The geometry of p-convex intersection bodies

Vlad Yaskin
University of Alberta
vladyaskin@math.ualberta.ca

Fields Institute, September 17, 2010

Authors

This is joint work with Jaegil Kim and Artëm Zvavitch.

Background

Lutwak (1988) introduced the notion of the intersection body IK of a star body K. IK is defined by its radial function

$$
\rho_{I K}(\xi)=\left|K \cap \xi^{\perp}\right|, \quad \text { for } \xi \in S^{n-1}
$$

IK

Background

Theorem (Busemann)
 Let K be an origin-symmetric convex body in \mathbb{R}^{n}. Then its intersection body IK is convex.

Background

Theorem (Busemann)

Let K be an origin-symmetric convex body in \mathbb{R}^{n}. Then its intersection body IK is convex.

Remark

The result does not hold without the symmetry assumption.

Background

Theorem (Busemann)

Let K be an origin-symmetric convex body in \mathbb{R}^{n}. Then its intersection body IK is convex.

Remark

The result does not hold without the symmetry assumption.
What if K is not convex?

Background

Let $p \in(0,1]$. A body K is said to be p-convex if, for all $x, y \in \mathbb{R}^{n}$,

$$
\|x+y\|_{K}^{p} \leqslant\|x\|_{K}^{p}+\|y\|_{K}^{p},
$$

Background

Let $p \in(0,1]$. A body K is said to be p-convex if, for all $x, y \in \mathbb{R}^{n}$,

$$
\|x+y\|_{K}^{p} \leqslant\|x\|_{K}^{p}+\|y\|_{K}^{p},
$$

or, equivalently $t^{1 / p_{X}}+(1-t)^{1 / p^{\prime}} y \in K$ whenever x and y are in K and $t \in(0,1)$.

Background

Let $p \in(0,1]$. A body K is said to be p-convex if, for all $x, y \in \mathbb{R}^{n}$,

$$
\|x+y\|_{K}^{p} \leqslant\|x\|_{K}^{p}+\|y\|_{K}^{p},
$$

or, equivalently $t^{1 / p_{X}}+(1-t)^{1 / p_{y}} y \in K$ whenever x and y are in K and $t \in(0,1)$.

One can see that p-convex sets with $p=1$ are just convex.

Background

Let $p \in(0,1]$. A body K is said to be p-convex if, for all $x, y \in \mathbb{R}^{n}$,

$$
\|x+y\|_{K}^{p} \leqslant\|x\|_{K}^{p}+\|y\|_{K}^{p},
$$

or, equivalently $t^{1 / p_{X}}+(1-t)^{1 / p_{y}} y \in K$ whenever x and y are in K and $t \in(0,1)$.

One can see that p-convex sets with $p=1$ are just convex.
Note also that a p_{1}-convex body is p_{2}-convex for all $0<p_{2} \leqslant p_{1}$.

Results

Theorem 1

Let K be an origin-symmetric p-convex body in $\mathbb{R}^{n}, p \in(0,1]$, and E a $(k-1)$-dimensional subspace of \mathbb{R}^{n} for $1 \leqslant k \leqslant n$. Then the map

$$
u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_{k}}, \quad u \in E^{\perp}
$$

defines the Minkowski functional of a q-convex body in E^{\perp} with $q=[(1 / p-1) k+1]^{-1}$.

Results

Theorem 1

Let K be an origin-symmetric p-convex body in $\mathbb{R}^{n}, p \in(0,1]$, and E a $(k-1)$-dimensional subspace of \mathbb{R}^{n} for $1 \leqslant k \leqslant n$. Then the map

$$
u \longmapsto \frac{|u|}{|K \cap \operatorname{span}(u, E)|_{k}}, \quad u \in E^{\perp}
$$

defines the Minkowski functional of a q-convex body in E^{\perp} with $q=[(1 / p-1) k+1]^{-1}$.

Proof is similar to the one in [Milman, Pajor].

Results

As a corollary of the previous theorem we get the following

Theorem 2

Let K be an origin-symmetric p-convex body in \mathbb{R}^{n} for $p \in(0,1]$. Then the intersection body $I K$ of K is q-convex for $q=[(1 / p-1)(n-1)+1]^{-1}$.

Results

As a corollary of the previous theorem we get the following

Theorem 2

Let K be an origin-symmetric p-convex body in \mathbb{R}^{n} for $p \in(0,1]$. Then the intersection body $I K$ of K is q-convex for $q=[(1 / p-1)(n-1)+1]^{-1}$.

Remark

Note that this theorem does not hold without the symmetry assumption.

Results

As a corollary of the previous theorem we get the following

Theorem 2

Let K be an origin-symmetric p-convex body in \mathbb{R}^{n} for $p \in(0,1]$. Then the intersection body $I K$ of K is q-convex for $q=[(1 / p-1)(n-1)+1]^{-1}$.

Remark

Note that this theorem does not hold without the symmetry assumption.

What about sharpness of Theorem 2?

Results

Theorem 3

There exists a p-convex body $K \subset \mathbb{R}^{n}$ such that $I K$ is q-convex with

$$
q \leqslant\left[(1 / p-1)(n-1)+1+g_{n}(p)\right]^{-1},
$$

where $g_{n}(p)$ is a function that satisfies

1) $g_{n}(p) \geqslant-\log _{2}(n-1)$,
2) $\lim _{p \rightarrow 1^{-}} g_{n}(p)=0$.

Proof.

Let

$$
C_{1}=\left\{\left|x_{1}\right| \leqslant 1, \ldots,\left|x_{n-1}\right| \leqslant 1, x_{n}=1\right\}
$$

and

$$
C_{-1}=\left\{\left|x_{1}\right| \leqslant 1, \ldots,\left|x_{n-1}\right| \leqslant 1, x_{n}=-1\right\} .
$$

For a fixed $0<p<1$ define $K \subset \mathbb{R}^{n}$ as follows:
$K=\left\{z \in \mathbb{R}^{n}: z=t^{\left.1 / p_{x}+(1-t)^{1 / p} y, x \in C_{1}, y \in C_{-1}, 0 \leqslant t \leqslant 1\right\} . ~ . ~ . ~}\right.$

Let $L=I K$ be the intersection body of K.
In order to estimate q, we will use the inequality

$$
\left\|\sqrt{2} e_{n}\right\|_{L}^{q} \leqslant\left\|\frac{e_{n}+e_{1}}{\sqrt{2}}\right\|_{L}^{q}+\left\|\frac{e_{n}-e_{1}}{\sqrt{2}}\right\|_{L}^{q}=2\left\|\frac{e_{n}+e_{1}}{\sqrt{2}}\right\|_{L}^{q},
$$

Let $L=I K$ be the intersection body of K.
In order to estimate q, we will use the inequality

$$
\left\|\sqrt{2} e_{n}\right\|_{L}^{q} \leqslant\left\|\frac{e_{n}+e_{1}}{\sqrt{2}}\right\|_{L}^{q}+\left\|\frac{e_{n}-e_{1}}{\sqrt{2}}\right\|_{L}^{q}=2\left\|\frac{e_{n}+e_{1}}{\sqrt{2}}\right\|_{L}^{q},
$$

that is

$$
\frac{\sqrt{2}}{\rho_{L}\left(e_{n}\right)} \leqslant \frac{2^{1 / q}}{\rho_{L}\left(\left(e_{1}+e_{n}\right) / \sqrt{2}\right)}
$$

Let $L=I K$ be the intersection body of K.
In order to estimate q, we will use the inequality

$$
\left\|\sqrt{2} e_{n}\right\|_{L}^{q} \leqslant\left\|\frac{e_{n}+e_{1}}{\sqrt{2}}\right\|_{L}^{q}+\left\|\frac{e_{n}-e_{1}}{\sqrt{2}}\right\|_{L}^{q}=2\left\|\frac{e_{n}+e_{1}}{\sqrt{2}}\right\|_{L}^{q},
$$

that is

$$
\frac{\sqrt{2}}{\rho_{L}\left(e_{n}\right)} \leqslant \frac{2^{1 / q}}{\rho_{L}\left(\left(e_{1}+e_{n}\right) / \sqrt{2}\right)}
$$

Computing $\rho_{L}\left(e_{n}\right)$ and $\rho_{L}\left(\left(e_{1}+e_{n}\right) / \sqrt{2}\right)$ we get

$$
q \leqslant\left[\left(\frac{1}{p}-1\right)(n-1)+1+\log _{2} \frac{(n-2)\left(\frac{2}{2^{1 / p}}\right)^{n-1}+1}{n-1}\right]^{-1}
$$

Question

From Artëm's lecture:

Question

From Artëm's lecture:
It is easy to see that the intersection body of a Euclidean ball is again a Euclidean ball.

Question

From Artëm's lecture:
It is easy to see that the intersection body of a Euclidean ball is again a Euclidean ball.
Question. Are there other fixed points of I?

Question

From Artëm's lecture:
It is easy to see that the intersection body of a Euclidean ball is again a Euclidean ball.
Question. Are there other fixed points of I?

Fish, Nazarov, Ryabogin, Zvavitch have shown that in a sufficiently small neighborhood of the ball (with respect to the Banach-Mazur distance) there are no other fixed points of I. However, in general this question is still open.

Question

From Artëm's lecture:
It is easy to see that the intersection body of a Euclidean ball is again a Euclidean ball.
Question. Are there other fixed points of I?

Fish, Nazarov, Ryabogin, Zvavitch have shown that in a sufficiently small neighborhood of the ball (with respect to the Banach-Mazur distance) there are no other fixed points of I. However, in general this question is still open.

Recall that the Banach-Mazur distance between two origin-symmetric star bodies is defined by

$$
d_{B M}(K, L)=\inf \{b / a: \exists T \in G L(n): a K \subset T L \subset b K\} .
$$

Question

FNRZ show that $I^{m} K$ approaches the ball as $m \rightarrow \infty$, if K is sufficiently close to the ball.

Question

FNRZ show that $I^{m} K$ approaches the ball as $m \rightarrow \infty$, if K is sufficiently close to the ball.

Question. Does IK have to be closer to the ball than K?

Question

FNRZ show that $I^{m} K$ approaches the ball as $m \rightarrow \infty$, if K is sufficiently close to the ball.

Question. Does IK have to be closer to the ball than K?
Our next theorem shows that the answer is "No". There are p-convex bodies for which the intersection body is farther from the Euclidean ball.

Results

Theorem 4

Let $p \in(0,1)$ and let c be any constant satisfying $1<c<2^{1 / p-1}$. Then for all large enough n, there exists a p-convex body $K \subset \mathbb{R}^{n}$ such that

$$
c^{n} d_{B M}\left(K, B_{2}^{n}\right)<d_{B M}\left(I K, B_{2}^{n}\right) .
$$

Consider K from the previous theorem. One can see that

$$
K \subset B_{\infty}^{n} \subset \sqrt{n} B_{2}^{n} .
$$

Consider K from the previous theorem. One can see that

$$
K \subset B_{\infty}^{n} \subset \sqrt{n} B_{2}^{n} .
$$

On the other hand,

$$
K \supset 2^{\frac{p-1}{p}} B_{\infty}^{n} \supset 2^{\frac{p-1}{p}} B_{2}^{n}
$$

Consider K from the previous theorem. One can see that

$$
K \subset B_{\infty}^{n} \subset \sqrt{n} B_{2}^{n} .
$$

On the other hand,

$$
K \supset 2^{\frac{p-1}{p}} B_{\infty}^{n} \supset 2^{\frac{p-1}{p}} B_{2}^{n}
$$

and thus

$$
d_{B M}\left(K, B_{2}^{n}\right) \leqslant 2^{\frac{1-p}{p}} \sqrt{n}
$$

Next we give a lower bound for $d_{B M}\left(I K, B_{2}^{n}\right)$.

Next we give a lower bound for $d_{B M}\left(I K, B_{2}^{n}\right)$.
Let E be an ellipsoid such that $I K \subset E \subset d I K$, for some d.

Next we give a lower bound for $d_{B M}\left(I K, B_{2}^{n}\right)$.
Let E be an ellipsoid such that $I K \subset E \subset d I K$, for some d. Then

$$
I K \subset \operatorname{conv}(I K) \subset E \subset d I K
$$

Next we give a lower bound for $d_{B M}\left(I K, B_{2}^{n}\right)$.
Let E be an ellipsoid such that $I K \subset E \subset d I K$, for some d. Then

$$
I K \subset \operatorname{conv}(I K) \subset E \subset d I K
$$

Therefore, $d \geqslant r$, where $r=\min \{t: \operatorname{conv}(I K) \subset t I K\}$.

Next we give a lower bound for $d_{B M}\left(I K, B_{2}^{n}\right)$.
Let E be an ellipsoid such that $I K \subset E \subset d I K$, for some d. Then

$$
I K \subset \operatorname{conv}(I K) \subset E \subset d I K
$$

Therefore, $d \geqslant r$, where $r=\min \{t: \operatorname{conv}(I K) \subset t I K\}$. Thus,
$d_{B M}\left(I K, B_{2}^{n}\right) \geqslant r=\max \left\{\frac{\rho_{\operatorname{conv}(I K)}(\theta)}{\rho_{I K}(\theta)}, \theta \in S^{n-1}\right\} \geqslant \frac{\rho_{\operatorname{conv}(I K)}\left(e_{n}\right)}{\rho_{I K}\left(e_{n}\right)}$.

The convexity of conv(IK) gives

$$
\begin{gathered}
\rho_{\operatorname{conv}(I K)}\left(e_{n}\right) \\
\geqslant\left\|\frac{1}{2}\left(\rho_{I K}\left(\frac{e_{n}+e_{1}}{\sqrt{2}}\right) \frac{e_{n}+e_{1}}{\sqrt{2}}+\rho_{I K}\left(\frac{e_{n}-e_{1}}{\sqrt{2}}\right) \frac{e_{n}-e_{1}}{\sqrt{2}}\right)\right\|_{2} \\
=\frac{1}{\sqrt{2}} \rho_{I K}\left(\frac{e_{n}+e_{1}}{\sqrt{2}}\right) .
\end{gathered}
$$

The convexity of conv(IK) gives

$$
\begin{gathered}
\rho_{\operatorname{conv}(I K)}\left(e_{n}\right) \\
\geqslant\left\|\frac{1}{2}\left(\rho_{I K}\left(\frac{e_{n}+e_{1}}{\sqrt{2}}\right) \frac{e_{n}+e_{1}}{\sqrt{2}}+\rho_{I K}\left(\frac{e_{n}-e_{1}}{\sqrt{2}}\right) \frac{e_{n}-e_{1}}{\sqrt{2}}\right)\right\|_{2} \\
=\frac{1}{\sqrt{2}} \rho_{I K}\left(\frac{e_{n}+e_{1}}{\sqrt{2}}\right) .
\end{gathered}
$$

Using estimates from the previous theorem, we get

$$
d_{B M}\left(I K, B_{2}^{n}\right) \geqslant \frac{\rho_{I K}\left(\frac{e_{n}+e_{1}}{\sqrt{2}}\right)}{\sqrt{2} \rho_{I K}\left(e_{n}\right)} \geqslant\left(\frac{2^{1 / p}}{2}\right)^{n-1} \frac{1}{n-1} .
$$

The convexity of conv(IK) gives

$$
\begin{gathered}
\rho_{\operatorname{conv}(I K)}\left(e_{n}\right) \\
\geqslant\left\|\frac{1}{2}\left(\rho_{I K}\left(\frac{e_{n}+e_{1}}{\sqrt{2}}\right) \frac{e_{n}+e_{1}}{\sqrt{2}}+\rho_{I K}\left(\frac{e_{n}-e_{1}}{\sqrt{2}}\right) \frac{e_{n}-e_{1}}{\sqrt{2}}\right)\right\|_{2} \\
=\frac{1}{\sqrt{2}} \rho_{I K}\left(\frac{e_{n}+e_{1}}{\sqrt{2}}\right) .
\end{gathered}
$$

Using estimates from the previous theorem, we get

$$
d_{B M}\left(I K, B_{2}^{n}\right) \geqslant \frac{\rho_{I K}\left(\frac{e_{n}+e_{1}}{\sqrt{2}}\right)}{\sqrt{2} \rho_{I K}\left(e_{n}\right)} \geqslant\left(\frac{2^{1 / p}}{2}\right)^{n-1} \frac{1}{n-1} .
$$

Now compare this with

$$
d_{B M}\left(K, B_{2}^{n}\right) \leqslant 2^{\frac{1-p}{p}} \sqrt{n} .
$$

Generalization to log-concave measures

A measure μ on \mathbb{R}^{n} is called log-concave if for any measurable $A, B \subset \mathbb{R}^{n}$ and $0<\lambda<1$, we have

$$
\mu(\lambda A+(1-\lambda) B) \geqslant \mu(A)^{\lambda} \mu(B)^{(1-\lambda)}
$$

whenever $\lambda A+(1-\lambda) B$ is measurable.

Generalization to log-concave measures

A measure μ on \mathbb{R}^{n} is called log-concave if for any measurable $A, B \subset \mathbb{R}^{n}$ and $0<\lambda<1$, we have

$$
\mu(\lambda A+(1-\lambda) B) \geqslant \mu(A)^{\lambda} \mu(B)^{(1-\lambda)}
$$

whenever $\lambda A+(1-\lambda) B$ is measurable.
Borell: log-concave measures are measures with log-concave densities.

Generalization to log-concave measures

A measure μ on \mathbb{R}^{n} is called log-concave if for any measurable $A, B \subset \mathbb{R}^{n}$ and $0<\lambda<1$, we have

$$
\mu(\lambda A+(1-\lambda) B) \geqslant \mu(A)^{\lambda} \mu(B)^{(1-\lambda)}
$$

whenever $\lambda A+(1-\lambda) B$ is measurable.
Borell: log-concave measures are measures with log-concave densities.

Next we will need the following theorem of Ball.

Generalization to log-concave measures

A measure μ on \mathbb{R}^{n} is called log-concave if for any measurable $A, B \subset \mathbb{R}^{n}$ and $0<\lambda<1$, we have

$$
\mu(\lambda A+(1-\lambda) B) \geqslant \mu(A)^{\lambda} \mu(B)^{(1-\lambda)}
$$

whenever $\lambda A+(1-\lambda) B$ is measurable.
Borell: log-concave measures are measures with log-concave densities.

Next we will need the following theorem of Ball.

Theorem (Ball)

Let $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ be an even log-concave function satisfying $0<\int_{\mathbb{R}^{n}} f<\infty$ and let $k \geqslant 1$. Then the map

$$
x \longmapsto\left[\int_{0}^{\infty} f(r x) r^{k-1} d r\right]^{-\frac{1}{k}}
$$

defines a norm on \mathbb{R}^{n}.

Generalization to log-concave measures

Let μ be a measure on \mathbb{R}^{n}, absolutely continuous with respect to the Lebesgue measure m, and let its density function f be locally integrable on n-1-dimensional subspaces of \mathbb{R}^{n}.

Generalization to log-concave measures

Let μ be a measure on \mathbb{R}^{n}, absolutely continuous with respect to the Lebesgue measure m, and let its density function f be locally integrable on n-1-dimensional subspaces of \mathbb{R}^{n}.

Define the intersection body $I_{\mu} K$ of a star body K with respect to μ by

$$
\rho_{I_{\mu} K}(u)=\mu_{n-1}\left(K \cap u^{\perp}\right), \quad u \in S^{n-1}
$$

Generalization to log-concave measures

Let μ be a symmetric log-concave measure on \mathbb{R}^{n} with density f, and K a symmetric convex body in \mathbb{R}^{n}.

Generalization to log-concave measures

Let μ be a symmetric log-concave measure on \mathbb{R}^{n} with density f, and K a symmetric convex body in \mathbb{R}^{n}.

If we apply Ball's Theorem to the log-concave function $1_{K} f$, we get a symmetric convex body L whose Minkowski functional is given by

$$
\|x\|_{L}=\left[(n-1) \int_{0}^{\infty}\left(1_{K} f\right)(r x) r^{n-2} d r\right]^{-\frac{1}{n-1}} .
$$

Generalization to log-concave measures

Let μ be a symmetric log-concave measure on \mathbb{R}^{n} with density f, and K a symmetric convex body in \mathbb{R}^{n}.

If we apply Ball's Theorem to the log-concave function $1_{K} f$, we get a symmetric convex body L whose Minkowski functional is given by

$$
\|x\|_{L}=\left[(n-1) \int_{0}^{\infty}\left(1_{K} f\right)(r x) r^{n-2} d r\right]^{-\frac{1}{n-1}} .
$$

Then for every $u \in S^{n-1}$,

$$
\begin{gathered}
\mu_{n-1}\left(K \cap u^{\perp}\right)=\int_{S^{n-1} \cap u^{\perp}} \int_{0}^{\infty}\left(1_{K} f\right)(r \theta) r^{n-2} d r d \theta \\
=\frac{1}{n-1} \int_{S^{n-1} \cap u^{\perp}}\|\theta\|_{L}^{-n+1} d \theta=\left|L \cap u^{\perp}\right|
\end{gathered}
$$

Generalization to log-concave measures

Using Busemann's Theorem for the convex body L, one obtains the following version of Busemann's theorem for log-concave measures.

Theorem

Let μ be a symmetric log-concave measure on \mathbb{R}^{n} and K a symmetric convex body in \mathbb{R}^{n}. Then the intersection body $I_{\mu} K$ is convex.

Generalization to log-concave measures

Using Busemann's Theorem for the convex body L, one obtains the following version of Busemann's theorem for log-concave measures.

Theorem

Let μ be a symmetric log-concave measure on \mathbb{R}^{n} and K a symmetric convex body in \mathbb{R}^{n}. Then the intersection body $I_{\mu} K$ is convex.

In order to generalize this Theorem to p-convex bodies, we will first prove a version of Ball's theorem for p-convex bodies.

Generalization to log-concave measures

Theorem 5

Let $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ be an even log-concave function, $k \geqslant 1$, and K a p-convex body in \mathbb{R}^{n} for $0<p \leqslant 1$. Then the body L defined by the Minkowski functional

$$
\|x\|_{L}=\left[\int_{0}^{\|x\|_{K}^{-1}} f(r x) r^{k-1} d r\right]^{-\frac{1}{k}}, \quad x \in \mathbb{R}^{n}
$$

is p-convex.

Fix two non-parallel vectors $x_{1}, x_{2} \in \mathbb{R}^{n}$ and denote $x_{3}=x_{1}+x_{2}$. We claim that $\left\|x_{3}\right\|_{L}^{p} \leqslant\left\|x_{1}\right\|_{L}^{p}+\left\|x_{2}\right\|_{L}^{p}$.

Fix two non-parallel vectors $x_{1}, x_{2} \in \mathbb{R}^{n}$ and denote $x_{3}=x_{1}+x_{2}$. We claim that $\left\|x_{3}\right\|_{L}^{p} \leqslant\left\|x_{1}\right\|_{L}^{p}+\left\|x_{2}\right\|_{L}^{p}$.

Consider the following 2-dimensional bodies in the plane $E=\operatorname{span}\left\{x_{1}, x_{2}\right\}$,

$$
\bar{K}=\left\{\frac{t_{1} x_{1}}{\left\|x_{1}\right\|_{K}}+\frac{t_{2} x_{2}}{\left\|x_{2}\right\|_{K}}: t_{1}, t_{2} \geqslant 0, t_{1}^{p}+t_{2}^{p} \leqslant 1\right\}
$$

and

$$
\bar{L}=\left\{x \in \mathbb{R}^{n}:\|x\|_{\bar{L}}=\left[\int_{0}^{\|x\|_{\bar{k}}^{-1}} f(r x) r^{k-1} d r\right]^{-\frac{1}{k}} \leqslant 1\right\} .
$$

Proof

Clearly \bar{K} is p-convex and $\bar{K} \subset K$. Also note that $\left\|x_{i}\right\|_{\bar{K}}=\left\|x_{i}\right\|_{K}$ for $i=1,2$, and $\left\|x_{3}\right\|_{\bar{K}} \geqslant\left\|x_{3}\right\|_{K}$.

Proof

Clearly \bar{K} is p-convex and $\bar{K} \subset K$. Also note that $\left\|x_{i}\right\|_{\bar{K}}=\left\|x_{i}\right\|_{K}$ for $i=1,2$, and $\left\|x_{3}\right\|_{\bar{K}} \geqslant\left\|x_{3}\right\|_{k}$.
Therefore, $\left\|x_{i}\right\|_{\bar{L}}=\left\|x_{i}\right\|_{L}(i=1,2)$, and $\left\|x_{3}\right\|_{\bar{L}} \geqslant\left\|x_{3}\right\|_{L}$.

Consider the point $y=\frac{\left\|x_{1}\right\|_{\bar{L}}}{\left\|x_{1}\right\|_{\overline{\mathcal{L}}}} x_{1}+\frac{\left\|x_{2}\right\|_{\bar{L}}}{\left\|x_{2}\right\|_{\overline{\mathcal{K}}}} x_{2}$ in the plane E. The point $\frac{y}{\|y\|_{\bar{K}}}$ lies on the p-arc connecting $\frac{x_{1}}{\left\|x_{1}\right\|_{\bar{K}}}$ and $\frac{x_{2}}{\left\|x_{2}\right\|_{\bar{K}}}$.

Consider the point $y=\frac{\left\|x_{1}\right\|_{\tilde{I}}}{\left\|x_{1}\right\|_{\overparen{K}}} x_{1}+\frac{\left\|x_{2}\right\|_{\tau}}{\left\|x_{2}\right\|_{\overparen{K}}} x_{2}$ in the plane E. The point $\frac{y}{\|y\|_{\bar{K}}}$ lies on the p-arc connecting $\frac{x_{1}}{\left\|x_{1}\right\|_{\bar{K}}}$ and $\frac{x_{2}}{\left\|x_{2}\right\|_{\bar{K}}}$.

Consider the tangent line to this arc at the point $\frac{y}{\|y\|_{\bar{K}}}$.

Consider the point $y=\frac{\left\|x_{1}\right\|}{\left\|x_{1}\right\|_{\overparen{K}}} x_{1}+\frac{\left\|x_{2}\right\|_{\tau}}{\left\|x_{2}\right\|_{\breve{K}}} x_{2}$ in the plane E. The point $\frac{y}{\|y\|_{\bar{K}}}$ lies on the p-arc connecting $\frac{x_{1}}{\left\|x_{1}\right\|_{\bar{K}}}$ and $\frac{x_{2}}{\left\|x_{2}\right\|_{\bar{K}}}$.

Consider the tangent line to this arc at the point $\frac{y}{\|y\|_{\mathbb{K}}}$. This line intersects the segments $\left[0, x_{i} /\left\|x_{i}\right\|_{\bar{K}}\right], i=1,2$, at some points $\frac{t_{i} i_{i}}{\| x_{i}}$ with $t_{i} \in(0,1)$.

Since $\frac{t_{1} x_{1}}{\left\|x_{1}\right\|_{\bar{K}}}, \frac{t_{2} x_{2}}{\left\|x_{2}\right\|_{\overparen{K}}}$ and $\frac{y}{\|y\|_{\tilde{K}}}$ are on the same line, it follows that the coefficients of $\frac{t_{1} x_{1}}{\left\|x_{1}\right\|_{\bar{K}}}$ and $\frac{t_{2} x_{2}}{\left\|x_{2}\right\|_{\bar{K}}}$ in the equality

$$
\frac{y}{\|y\|_{\bar{K}}}=\frac{1}{\|y\|_{\bar{K}}}\left(\frac{\left\|x_{1}\right\|_{\bar{L}}}{t_{1}} \cdot \frac{t_{1} x_{1}}{\left\|x_{1}\right\|_{\bar{K}}}+\frac{\left\|x_{2}\right\|_{\bar{L}}}{t_{2}} \cdot \frac{t_{2} x_{2}}{\left\|x_{2}\right\|_{\bar{K}}}\right)
$$

have to add up to 1 .

Since $\frac{t_{1} x_{1}}{\left\|x_{1}\right\|_{\bar{K}}}, \frac{t_{2} x_{2}}{\left\|x_{2}\right\|_{\overparen{K}}}$ and $\frac{y}{\|y\|_{\bar{K}}}$ are on the same line, it follows that the coefficients of $\frac{t_{1} x_{1}}{\left\|x_{1}\right\|_{\bar{K}}}$ and $\frac{t_{2} x_{2}}{\left\|x_{2}\right\|_{\bar{K}}}$ in the equality

$$
\frac{y}{\|y\|_{\bar{K}}}=\frac{1}{\|y\|_{\bar{K}}}\left(\frac{\left\|x_{1}\right\|_{\bar{L}}}{t_{1}} \cdot \frac{t_{1} x_{1}}{\left\|x_{1}\right\|_{\bar{K}}}+\frac{\left\|x_{2}\right\|_{\bar{L}}}{t_{2}} \cdot \frac{t_{2} x_{2}}{\left\|x_{2}\right\|_{\bar{K}}}\right)
$$

have to add up to 1 .
Therefore,

$$
\|y\|_{\bar{K}}=\frac{\left\|x_{1}\right\|_{\bar{L}}}{t_{1}}+\frac{\left\|x_{2}\right\|_{\bar{L}}}{t_{2}} .
$$

Note that the line between $\frac{t_{1} x_{1}}{\left\|x_{1}\right\|_{K}}$ and $\frac{t_{2} x_{2}}{\left\|x_{2}\right\|_{\bar{K}}}$ separates $\frac{x_{3}}{\left\|x_{3}\right\|_{\bar{K}}}$ from the origin, i.e. the three points $\frac{t_{1} x_{1}}{\left\|x_{1}\right\|_{\overparen{\kappa}}}, \frac{t_{2} x_{2}}{\left\|x_{2}\right\|_{\bar{\kappa}}}$ and $\frac{x_{3}}{\left\|x_{3}\right\|_{\overparen{\kappa}}}$ are in the "convex position".

Note that the line between $\frac{t_{1} x_{1}}{\left\|x_{1}\right\|_{\bar{K}}}$ and $\frac{t_{2} x_{2}}{\left\|x_{2}\right\|_{\bar{K}}}$ separates $\frac{x_{3}}{\left\|x_{3}\right\|_{\bar{K}}}$ from the origin, i.e. the three points $\frac{t_{1} x_{1}}{\left\|x_{1}\right\|_{\mathcal{K}}}, \frac{t_{2} x_{2}}{\left\|x_{2}\right\|_{\bar{K}}}$ and $\frac{x_{3}}{\left\|x_{3}\right\|_{\bar{K}}}$ are in the "convex position".
Applying Ball's theorem to these three points,

$$
\begin{gathered}
{\left[\int_{0}^{\frac{1}{\left\|x_{3}\right\|_{\bar{K}}}} f\left(r x_{3}\right) r^{k-1} d r\right]^{-\frac{1}{k}}} \\
\leqslant\left[\int_{0}^{\frac{t_{1}}{\left\|x_{1}\right\|_{\bar{K}}}} f\left(r x_{1}\right) r^{k-1} d r\right]^{-\frac{1}{k}}+\left[\int_{0}^{\frac{t_{2}}{x_{2} \|_{\bar{K}}}} f\left(r x_{2}\right) r^{k-1} d r\right]^{-\frac{1}{k}} .
\end{gathered}
$$

$$
\text { Let } s_{i}=\left\|x_{i}\right\|_{\bar{L}}\left[\int_{0}^{\frac{t_{i}}{x_{i} \|} \bar{K}_{\mathcal{K}}} f\left(r x_{i}\right) r^{k-1} d r\right]^{\frac{1}{k}} \text { for } i=1,2 .
$$

Let $s_{i}=\left\|x_{i}\right\|_{\bar{L}}\left[\int_{0}^{\frac{t_{i}}{\| x_{i}} \|_{\bar{K}}} f\left(r x_{i}\right) r^{k-1} d r\right]^{\frac{1}{k}}$ for $i=1,2$. The above inequality becomes

$$
\left\|x_{3}\right\|_{\bar{L}} \leqslant \frac{\left\|x_{1}\right\|_{\bar{L}}}{s_{1}}+\frac{\left\|x_{2}\right\|_{\bar{L}}}{s_{2}} .
$$

Let $s_{i}=\left\|x_{i}\right\|_{\bar{L}}\left[\int_{0}^{\frac{t_{i}}{\| x_{i}} \|_{\bar{K}}} f\left(r x_{i}\right) r^{k-1} d r\right]^{\frac{1}{k}}$ for $i=1$, 2. The above inequality becomes

$$
\left\|x_{3}\right\|_{\bar{L}} \leqslant \frac{\left\|x_{1}\right\|_{\bar{L}}}{s_{1}}+\frac{\left\|x_{2}\right\|_{\bar{L}}}{s_{2}}
$$

By a change of variables, we get

$$
\begin{aligned}
& s_{i}=t_{i}\left\|x_{i}\right\|_{\bar{L}}\left[\int_{0}^{\frac{1}{x_{i}} \|_{\bar{K}}} f\left(t_{i} r x_{i}\right) r^{k-1} d r\right]^{\frac{1}{k}} \\
& \geqslant t_{i}\left\|x_{i}\right\|_{\bar{L}}\left[\int_{0}^{\frac{1}{x_{i} \|_{\bar{K}}}} f\left(r x_{i}\right) r^{k-1} d r\right]^{\frac{1}{k}}=t_{i}
\end{aligned}
$$

for each $i=1,2$.

Putting all together, we have

$$
\left\|x_{3}\right\|_{L} \leqslant\left\|x_{3}\right\|_{\bar{L}} \leqslant \frac{\left\|x_{1}\right\|_{\bar{L}}}{s_{1}}+\frac{\left\|x_{2}\right\|_{\bar{L}}}{s_{2}} \leqslant \frac{\left\|x_{1}\right\|_{\bar{L}}}{t_{1}}+\frac{\left\|x_{2}\right\|_{\bar{L}}}{t_{2}}=\|y\|_{\bar{K}}
$$

Putting all together, we have

$$
\left\|x_{3}\right\|_{L} \leqslant\left\|x_{3}\right\|_{\bar{L}} \leqslant \frac{\left\|x_{1}\right\|_{\bar{L}}}{s_{1}}+\frac{\left\|x_{2}\right\|_{\bar{L}}}{s_{2}} \leqslant \frac{\left\|x_{1}\right\|_{\bar{L}}}{t_{1}}+\frac{\left\|x_{2}\right\|_{\bar{L}}}{t_{2}}=\|y\|_{\bar{K}}
$$

Using the p-convexity of \bar{K}, we have

$$
\|y\|_{\bar{K}}^{p} \leqslant\left\|\frac{\left\|x_{1}\right\|_{\bar{L}}}{\left\|x_{1}\right\|_{\bar{K}}} x_{1}\right\|_{\bar{K}}^{p}+\left\|\frac{\left\|x_{2}\right\|_{\bar{L}}}{\left\|x_{2}\right\|_{\bar{K}}} x_{2}\right\|_{\bar{K}}^{p}=\left\|x_{1}\right\|_{\bar{L}}^{p}+\left\|x_{2}\right\|_{\bar{L}}^{p}=\left\|x_{1}\right\|_{L}^{p}+\left\|x_{2}\right\|_{L}^{p},
$$

and therefore $\left\|x_{3}\right\|_{L}^{p} \leqslant\left\|x_{1}\right\|_{L}^{P}+\left\|x_{2}\right\|_{L}^{p}$.

Generalization to log-concave measures

Corollary

Let μ be a symmetric log-concave measure and K a symmetric p-convex body in \mathbb{R}^{n} for $p \in(0,1]$. Then the intersection body $I_{\mu} K$ of K is q-convex with $q=[(1 / p-1)(n-1)+1]^{-1}$.

Let f be the density function of μ. By Theorem 5, the body L with the Minkowski functional

$$
\|x\|_{L}=\left[(n-1) \int_{0}^{\|x\|_{K}^{-1}} f(r x) r^{n-2} d r\right]^{\frac{-1}{n-1}}, \quad x \in \mathbb{R}^{n}
$$

is p-convex.

Let f be the density function of μ. By Theorem 5, the body L with the Minkowski functional

$$
\|x\|_{L}=\left[(n-1) \int_{0}^{\|x\|_{K}^{-1}} f(r x) r^{n-2} d r\right]^{\frac{-1}{n-1}}, \quad x \in \mathbb{R}^{n}
$$

is p-convex.
On the other hand,

$$
\begin{aligned}
\rho_{l_{\mu} K}(u) & =\mu_{n-1}\left(K \cap u^{\perp}\right) \\
& =\int_{\mathbb{R}^{n}} 1_{K \cap u^{\perp}}(x) f(x) d x=\int_{S^{n-1} \cap u^{\perp}} \int_{0}^{\|u\|_{K}^{-1}} f(r v) r^{n-2} d r d v \\
& =\frac{1}{n-1} \int_{S^{n-1} \cap u^{\perp}}\|v\|_{L}^{-n+1} d v=\left|L \cap u^{\perp}\right|_{n-1} \\
& =\rho_{I L}(u)
\end{aligned}
$$

which means $I_{\mu} K=I L$.
$I L$ is q-convex with $q=[(1 / p-1)(n-1)+1]^{-1}$, and therefore so is $I_{\mu} K$.

Generalization to log-concave measures

Remark

We have an example that shows that the condition on f to be even in Theorem 5 cannot be dropped.

Non-symmetric cases and s-concave measures

However, it is possible to give a version of Theorem 5 for non-symmetric s-concave measures.

Non-symmetric cases and s-concave measures

However, it is possible to give a version of Theorem 5 for non-symmetric s-concave measures.

Borell introduced the classes $\mathfrak{M}_{s}(\Omega),\left(-\infty \leqslant s \leqslant \infty, \Omega \subset \mathbb{R}^{n}\right.$ open convex) of s-concave measures, satisfying

$$
\mu(\lambda A+(1-\lambda) B) \geqslant\left[\lambda \mu(A)^{s}+(1-\lambda) \mu(B)^{s}\right]^{\frac{1}{s}}
$$

holds for all nonempty compact $A, B \subset \Omega$ and all $\lambda \in(0,1)$.

Non-symmetric cases and s-concave measures

However, it is possible to give a version of Theorem 5 for non-symmetric s-concave measures.

Borell introduced the classes $\mathfrak{M}_{s}(\Omega),\left(-\infty \leqslant s \leqslant \infty, \Omega \subset \mathbb{R}^{n}\right.$ open convex) of s-concave measures, satisfying

$$
\mu(\lambda A+(1-\lambda) B) \geqslant\left[\lambda \mu(A)^{s}+(1-\lambda) \mu(B)^{s}\right]^{\frac{1}{s}}
$$

holds for all nonempty compact $A, B \subset \Omega$ and all $\lambda \in(0,1)$. In particular, $s=0$ gives the class of log-concave measures.

Non-symmetric cases and s-concave measures

Let us consider the case $0<s<1 / n$. According to Borell, μ is s-concave if and only if the support of μ is n-dimensional and $d \mu=f d m$ for some $f \in L_{l o c}^{1}(\Omega)$ such that $f^{\frac{s}{1-n s}}$ is a concave function on Ω.

Non-symmetric cases and s-concave measures

Theorem 6

Let μ be an s-concave measure on $\Omega \subset \mathbb{R}^{n}$ with density f, for $0<s<1 / n$, and K a p-convex body in Ω, for $p \in(0,1]$. If $k \geqslant 1$, then the body L whose Minkowski functional is given by

$$
\|x\|_{L}=\left[\int_{0}^{\infty} 1_{K}(r x) f(r x) r^{k-1} d r\right]^{-\frac{1}{k}}, \quad x \in \mathbb{R}^{n}
$$

is q-convex with $q=\left[\left(\frac{1}{p}-1\right)\left(\frac{1}{s}-n\right) \frac{1}{k}+\frac{1}{p}\right]^{-1}$.

Non-symmetric cases and s-concave measures

Theorem 6

Let μ be an s-concave measure on $\Omega \subset \mathbb{R}^{n}$ with density f, for $0<s<1 / n$, and K a p-convex body in Ω, for $p \in(0,1]$. If $k \geqslant 1$, then the body L whose Minkowski functional is given by

$$
\|x\|_{L}=\left[\int_{0}^{\infty} 1_{K}(r x) f(r x) r^{k-1} d r\right]^{-\frac{1}{k}}, \quad x \in \mathbb{R}^{n}
$$

is q-convex with $q=\left[\left(\frac{1}{p}-1\right)\left(\frac{1}{s}-n\right) \frac{1}{k}+\frac{1}{p}\right]^{-1}$.

Remark

We have an example showing that the above theorem is sharp.

THANK YOU!!!

