The geometry of *p*-convex intersection bodies

Vlad Yaskin

University of Alberta vladyaskin@math.ualberta.ca

Fields Institute, September 17, 2010

Authors

This is joint work with Jaegil Kim and Artëm Zvavitch.

Lutwak (1988) introduced the notion of the intersection body IK of a star body K. IK is defined by its radial function

$$\rho_{IK}(\xi) = |K \cap \xi^{\perp}|, \quad \text{ for } \xi \in S^{n-1}.$$

Theorem (Busemann)

Let K be an origin-symmetric convex body in \mathbb{R}^n . Then its intersection body IK is convex.

Theorem (Busemann)

Let K be an origin-symmetric convex body in \mathbb{R}^n . Then its intersection body IK is convex.

Remark

The result does not hold without the symmetry assumption.

Theorem (Busemann)

Let K be an origin-symmetric convex body in \mathbb{R}^n . Then its intersection body IK is convex.

Remark

The result does not hold without the symmetry assumption.

What if K is not convex?

Let $p \in (0,1]$. A body K is said to be p-convex if, for all $x,y \in \mathbb{R}^n$,

$$||x + y||_K^p \le ||x||_K^p + ||y||_K^p,$$

Let $p \in (0,1]$. A body K is said to be p-convex if, for all $x,y \in \mathbb{R}^n$,

$$||x + y||_K^p \le ||x||_K^p + ||y||_K^p,$$

or, equivalently $t^{1/p}x + (1-t)^{1/p}y \in K$ whenever x and y are in K and $t \in (0,1)$.

Let $p \in (0,1]$. A body K is said to be p-convex if, for all $x,y \in \mathbb{R}^n$,

$$||x + y||_{K}^{p} \le ||x||_{K}^{p} + ||y||_{K}^{p},$$

or, equivalently $t^{1/p}x+(1-t)^{1/p}y\in K$ whenever x and y are in K and $t\in (0,1).$

One can see that p-convex sets with p = 1 are just convex.

Let $p \in (0,1]$. A body K is said to be p-convex if, for all $x,y \in \mathbb{R}^n$,

$$||x + y||_K^p \le ||x||_K^p + ||y||_K^p,$$

or, equivalently $t^{1/p}x + (1-t)^{1/p}y \in K$ whenever x and y are in K and $t \in (0,1)$.

One can see that p-convex sets with p = 1 are just convex.

Note also that a p_1 -convex body is p_2 -convex for all $0 < p_2 \leqslant p_1$.

Theorem 1

Let K be an origin-symmetric p-convex body in \mathbb{R}^n , $p \in (0,1]$, and E a (k-1)-dimensional subspace of \mathbb{R}^n for $1 \leqslant k \leqslant n$. Then the map

$$u \longmapsto \frac{|u|}{\big|K \cap \operatorname{span}(u, E)\big|_k}, \quad u \in E^{\perp}$$

defines the Minkowski functional of a q-convex body in E^{\perp} with $q = [(1/p - 1) k + 1]^{-1}$.

Theorem 1

Let K be an origin-symmetric p-convex body in \mathbb{R}^n , $p \in (0,1]$, and E a (k-1)-dimensional subspace of \mathbb{R}^n for $1 \leqslant k \leqslant n$. Then the map

$$u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_k}, \quad u \in E^{\perp}$$

defines the Minkowski functional of a q-convex body in E^{\perp} with $q = [(1/p - 1) k + 1]^{-1}$.

Proof is similar to the one in [Milman, Pajor].

As a corollary of the previous theorem we get the following

Theorem 2

Let K be an origin-symmetric p-convex body in \mathbb{R}^n for $p \in (0,1]$. Then the intersection body IK of K is q-convex for $q = [(1/p-1)(n-1)+1]^{-1}$.

As a corollary of the previous theorem we get the following

Theorem 2

Let K be an origin-symmetric p-convex body in \mathbb{R}^n for $p \in (0,1]$. Then the intersection body IK of K is q-convex for $q = [(1/p-1)(n-1)+1]^{-1}$.

Remark

Note that this theorem does not hold without the symmetry assumption.

As a corollary of the previous theorem we get the following

Theorem 2

Let K be an origin-symmetric p-convex body in \mathbb{R}^n for $p \in (0,1]$. Then the intersection body IK of K is q-convex for $q = [(1/p-1)(n-1)+1]^{-1}$.

Remark

Note that this theorem does not hold without the symmetry assumption.

What about sharpness of Theorem 2?

Theorem 3

There exists a p-convex body $K \subset \mathbb{R}^n$ such that IK is q-convex with

$$q \leq [(1/p-1)(n-1)+1+\frac{g_n(p)}{2}]^{-1}$$

where $g_n(p)$ is a function that satisfies

- 1) $g_n(p) \geqslant -\log_2(n-1)$,
- 2) $\lim_{p\to 1^{-}} g_n(p) = 0$.

Proof.

Let

$$C_1 = \{|x_1| \le 1, ..., |x_{n-1}| \le 1, x_n = 1\}$$

and

$$C_{-1} = \{|x_1| \le 1, ..., |x_{n-1}| \le 1, x_n = -1\}.$$

For a fixed $0 define <math>K \subset \mathbb{R}^n$ as follows:

$$K = \{z \in \mathbb{R}^n : z = t^{1/p}x + (1-t)^{1/p}y, x \in C_1, y \in C_{-1}, 0 \le t \le 1\}.$$

Let L = IK be the intersection body of K. In order to estimate q, we will use the inequality

$$\left\|\sqrt{2}e_n\right\|_L^q \leqslant \left\|\frac{e_n+e_1}{\sqrt{2}}\right\|_L^q + \left\|\frac{e_n-e_1}{\sqrt{2}}\right\|_L^q = 2\left\|\frac{e_n+e_1}{\sqrt{2}}\right\|_L^q,$$

Let L = IK be the intersection body of K. In order to estimate q, we will use the inequality

$$\left\|\sqrt{2}e_n\right\|_L^q \leqslant \left\|\frac{e_n+e_1}{\sqrt{2}}\right\|_L^q + \left\|\frac{e_n-e_1}{\sqrt{2}}\right\|_L^q = 2\left\|\frac{e_n+e_1}{\sqrt{2}}\right\|_L^q,$$

that is

$$\frac{\sqrt{2}}{\rho_L(e_n)} \leqslant \frac{2^{1/q}}{\rho_L((e_1 + e_n)/\sqrt{2})}.$$

Let L = IK be the intersection body of K. In order to estimate q, we will use the inequality

$$\left\|\sqrt{2}e_n\right\|_L^q \leqslant \left\|\frac{e_n+e_1}{\sqrt{2}}\right\|_L^q + \left\|\frac{e_n-e_1}{\sqrt{2}}\right\|_L^q = 2\left\|\frac{e_n+e_1}{\sqrt{2}}\right\|_L^q,$$

that is

$$\frac{\sqrt{2}}{\rho_L(e_n)} \leqslant \frac{2^{1/q}}{\rho_L((e_1 + e_n)/\sqrt{2})}.$$

Computing $\rho_L(e_n)$ and $\rho_L((e_1 + e_n)/\sqrt{2})$ we get

$$q \leqslant \left[\left(\frac{1}{p} - 1 \right) (n-1) + 1 + \log_2 \frac{(n-2) \left(\frac{2}{2^{1/p}} \right)^{n-1} + 1}{n-1} \right]^{-1}.$$

From Artëm's lecture:

From Artëm's lecture:

It is easy to see that the intersection body of a Euclidean ball is again a Euclidean ball.

From Artëm's lecture:

It is easy to see that the intersection body of a Euclidean ball is again a Euclidean ball.

Question. Are there other fixed points of 1?

From Artëm's lecture:

It is easy to see that the intersection body of a Euclidean ball is again a Euclidean ball.

Question. Are there other fixed points of 1?

Fish, Nazarov, Ryabogin, Zvavitch have shown that in a sufficiently small neighborhood of the ball (with respect to the Banach-Mazur distance) there are no other fixed points of *I*. However, in general this question is still open.

From Artëm's lecture:

It is easy to see that the intersection body of a Euclidean ball is again a Euclidean ball.

Question. Are there other fixed points of 1?

Fish, Nazarov, Ryabogin, Zvavitch have shown that in a sufficiently small neighborhood of the ball (with respect to the Banach-Mazur distance) there are no other fixed points of *I*. However, in general this question is still open.

Recall that the Banach-Mazur distance between two origin-symmetric star bodies is defined by

$$d_{BM}(K, L) = \inf\{b/a : \exists T \in GL(n) : aK \subset TL \subset bK\}.$$

FNRZ show that I^mK approaches the ball as $m \to \infty$, if K is sufficiently close to the ball.

FNRZ show that I^mK approaches the ball as $m \to \infty$, if K is sufficiently close to the ball.

Question. Does IK have to be closer to the ball than K?

FNRZ show that I^mK approaches the ball as $m \to \infty$, if K is sufficiently close to the ball.

Question. Does IK have to be closer to the ball than K?

Our next theorem shows that the answer is "No". There are *p*-convex bodies for which the intersection body is farther from the Euclidean ball.

Theorem 4

Let $p \in (0,1)$ and let c be any constant satisfying $1 < c < 2^{1/p-1}$. Then for all large enough n, there exists a p-convex body $K \subset \mathbb{R}^n$ such that

$$c^n d_{BM}(K, B_2^n) < d_{BM}(IK, B_2^n).$$

Consider K from the previous theorem. One can see that

$$K \subset B_{\infty}^n \subset \sqrt{n}B_2^n$$
.

Consider K from the previous theorem. One can see that

$$K \subset B_{\infty}^n \subset \sqrt{n}B_2^n$$
.

On the other hand,

$$K\supset 2^{\frac{p-1}{p}}B_{\infty}^n\supset 2^{\frac{p-1}{p}}B_2^n,$$

Consider K from the previous theorem. One can see that

$$K \subset B_{\infty}^n \subset \sqrt{n}B_2^n$$
.

On the other hand,

$$K\supset 2^{\frac{p-1}{p}}B_{\infty}^n\supset 2^{\frac{p-1}{p}}B_2^n,$$

and thus

$$d_{BM}(K,B_2^n) \leqslant 2^{\frac{1-p}{p}} \sqrt{n}.$$

Next we give a lower bound for $d_{BM}(IK, B_2^n)$.

Next we give a lower bound for $d_{BM}(IK, B_2^n)$. Let E be an ellipsoid such that $IK \subset E \subset dIK$, for some d.

Next we give a lower bound for $d_{BM}(IK, B_2^n)$. Let E be an ellipsoid such that $IK \subset E \subset dIK$, for some d. Then

 $IK \subset conv(IK) \subset E \subset dIK$.

Next we give a lower bound for $d_{BM}(IK, B_2^n)$. Let E be an ellipsoid such that $IK \subset E \subset dIK$, for some d. Then

$$IK \subset conv(IK) \subset E \subset dIK$$
.

Therefore, $d \ge r$, where $r = \min\{t : conv(IK) \subset tIK\}$.

Next we give a lower bound for $d_{BM}(IK, B_2^n)$. Let E be an ellipsoid such that $IK \subset E \subset dIK$, for some d. Then

$$IK \subset conv(IK) \subset E \subset dIK$$
.

Therefore, $d \ge r$, where $r = \min\{t : conv(IK) \subset tIK\}$. Thus,

$$d_{BM}(IK, B_2^n) \geqslant r = \max\left\{\frac{\rho_{conv(IK)}(\theta)}{\rho_{IK}(\theta)}, \theta \in S^{n-1}\right\} \geqslant \frac{\rho_{conv(IK)}(e_n)}{\rho_{IK}(e_n)}.$$

The convexity of conv(IK) gives

$$\rho_{conv(IK)}(e_n)$$

$$\geqslant \left\| \frac{1}{2} \left(\rho_{IK} \left(\frac{e_n + e_1}{\sqrt{2}} \right) \frac{e_n + e_1}{\sqrt{2}} + \rho_{IK} \left(\frac{e_n - e_1}{\sqrt{2}} \right) \frac{e_n - e_1}{\sqrt{2}} \right) \right\|_2$$

$$= \frac{1}{\sqrt{2}} \rho_{IK} \left(\frac{e_n + e_1}{\sqrt{2}} \right).$$

The convexity of conv(IK) gives

$$\rho_{conv(IK)}(e_n)$$

$$\geqslant \left\| \frac{1}{2} \left(\rho_{IK} \left(\frac{e_n + e_1}{\sqrt{2}} \right) \frac{e_n + e_1}{\sqrt{2}} + \rho_{IK} \left(\frac{e_n - e_1}{\sqrt{2}} \right) \frac{e_n - e_1}{\sqrt{2}} \right) \right\|_2$$

$$= \frac{1}{\sqrt{2}} \rho_{IK} \left(\frac{e_n + e_1}{\sqrt{2}} \right).$$

Using estimates from the previous theorem, we get

$$d_{BM}(IK, B_2^n) \geqslant \frac{\rho_{IK}(\frac{e_n + e_1}{\sqrt{2}})}{\sqrt{2}\rho_{IK}(e_n)} \geqslant \left(\frac{2^{1/p}}{2}\right)^{n-1} \frac{1}{n-1}.$$

The convexity of conv(IK) gives

$$\rho_{conv(IK)}(e_n)$$

$$\geqslant \left\| \frac{1}{2} \left(\rho_{IK} \left(\frac{e_n + e_1}{\sqrt{2}} \right) \frac{e_n + e_1}{\sqrt{2}} + \rho_{IK} \left(\frac{e_n - e_1}{\sqrt{2}} \right) \frac{e_n - e_1}{\sqrt{2}} \right) \right\|_2$$

$$= \frac{1}{\sqrt{2}} \rho_{IK} \left(\frac{e_n + e_1}{\sqrt{2}} \right).$$

Using estimates from the previous theorem, we get

$$d_{BM}(IK, B_2^n) \geqslant \frac{\rho_{IK}(\frac{e_n + e_1}{\sqrt{2}})}{\sqrt{2}\rho_{IK}(e_n)} \geqslant \left(\frac{2^{1/p}}{2}\right)^{n-1} \frac{1}{n-1}.$$

Now compare this with

$$d_{BM}(K, B_2^n) \leqslant 2^{\frac{1-p}{p}} \sqrt{n}.$$

A measure μ on \mathbb{R}^n is called log-concave if for any measurable $A, B \subset \mathbb{R}^n$ and $0 < \lambda < 1$, we have

$$\mu(\lambda A + (1 - \lambda)B) \geqslant \mu(A)^{\lambda}\mu(B)^{(1-\lambda)}$$

whenever $\lambda A + (1 - \lambda)B$ is measurable.

A measure μ on \mathbb{R}^n is called log-concave if for any measurable $A, B \subset \mathbb{R}^n$ and $0 < \lambda < 1$, we have

$$\mu(\lambda A + (1 - \lambda)B) \geqslant \mu(A)^{\lambda}\mu(B)^{(1-\lambda)}$$

whenever $\lambda A + (1 - \lambda)B$ is measurable.

Borell: log-concave measures are measures with log-concave densities.

A measure μ on \mathbb{R}^n is called log-concave if for any measurable $A, B \subset \mathbb{R}^n$ and $0 < \lambda < 1$, we have

$$\mu(\lambda A + (1 - \lambda)B) \geqslant \mu(A)^{\lambda}\mu(B)^{(1-\lambda)}$$

whenever $\lambda A + (1 - \lambda)B$ is measurable.

Borell: log-concave measures are measures with log-concave densities.

Next we will need the following theorem of Ball.

A measure μ on \mathbb{R}^n is called log-concave if for any measurable $A, B \subset \mathbb{R}^n$ and $0 < \lambda < 1$, we have

$$\mu(\lambda A + (1 - \lambda)B) \geqslant \mu(A)^{\lambda}\mu(B)^{(1-\lambda)}$$

whenever $\lambda A + (1 - \lambda)B$ is measurable.

Borell: log-concave measures are measures with log-concave densities.

Next we will need the following theorem of Ball.

Theorem (Ball)

Let $f: \mathbb{R}^n \to [0,\infty)$ be an even log-concave function satisfying $0 < \int_{\mathbb{R}^n} f < \infty$ and let $k \geqslant 1$. Then the map

$$x \longmapsto \left[\int_0^\infty f(rx)r^{k-1}dr\right]^{-\frac{1}{k}}$$

defines a norm on \mathbb{R}^n .

Let μ be a measure on \mathbb{R}^n , absolutely continuous with respect to the Lebesgue measure m, and let its density function f be locally integrable on n-1-dimensional subspaces of \mathbb{R}^n .

Let μ be a measure on \mathbb{R}^n , absolutely continuous with respect to the Lebesgue measure m, and let its density function f be locally integrable on n-1-dimensional subspaces of \mathbb{R}^n .

Define the intersection body $I_{\mu}K$ of a star body K with respect to μ by

$$\rho_{I_{\mu}K}(u) = \mu_{n-1}(K \cap u^{\perp}), \quad u \in S^{n-1}.$$

Let μ be a symmetric log-concave measure on \mathbb{R}^n with density f, and K a symmetric convex body in \mathbb{R}^n .

Let μ be a symmetric log-concave measure on \mathbb{R}^n with density f, and K a symmetric convex body in \mathbb{R}^n .

If we apply Ball's Theorem to the log-concave function $1_K f$, we get a symmetric convex body L whose Minkowski functional is given by

$$||x||_L = \left[(n-1) \int_0^\infty (1_K f)(rx) r^{n-2} dr \right]^{-\frac{1}{n-1}}.$$

Let μ be a symmetric log-concave measure on \mathbb{R}^n with density f, and K a symmetric convex body in \mathbb{R}^n .

If we apply Ball's Theorem to the log-concave function $1_K f$, we get a symmetric convex body L whose Minkowski functional is given by

$$||x||_L = \left[(n-1) \int_0^\infty (1_K f)(rx) r^{n-2} dr \right]^{-\frac{1}{n-1}}.$$

Then for every $u \in S^{n-1}$,

$$\begin{split} \mu_{n-1}(K\cap u^{\perp}) &= \int_{S^{n-1}\cap u^{\perp}} \int_0^{\infty} (1_K f)(r\theta) r^{n-2} dr d\theta \\ &= \frac{1}{n-1} \int_{S^{n-1}\cap u^{\perp}} \|\theta\|_L^{-n+1} d\theta = |L\cap u^{\perp}|. \end{split}$$

Using Busemann's Theorem for the convex body L, one obtains the following version of Busemann's theorem for log-concave measures.

$\mathsf{Theorem}$

Let μ be a symmetric log-concave measure on \mathbb{R}^n and K a symmetric convex body in \mathbb{R}^n . Then the intersection body $I_{\mu}K$ is convex.

Using Busemann's Theorem for the convex body L, one obtains the following version of Busemann's theorem for log-concave measures.

$\mathsf{Theorem}$

Let μ be a symmetric log-concave measure on \mathbb{R}^n and K a symmetric convex body in \mathbb{R}^n . Then the intersection body $I_{\mu}K$ is convex.

In order to generalize this Theorem to p-convex bodies, we will first prove a version of Ball's theorem for p-convex bodies.

Theorem 5

Let $f: \mathbb{R}^n \to [0, \infty)$ be an even log-concave function, $k \geqslant 1$, and K a p-convex body in \mathbb{R}^n for 0 . Then the body <math>L defined by the Minkowski functional

$$\|x\|_{L} = \left[\int_{0}^{\|x\|_{K}^{-1}} f(rx) r^{k-1} dr\right]^{-\frac{1}{k}}, \quad x \in \mathbb{R}^{n},$$

is *p*-convex.

Fix two non-parallel vectors $x_1, x_2 \in \mathbb{R}^n$ and denote $x_3 = x_1 + x_2$. We claim that $\|x_3\|_L^p \leq \|x_1\|_L^p + \|x_2\|_L^p$.

Fix two non-parallel vectors $x_1, x_2 \in \mathbb{R}^n$ and denote $x_3 = x_1 + x_2$. We claim that $\|x_3\|_L^p \le \|x_1\|_L^p + \|x_2\|_L^p$.

Consider the following 2-dimensional bodies in the plane $E = \text{span}\{x_1, x_2\}$,

$$\bar{K} = \left\{ \frac{t_1 x_1}{\|x_1\|_K} + \frac{t_2 x_2}{\|x_2\|_K} : t_1, t_2 \geqslant 0, t_1^p + t_2^p \leqslant 1 \right\}$$

and

$$\bar{L} = \left\{ x \in \mathbb{R}^n : \|x\|_{\bar{L}} = \left[\int_0^{\|x\|_{\bar{K}}^{-1}} f(rx) r^{k-1} dr \right]^{-\frac{1}{k}} \leqslant 1 \right\}.$$

Clearly \bar{K} is p-convex and $\bar{K} \subset K$. Also note that $\|x_i\|_{\bar{K}} = \|x_i\|_K$ for i = 1, 2, and $\|x_3\|_{\bar{K}} \geqslant \|x_3\|_K$.

Clearly \bar{K} is p-convex and $\bar{K} \subset K$. Also note that $\|x_i\|_{\bar{K}} = \|x_i\|_K$ for i=1,2, and $\|x_3\|_{\bar{K}} \geqslant \|x_3\|_K$. Therefore, $\|x_i\|_{\bar{I}} = \|x_i\|_L$ (i=1,2), and $\|x_3\|_{\bar{I}} \geqslant \|x_3\|_L$.

Consider the point $y=\frac{\|x_1\|_{\tilde{L}}}{\|x_1\|_{\tilde{K}}}x_1+\frac{\|x_2\|_{\tilde{L}}}{\|x_2\|_{\tilde{K}}}x_2$ in the plane E. The point $\frac{y}{\|y\|_{\tilde{K}}}$ lies on the p-arc connecting $\frac{x_1}{\|x_1\|_{\tilde{K}}}$ and $\frac{x_2}{\|x_2\|_{\tilde{K}}}$.

Consider the point $y=\frac{\|x_1\|_{\tilde{L}}}{\|x_1\|_{\tilde{K}}}x_1+\frac{\|x_2\|_{\tilde{L}}}{\|x_2\|_{\tilde{K}}}x_2$ in the plane E. The point $\frac{y}{\|y\|_{\tilde{K}}}$ lies on the p-arc connecting $\frac{x_1}{\|x_1\|_{\tilde{K}}}$ and $\frac{x_2}{\|x_2\|_{\tilde{K}}}$.

Consider the tangent line to this arc at the point $\frac{y}{\|y\|_{\tilde{K}}}$.

Consider the point $y = \frac{\|x_1\|_{\tilde{L}}}{\|x_1\|_{\tilde{K}}} x_1 + \frac{\|x_2\|_{\tilde{L}}}{\|x_2\|_{\tilde{K}}} x_2$ in the plane E. The point $\frac{y}{\|y\|_{\tilde{K}}}$ lies on the p-arc connecting $\frac{x_1}{\|x_1\|_{\tilde{K}}}$ and $\frac{x_2}{\|x_2\|_{\tilde{K}}}$.

Consider the tangent line to this arc at the point $\frac{y}{\|y\|_{\tilde{K}}}$. This line intersects the segments $[0,x_i/\|x_i\|_{\tilde{K}}]$, i=1,2, at some points $\frac{t_ix_i}{\|x_i\|_{\tilde{K}}}$ with $t_i\in(0,1)$.

Since $\frac{t_1x_1}{\|x_1\|_{\tilde{K}}}$, $\frac{t_2x_2}{\|x_2\|_{\tilde{K}}}$ and $\frac{y}{\|y\|_{\tilde{K}}}$ are on the same line, it follows that the coefficients of $\frac{t_1x_1}{\|x_1\|_{\tilde{K}}}$ and $\frac{t_2x_2}{\|x_2\|_{\tilde{K}}}$ in the equality

$$\frac{y}{\|y\|_{\bar{K}}} = \frac{1}{\|y\|_{\bar{K}}} \left(\frac{\|x_1\|_{\bar{L}}}{t_1} \cdot \frac{t_1 x_1}{\|x_1\|_{\bar{K}}} + \frac{\|x_2\|_{\bar{L}}}{t_2} \cdot \frac{t_2 x_2}{\|x_2\|_{\bar{K}}} \right)$$

have to add up to 1.

Since $\frac{t_1x_1}{\|x_1\|_{\bar{K}}}$, $\frac{t_2x_2}{\|x_2\|_{\bar{K}}}$ and $\frac{y}{\|y\|_{\bar{K}}}$ are on the same line, it follows that the coefficients of $\frac{t_1x_1}{\|x_1\|_{\bar{K}}}$ and $\frac{t_2x_2}{\|x_2\|_{\bar{K}}}$ in the equality

$$\frac{y}{\|y\|_{\bar{K}}} = \frac{1}{\|y\|_{\bar{K}}} \left(\frac{\|x_1\|_{\bar{L}}}{t_1} \cdot \frac{t_1 x_1}{\|x_1\|_{\bar{K}}} + \frac{\|x_2\|_{\bar{L}}}{t_2} \cdot \frac{t_2 x_2}{\|x_2\|_{\bar{K}}} \right)$$

have to add up to 1.

Therefore,

$$||y||_{\bar{K}} = \frac{||x_1||_{\bar{L}}}{t_1} + \frac{||x_2||_{\bar{L}}}{t_2}.$$

Note that the line between $\frac{t_1x_1}{\|x_1\|_{\tilde{K}}}$ and $\frac{t_2x_2}{\|x_2\|_{\tilde{K}}}$ separates $\frac{x_3}{\|x_3\|_{\tilde{K}}}$ from the origin, i.e. the three points $\frac{t_1x_1}{\|x_1\|_{\tilde{K}}}$, $\frac{t_2x_2}{\|x_2\|_{\tilde{K}}}$ and $\frac{x_3}{\|x_3\|_{\tilde{K}}}$ are in the "convex position".

Note that the line between $\frac{t_1x_1}{\|x_1\|_{\tilde{K}}}$ and $\frac{t_2x_2}{\|x_2\|_{\tilde{K}}}$ separates $\frac{x_3}{\|x_3\|_{\tilde{K}}}$ from the origin, i.e. the three points $\frac{t_1x_1}{\|x_1\|_{\tilde{K}}}$, $\frac{t_2x_2}{\|x_2\|_{\tilde{K}}}$ and $\frac{x_3}{\|x_3\|_{\tilde{K}}}$ are in the "convex position".

Applying Ball's theorem to these three points,

$$\left[\int_0^{\frac{1}{\|x_3\|_{\widetilde{K}}}} f(rx_3) r^{k-1} dr\right]^{-\frac{1}{k}}$$

$$\leqslant \left[\int_0^{\frac{t_1}{\|x_1\|_{\bar{K}}}} f(rx_1) r^{k-1} dr \right]^{-\frac{1}{k}} + \left[\int_0^{\frac{t_2}{\|x_2\|_{\bar{K}}}} f(rx_2) r^{k-1} dr \right]^{-\frac{1}{k}}.$$

Let
$$s_i = \|x_i\|_{\bar{L}} \left[\int_0^{\frac{t_i}{\|x_i\|_{\bar{K}}}} f(rx_i) r^{k-1} dr \right]^{\frac{1}{k}}$$
 for $i = 1, 2$.

Let
$$s_i = \|x_i\|_{\bar{L}} \left[\int_0^{\frac{t_i}{\|x_i\|_{\bar{K}}}} f(rx_i) r^{k-1} dr \right]^{\frac{1}{k}}$$
 for $i=1,2$. The above inequality becomes

$$||x_3||_{\overline{L}} \leqslant \frac{||x_1||_{\overline{L}}}{s_1} + \frac{||x_2||_{\overline{L}}}{s_2}.$$

Let
$$s_i = \|x_i\|_{\bar{L}} \left[\int_0^{\frac{t_i}{\|x_i\|_{\bar{K}}}} f(rx_i) r^{k-1} dr \right]^{\frac{1}{k}}$$
 for $i=1,2$. The above inequality becomes

$$||x_3||_{\overline{L}} \leqslant \frac{||x_1||_{\overline{L}}}{s_1} + \frac{||x_2||_{\overline{L}}}{s_2}.$$

By a change of variables, we get

$$s_{i} = t_{i} \|x_{i}\|_{\bar{L}} \left[\int_{0}^{\frac{1}{\|x_{i}\|_{\bar{K}}}} f(t_{i} r x_{i}) r^{k-1} dr \right]^{\frac{1}{k}}$$

$$\geqslant t_{i} \|x_{i}\|_{\bar{L}} \left[\int_{0}^{\frac{1}{\|x_{i}\|_{\bar{K}}}} f(r x_{i}) r^{k-1} dr \right]^{\frac{1}{k}} = t_{i}$$

for each i = 1, 2.

Putting all together, we have

$$\|x_3\|_L \leqslant \|x_3\|_{\bar{L}} \leqslant \frac{\|x_1\|_{\bar{L}}}{s_1} + \frac{\|x_2\|_{\bar{L}}}{s_2} \leqslant \frac{\|x_1\|_{\bar{L}}}{t_1} + \frac{\|x_2\|_{\bar{L}}}{t_2} = \|y\|_{\bar{K}}.$$

Putting all together, we have

$$\|x_3\|_L \leqslant \|x_3\|_{\bar{L}} \leqslant \frac{\|x_1\|_{\bar{L}}}{s_1} + \frac{\|x_2\|_{\bar{L}}}{s_2} \leqslant \frac{\|x_1\|_{\bar{L}}}{t_1} + \frac{\|x_2\|_{\bar{L}}}{t_2} = \|y\|_{\bar{K}}.$$

Using the *p*-convexity of \bar{K} , we have

$$\|y\|_{\bar{K}}^{p} \leq \left\| \frac{\|x_{1}\|_{\bar{L}}}{\|x_{1}\|_{\bar{K}}} x_{1} \right\|_{\bar{K}}^{p} + \left\| \frac{\|x_{2}\|_{\bar{L}}}{\|x_{2}\|_{\bar{K}}} x_{2} \right\|_{\bar{K}}^{p} = \|x_{1}\|_{\bar{L}}^{p} + \|x_{2}\|_{\bar{L}}^{p} = \|x_{1}\|_{\bar{L}}^{p} + \|x_{2}\|_{\bar{L}}^{p},$$

and therefore $||x_3||_L^p \le ||x_1||_L^p + ||x_2||_L^p$.

Corollary

Let μ be a symmetric log-concave measure and K a symmetric p-convex body in \mathbb{R}^n for $p \in (0,1]$. Then the intersection body $I_\mu K$ of K is q-convex with $q = \left\lceil (1/p-1)(n-1) + 1 \right\rceil^{-1}$.

Let f be the density function of μ . By Theorem 5, the body L with the Minkowski functional

$$\|x\|_{L} = \left[(n-1) \int_{0}^{\|x\|_{K}^{-1}} f(rx) r^{n-2} dr \right]^{\frac{-1}{n-1}}, \quad x \in \mathbb{R}^{n},$$

is *p*-convex.

Let f be the density function of μ . By Theorem 5, the body L with the Minkowski functional

$$||x||_{L} = \left[(n-1) \int_{0}^{||x||_{K}^{-1}} f(rx) r^{n-2} dr \right]^{\frac{-1}{n-1}}, \quad x \in \mathbb{R}^{n},$$

is p-convex.

On the other hand,

$$\rho_{I_{\mu}K}(u) = \mu_{n-1}(K \cap u^{\perp})
= \int_{\mathbb{R}^{n}} 1_{K \cap u^{\perp}}(x) f(x) dx = \int_{S^{n-1} \cap u^{\perp}} \int_{0}^{\|u\|_{K}^{-1}} f(rv) r^{n-2} dr dv
= \frac{1}{n-1} \int_{S^{n-1} \cap u^{\perp}} \|v\|_{L}^{-n+1} dv = |L \cap u^{\perp}|_{n-1}
= \rho_{IL}(u),$$

which means $I_{\mu}K = IL$.

$${\it IL}$$
 is q -convex with $q=\left[(1/p-1)(n-1)+1\right]^{-1}$, and therefore so is $I_{\mu}{\it K}$.

Remark

We have an example that shows that the condition on f to be even in Theorem 5 cannot be dropped.

However, it is possible to give a version of Theorem 5 for non-symmetric s-concave measures.

However, it is possible to give a version of Theorem 5 for non-symmetric *s*-concave measures.

Borell introduced the classes $\mathfrak{M}_s(\Omega)$, $(-\infty \leqslant s \leqslant \infty, \Omega \subset \mathbb{R}^n$ open convex) of s-concave measures, satisfying

$$\mu(\lambda A + (1-\lambda)B) \geqslant \left[\lambda\mu(A)^s + (1-\lambda)\mu(B)^s\right]^{\frac{1}{s}}$$

holds for all nonempty compact $A, B \subset \Omega$ and all $\lambda \in (0,1)$.

However, it is possible to give a version of Theorem 5 for non-symmetric *s*-concave measures.

Borell introduced the classes $\mathfrak{M}_s(\Omega)$, $(-\infty \leqslant s \leqslant \infty, \Omega \subset \mathbb{R}^n$ open convex) of *s*-concave measures, satisfying

$$\mu(\lambda A + (1-\lambda)B) \geqslant \left[\lambda\mu(A)^s + (1-\lambda)\mu(B)^s\right]^{\frac{1}{s}}$$

holds for all nonempty compact $A, B \subset \Omega$ and all $\lambda \in (0, 1)$. In particular, s = 0 gives the class of log-concave measures.

Let us consider the case 0 < s < 1/n. According to Borell, μ is s-concave if and only if the support of μ is n-dimensional and $d\mu = fdm$ for some $f \in L^1_{loc}(\Omega)$ such that $f^{\frac{s}{1-ns}}$ is a concave function on Ω .

Theorem 6

Let μ be an s-concave measure on $\Omega \subset \mathbb{R}^n$ with density f, for 0 < s < 1/n, and K a p-convex body in Ω , for $p \in (0,1]$. If $k \geqslant 1$, then the body L whose Minkowski functional is given by

$$\|x\|_L = \left[\int_0^\infty 1_K(rx)f(rx)r^{k-1}dr\right]^{-\frac{1}{k}}, \quad x \in \mathbb{R}^n$$

is q-convex with $q = \left[\left(\frac{1}{p} - 1 \right) \left(\frac{1}{s} - n \right) \frac{1}{k} + \frac{1}{p} \right]^{-1}$.

Theorem 6

Let μ be an s-concave measure on $\Omega \subset \mathbb{R}^n$ with density f, for 0 < s < 1/n, and K a p-convex body in Ω , for $p \in (0,1]$. If $k \geqslant 1$, then the body L whose Minkowski functional is given by

$$\|x\|_L = \left[\int_0^\infty 1_K(rx)f(rx)r^{k-1}dr\right]^{-\frac{1}{k}}, \quad x \in \mathbb{R}^n$$

is q-convex with $q = \left[\left(\frac{1}{p} - 1\right)\left(\frac{1}{s} - n\right)\frac{1}{k} + \frac{1}{p}\right]^{-1}$.

Remark

We have an example showing that the above theorem is sharp.

THANK YOU!!!