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Unigueness results

Convex centrally symmetric bodies are uniquely determined
by:

# Volumes of central sections (Minkowski’'s theorem)

# \Volumes of projections (Aleksandrov’s theorem)
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Unigueness results

Convex bodies (not necessarily centrally symmetric):

# Falconer, Gardner: volumes of hyperplane sections
passing through any two fixed points in the interior of

the body

# BOroczky, Schneider: volumes and centroids of
sections through O

# Schneider: mean widths and Steiner points of
projections

and many others...
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. Shadow boundaries

Let K be a convex body in R". The shadow boundary of K

under illumination parallel to ¢ € S"~! is defined as the set
of all boundary points of K at which there are support lines

of K parallel to .
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The support function of a convex body K is defined by

=

h — c R".

The geometric meaning of hy (z) if x € ™1

h ()
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Let K be a strictly convex convex.

=

Fact: Vhg (x) is the point of contact with K of the support
plane with outward normal =.
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The average height of the shadow boundary of K in the
direction of &:

=

He©) = [ (Thile).€) o
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The average width of the shadow boundary of K in the
direction of &:

Wk(§) =

N %ﬁ/ .
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Theorem [P. Goodey, V.Yaskin, MY].

Let K be a strictly convex body. K is uniquely determined
by the average height and average width of all its shadow
boundaries.

=
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Let f be an infinitely smooth function on the sphere ™1,
Denote

fp(@) = f(a/|2]) ||~

Its homogeneous extension to R™ of degree —n + p.

We will be interested in its Fourier transform.
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For f € C* (S" 1) and ¢ € S" ! define

Fe) = (=292 [ per Vime2Qdc

Sn—lméﬂ_
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Theorem. [GKS] Let f be an even function. The Fourier
transform of f, is given by the following formulas.

=

)If0<p<2k+1, p+#n, pisnot an odd integer, then

1

()€ = cos BT ([ 177 (Felt) = Fe(0)-

t2k—2
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) if p =2k — 1 # n, then

(Fak—1)M(€) = (D) R (0).
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Theorem. Let f be an odd function.
i If 0 < p < 2k + 2, p # n, pis not an even integer, then

1

(€)= isin 50 ([ 177 sant (Fe(t) — (o)t~

(26-1) 42k—1

§ (m@k—n

)i+
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V) if p = 2k #£ n, then

(Fa)N€) = im(— 1) EZ D 0),
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n particular,
Fa©==F [ 1wolfd
S [ AT~ ) (6 0) du

RO = [ (0 =& fw)d

+im (% . f(u) du — /Sn1m£+ f(u) du) ,
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1

@ =x [ fedu=i [ ()~ R(©)

) = — /_ 1,5—2 (Fe(t) — Fe(0) — tFL(0)) di+2F(0)—in F(0),

where

Fe)) = (=292 [ per VIS dc

Sn—lméﬂ_
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fTheorem.
Let K be a strictly convex body. K is uniquely determined
by the average height and average width of all its shadow
boundaries.

Shadow boundaries and the Fourier transform. — p. 18/~



=

fTheorem.
Let K be a strictly convex body. K is uniquely determined
by the average height and average width of all its shadow
boundaries.

Proof.
Wi even information H g odd information

Let 2. and L be the even and odd parts of Lk
correspondingly.

o -
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ven part:

(1 (2 \el2) 2l )N (€) = / W (u) du = 7Wic(€)
Sn-1ngt
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ven part:
(hk(xﬂwb)hkf”lwa)=vﬂ/£ gl du = 7IWic(E
n—lm 1
Odd part:

(hi (w/]z]2) ]2y 2) M (E)

B — in / (Vhe (). €)du = —im Hy(€) o
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B Stability results N

The Hausdorff distance is defined as

0oo (K, L) = min{\ > 0|K C L+ \B",L C K+ AB"}.

Alternatively,

doo(K, L) = max [hg(0) — hr(0)]

Shadow boundaries and the Fourier transform. — p. 20/~



fTheorem.
Let K and L be convex bodies in R™ (n > 5) which are
contained in a ball of radius R. If, for some ¢ > 0,

HWK — WL”Q + HHK — HLHQ < €

then there is a constant ¢(n, R), dependent only on the
dimension n and the radius R, such that

Joo(K, L) < ¢(n, R)e (M +1)),
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Let0 <p<n. Letl,: C®(S" 1) — C>(S" 1) be the
operator defined by

]p(f) — ﬁ?v

where

o)1 () el

]
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fTheorem. T

Let K and L be convex bodies in R", contained in a ball of

radius R, with infinitely smooth support functions. Let
0<p<n. Ifforsomee>0

[ Ip(hi) = Ip(hr)ll2 < €,

then

4
(n—2p+2)(n+1) If 9
5o (K. L) < C'(n,p, R)e 2 | n > 2p,
C(n,p, R)et+D If n < 2p.

Here C(n,p, R) IS a constant that depends only on n, p, R.
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Proof.
Schur's Lemma:

]p(Hm) — )\m(n,p)Hm,

where H,, Is a spherical harmonic of degree m.

2'7"2T((m + p)/2)
I'((m+n—p)/2)

P\m(n,p)’ —
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ut f = hx — hy, and denote its associated series by

We will estimate the L,-norm of f instead of the sup-norm.
Vitale’s theorem:

c1(n)02(K, L) < 650(K, L) < co(n)D*=D/(41) s, (K )2/ (01,

where D = diam(K U L) and ¢, ¢ are constants depending
on n only.
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1) Assume first that n > 2p.

52(K, L)* = || f]3 Z |Qmll3

OO 4 2n—4p
_ — n— 2p+2 — n—2p+2
= > | =272 Q5 | " 7272 | QI3
m=0
n—2p
n—2p+2

< (Z Am2@m|2> (Z Amn42p@m|%>
m=0 0
B -
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ote that 7, f has spherical harmonic expansion

> AmQm.
m=0

Parseval’s equality:

> P, p) PIQmll3 = 11 f1I3
m=0

Stirling’s formula (as m tends to infinity):

Am(n, p)| 7= = C(n, p)m”®.

o -
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Therefore
1f1I5 < C(n,p) (ILpfll5) 72 x

n—2p

0.9 n—2p+2
2 2
X <|Q0|2 + > m(m+n— 2)|Qm|2>
m=1

n—2p

< C(n,p)em (& + [ Vohx — Vohy [3) 7

4 n—2p

< C(n,p)en—2pF2 (62 + Rz) noEp
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i) If n < 2p, then |\, (n, p)| does not approach zero as m
tends to infinity.

Therefore there exists C'(n, p) such that

=

C(n,p)‘)\m(n,p)‘Q > 1

for all m.

1115 = 1Qml3 < Cn,p) > P, p) P Q13 =
m=0 m=0

— C(nvp)H[pr% < C(nvp)GQ
Q.E.D.

o -
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Corollary. Any convex body K is uniquely determined by
the average height and average width of almost all its
shadow boundaries.

=
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Thank you!!!
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