) - F_{\xi}'(0)t - \cdots - F_{\xi}^{(2k-1)}(0) \frac{t^{2k-1}}{(2k-1)!} \right) dt + \sum_{\xi}^{2k-1} F_{\xi}^{(m)}(0) \frac{2}{m!(1+m-p)} \right)$$

iv) if $p = 2k \neq n$, then

$$(f_{2k})^{\wedge}(\xi) = i\pi(-1)^{k+1}F_{\xi}^{(2k-1)}(0).$$

In particular,

$$\hat{f}_{-1}(\xi) = -\frac{\pi}{2} \int_{S^{n-1}} |(u,\xi)| f(u) \, du$$

$$-i \int_{S^{n-1}} \left(1 + \Gamma'(1) - \ln |(u,\xi)| \right) (u,\xi) f(u) \, du,$$

$$\hat{f}_{0}(\xi) = \int_{S^{n-1}} \left(\Gamma'(1) - \ln |(u,\xi)| \right) f(u) \, du$$

$$+i\pi \left(\frac{1}{2} \int_{S^{n-1}} f(u) \, du - \int_{S^{n-1} \cap \xi^{+}} f(u) \, du \right),$$

$$\hat{f}_1(\xi) = \pi \int_{S^{n-1} \cap \xi^{\perp}} f(u) \, du - i \int_{-1}^1 t^{-1} \left(F_{\xi}(t) - F_{\xi}(0) \right) \, dt,$$

$$\hat{f}_2(\xi) = -\int_{-1}^1 t^{-2} \left(F_{\xi}(t) - F_{\xi}(0) - t F_{\xi}'(0) \right) dt + 2F_{\xi}(0) - i\pi F_{\xi}'(0),$$

where

$$F_{\xi}(t) = (1 - t^2)^{(n-3)/2} \int_{S^{n-1} \cap \xi^{\perp}} f(t \, \xi + \sqrt{1 - t^2} \, \zeta) \, d\zeta.$$

Theorem.

Let K be a strictly convex body. K is uniquely determined by the average height and average width of all its shadow boundaries.

Theorem.

Let K be a strictly convex body. K is uniquely determined by the average height and average width of all its shadow boundaries.

Proof.

 W_K : even information H_K : odd information

Let h_K^+ and h_K^- be the even and odd parts of h_K correspondingly.

Even part:

$$(h_K^+(x/|x|_2)|x|_2^{-n+1})^{\wedge}(\xi) = \pi \int_{S^{n-1} \cap \xi^{\perp}} h_K^+(u) \ du = \pi W_K(\xi)$$

Even part:

$$(h_K^+(x/|x|_2)|x|_2^{-n+1})^{\wedge}(\xi) = \pi \int_{S^{n-1} \cap \xi^{\perp}} h_K^+(u) \ du = \pi W_K(\xi)$$

Odd part:

$$(h_K^-(x/|x|_2)|x|_2^{-n+2})^{\wedge}(\xi)$$

$$= -i\pi \frac{d}{dt} \left(\int_{S^{n-1}\cap\xi^{\perp}} h_K^-(t\,\xi + \sqrt{1-t^2}\,u)\,du \right)_{t=0}$$

$$= -i\pi \frac{d}{dt} \left(\int_{S^{n-1}\cap\xi^{\perp}} h_K(t\,\xi + \sqrt{1-t^2}\,u)\,du \right)_{t=0}$$

$$= -i\pi \int_{S^{n-1}\cap\xi^{\perp}} (\nabla h_K(u), \xi) du = -i\pi H_K(\xi)$$

Stability results

The Hausdorff distance is defined as

$$\delta_{\infty}(K, L) = \min\{\lambda \ge 0 | K \subset L + \lambda B^n, L \subset K + \lambda B^n\}.$$

Alternatively,

$$\delta_{\infty}(K, L) = \max_{\theta \in S^{n-1}} |h_K(\theta) - h_L(\theta)|.$$

Theorem.

Let K and L be convex bodies in \mathbb{R}^n $(n \ge 5)$ which are contained in a ball of radius R. If, for some $\epsilon > 0$,

$$||W_K - W_L||_2 + ||H_K - H_L||_2 < \epsilon$$

then there is a constant c(n,R), dependent only on the dimension n and the radius R, such that

$$\delta_{\infty}(K, L) \le c(n, R)\epsilon^{4/(n(n+1))}.$$

Let $0 . Let <math>I_p : C^{\infty}(S^{n-1}) \to C^{\infty}(S^{n-1})$ be the operator defined by

$$I_p(f) = \widehat{f_p},$$

where

$$f_p(x) = f\left(\frac{x}{|x|}\right) |x|^{-n+p}.$$

Theorem.

Let K and L be convex bodies in \mathbb{R}^n , contained in a ball of radius R, with infinitely smooth support functions. Let $0 . If for some <math>\epsilon \ge 0$

$$||I_p(h_K) - I_p(h_L)||_2 \le \epsilon,$$

then

$$\delta_{\infty}(K,L) \leq \left\{ \begin{array}{ll} C(n,p,R) \epsilon^{\frac{4}{(n-2p+2)(n+1)}}, & \text{if } n > 2p, \\ C(n,p,R) \epsilon^{\frac{2}{(n+1)}}, & \text{if } n \leq 2p. \end{array} \right.$$

Here C(n, p, R) is a constant that depends only on n, p, R.

Proof.

Schur's Lemma:

$$I_p(H_m) = \lambda_m(n, p)H_m,$$

where H_m is a spherical harmonic of degree m.

$$|\lambda_m(n,p)| = \frac{2^p \pi^{n/2} \Gamma((m+p)/2)}{\Gamma((m+n-p)/2)}$$

Put $f = h_K - h_L$ and denote its associated series by

$$\sum_{m=0}^{\infty} Q_m.$$

We will estimate the L_2 -norm of f instead of the sup-norm. Vitale's theorem:

$$c_1(n)\delta_2(K,L) \le \delta_{\infty}(K,L) \le c_2(n)D^{2(n-1)/(n+1)}\delta_2(K,L)^{2/(n+1)},$$

where $D = diam(K \cup L)$ and c_1 , c_2 are constants depending on n only.

i) Assume first that n > 2p.

$$\delta_2(K, L)^2 = ||f||_2^2 = \sum_{m=0}^{\infty} ||Q_m||_2^2$$

$$= \sum_{m=0}^{\infty} \left(|\lambda_m|^{\frac{4}{n-2p+2}} \|Q_m\|_2^{\frac{4}{n-2p+2}} \right) \cdot \left(|\lambda_m|^{-\frac{4}{n-2p+2}} \|Q_m\|_2^{\frac{2n-4p}{n-2p+2}} \right)$$

$$\leq \left(\sum_{m=0}^{\infty} |\lambda_m|^2 \|Q_m\|_2^2\right)^{\frac{2}{n-2p+2}} \left(\sum_{m=0}^{\infty} |\lambda_m|^{-\frac{4}{n-2p}} \|Q_m\|_2^2\right)^{\frac{n-2p}{n-2p+2}}$$

Note that $I_p f$ has spherical harmonic expansion

$$\sum_{m=0}^{\infty} \lambda_m Q_m.$$

Parseval's equality:

$$\sum_{m=0}^{\infty} |\lambda_m(n,p)|^2 ||Q_m||_2^2 = ||I_p f||_2^2$$

Stirling's formula (as m tends to infinity):

$$|\lambda_m(n,p)|^{-\frac{4}{n-2p}} \approx C(n,p)m^2.$$

Therefore

$$||f||_2^2 \le C(n,p) \left(||I_p f||_2^2 \right)^{\frac{2}{n-2p+2}} \times$$

$$\times \left(\|Q_0\|_2^2 + \sum_{m=1}^{\infty} m(m+n-2) \|Q_m\|_2^2 \right)^{\frac{n-2p}{n-2p+2}}$$

$$\leq C(n,p) \epsilon^{\frac{4}{n-2p+2}} \left(\epsilon^2 + \|\nabla_o h_K - \nabla_o h_L\|_2^2 \right)^{\frac{n-2p}{n-2p+2}}$$

$$\leq C(n,p)\epsilon^{\frac{4}{n-2p+2}} \left(\epsilon^2 + R^2\right)^{\frac{n-2p}{n-2p+2}}$$

ii) If $n \leq 2p$, then $|\lambda_m(n,p)|$ does not approach zero as m tends to infinity.

Therefore there exists C(n, p) such that

$$C(n,p)|\lambda_m(n,p)|^2 \ge 1$$

for all m.

$$||f||_{2}^{2} = \sum_{m=0}^{\infty} ||Q_{m}||_{2}^{2} \le C(n, p) \sum_{m=0}^{\infty} |\lambda_{m}(n, p)|^{2} ||Q_{m}||_{2}^{2} =$$

$$= C(n, p) ||I_{p}f||_{2}^{2} \le C(n, p)\epsilon^{2}$$

Q.E.D.

Corollary. Any convex body K is uniquely determined by the average height and average width of almost all its shadow boundaries.

Thank you!!!