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Background

Lutwak (1988) introduced the notion of the intersection body IK

of a star body K . IK is defined by its radial function

ρIK (ξ) = |K ∩ ξ⊥|, for ξ ∈ Sn−1.
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Background

Theorem (Busemann)

Let K be an origin-symmetric convex body in R
n. Then its

intersection body IK is convex.
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Background

Theorem (Busemann)

Let K be an origin-symmetric convex body in R
n. Then its

intersection body IK is convex.

Remark

The result does not hold without the symmetry assumption.
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Background

Theorem (Busemann)

Let K be an origin-symmetric convex body in R
n. Then its

intersection body IK is convex.

Remark

The result does not hold without the symmetry assumption.

What if K is not convex?
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Background

Let p ∈ (0, 1]. A body K is said to be p-convex if, for all x , y ∈ R
n,

‖x + y‖p
K 6 ‖x‖p

K + ‖y‖p
K ,
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Background

Let p ∈ (0, 1]. A body K is said to be p-convex if, for all x , y ∈ R
n,

‖x + y‖p
K 6 ‖x‖p

K + ‖y‖p
K ,

or, equivalently t1/px + (1 − t)1/py ∈ K whenever x and y are in
K and t ∈ (0, 1).
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K and t ∈ (0, 1).

One can see that p-convex sets with p = 1 are just convex.
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Background

Let p ∈ (0, 1]. A body K is said to be p-convex if, for all x , y ∈ R
n,

‖x + y‖p
K 6 ‖x‖p

K + ‖y‖p
K ,

or, equivalently t1/px + (1 − t)1/py ∈ K whenever x and y are in
K and t ∈ (0, 1).

One can see that p-convex sets with p = 1 are just convex.

Note also that a p1-convex body is p2-convex for all 0 < p2 6 p1.
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Results

Theorem 1

Let K be an origin-symmetric p-convex body in R
n, p ∈ (0, 1], and

E a (k − 1)-dimensional subspace of R
n for 1 6 k 6 n. Then the

map

u 7−→ |u|
∣

∣K ∩ span(u,E )
∣

∣

k

, u ∈ E⊥

defines the Minkowski functional of a q-convex body in E⊥ with
q = [(1/p − 1) k + 1]−1.
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Results

Theorem 1

Let K be an origin-symmetric p-convex body in R
n, p ∈ (0, 1], and

E a (k − 1)-dimensional subspace of R
n for 1 6 k 6 n. Then the

map

u 7−→ |u|
∣

∣K ∩ span(u,E )
∣

∣

k

, u ∈ E⊥

defines the Minkowski functional of a q-convex body in E⊥ with
q = [(1/p − 1) k + 1]−1.

Proof is similar to the one in [Milman, Pajor].
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Results

As a corollary of the previous theorem we get the following

Theorem 2

Let K be an origin-symmetric p-convex body in R
n for p ∈ (0, 1].

Then the intersection body IK of K is q-convex for
q = [(1/p − 1) (n − 1) + 1]−1.
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Results

As a corollary of the previous theorem we get the following

Theorem 2

Let K be an origin-symmetric p-convex body in R
n for p ∈ (0, 1].

Then the intersection body IK of K is q-convex for
q = [(1/p − 1) (n − 1) + 1]−1.

Remark

Note that this theorem does not hold without the symmetry
assumption.
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Results

As a corollary of the previous theorem we get the following

Theorem 2

Let K be an origin-symmetric p-convex body in R
n for p ∈ (0, 1].

Then the intersection body IK of K is q-convex for
q = [(1/p − 1) (n − 1) + 1]−1.

Remark

Note that this theorem does not hold without the symmetry
assumption.

What about sharpness of Theorem 2?
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Results

Theorem 3

There exists a p-convex body K ⊂ R
n such that IK is q-convex

with
q 6 [(1/p − 1)(n − 1) + 1 + gn(p)]−1 ,

where gn(p) is a function that satisfies
1) gn(p) > − log2(n − 1),
2) lim

p→1−
gn(p) = 0.
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Proof

Proof.

Let
C1 = {|x1| 6 1, ..., |xn−1| 6 1, xn = 1}

and
C−1 = {|x1| 6 1, ..., |xn−1| 6 1, xn = −1}.

For a fixed 0 < p < 1 define K ⊂ R
n as follows:

K = {z ∈ R
n : z = t1/px+(1−t)1/py , x ∈ C1, y ∈ C−1, 0 6 t 6 1}.

K
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Proof

Let L = IK be the intersection body of K .
In order to estimate q, we will use the inequality

∥

∥

∥

√
2en

∥

∥

∥

q

L
6
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∥

∥
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∥

∥

q

L

+

∥

∥
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∥

en − e1√
2
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∥

∥

∥

q

L

= 2

∥

∥

∥

∥
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∥

∥

q

L
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Let L = IK be the intersection body of K .
In order to estimate q, we will use the inequality
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∥
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,

that is √
2

ρL(en)
6

21/q

ρL((e1 + en)/
√

2)
.
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Proof

Let L = IK be the intersection body of K .
In order to estimate q, we will use the inequality
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L

= 2

∥

∥

∥
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en + e1√
2

∥
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∥

∥

q

L

,

that is √
2

ρL(en)
6

21/q

ρL((e1 + en)/
√

2)
.

Computing ρL(en) and ρL((e1 + en)/
√

2) we get

q 6







(

1

p
− 1

)

(n − 1) + 1 + log2

(n − 2)
(

2
21/p

)n−1
+ 1

n − 1







−1

.
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Question

From Artëm’s lecture:
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It is easy to see that the intersection body of a Euclidean ball is
again a Euclidean ball.
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Question

From Artëm’s lecture:
It is easy to see that the intersection body of a Euclidean ball is
again a Euclidean ball.
Question. Are there other fixed points of I ?

Fish, Nazarov, Ryabogin, Zvavitch have shown that in a sufficiently
small neighborhood of the ball (with respect to the Banach-Mazur
distance) there are no other fixed points of I . However, in general
this question is still open.
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Question

From Artëm’s lecture:
It is easy to see that the intersection body of a Euclidean ball is
again a Euclidean ball.
Question. Are there other fixed points of I ?

Fish, Nazarov, Ryabogin, Zvavitch have shown that in a sufficiently
small neighborhood of the ball (with respect to the Banach-Mazur
distance) there are no other fixed points of I . However, in general
this question is still open.

Recall that the Banach-Mazur distance between two
origin-symmetric star bodies is defined by

dBM(K ,L) = inf{b/a : ∃T ∈ GL(n) : aK ⊂ TL ⊂ bK}.
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Question

FNRZ show that ImK approaches the ball as m → ∞, if K is
sufficiently close to the ball.
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FNRZ show that ImK approaches the ball as m → ∞, if K is
sufficiently close to the ball.

Question. Does IK have to be closer to the ball than K?
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Question

FNRZ show that ImK approaches the ball as m → ∞, if K is
sufficiently close to the ball.

Question. Does IK have to be closer to the ball than K?

Our next theorem shows that the answer is “No”. There are
p-convex bodies for which the intersection body is farther from the
Euclidean ball.
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Results

Theorem 4

Let p ∈ (0, 1) and let c be any constant satisfying 1 < c < 21/p−1.
Then for all large enough n, there exists a p-convex body K ⊂ R

n

such that
cndBM(K ,Bn

2 ) < dBM(IK ,Bn
2 ).
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Proof

Consider K from the previous theorem. One can see that

K ⊂ Bn
∞ ⊂

√
nBn

2 .
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Proof

Consider K from the previous theorem. One can see that

K ⊂ Bn
∞ ⊂

√
nBn

2 .

On the other hand,

K ⊃ 2
p−1

p Bn
∞ ⊃ 2

p−1
p Bn

2 ,
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Proof

Consider K from the previous theorem. One can see that

K ⊂ Bn
∞ ⊂

√
nBn

2 .

On the other hand,

K ⊃ 2
p−1

p Bn
∞ ⊃ 2

p−1
p Bn

2 ,

and thus
dBM(K ,Bn

2 ) 6 2
1−p

p
√

n.
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Proof

Next we give a lower bound for dBM(IK ,Bn
2 ).
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Next we give a lower bound for dBM(IK ,Bn
2 ).

Let E be an ellipsoid such that IK ⊂ E ⊂ dIK , for some d .
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Next we give a lower bound for dBM(IK ,Bn
2 ).

Let E be an ellipsoid such that IK ⊂ E ⊂ dIK , for some d .
Then

IK ⊂ conv(IK ) ⊂ E ⊂ dIK .
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Proof

Next we give a lower bound for dBM(IK ,Bn
2 ).

Let E be an ellipsoid such that IK ⊂ E ⊂ dIK , for some d .
Then

IK ⊂ conv(IK ) ⊂ E ⊂ dIK .

Therefore, d > r , where r = min{t : conv(IK ) ⊂ tIK}.
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Proof

Next we give a lower bound for dBM(IK ,Bn
2 ).

Let E be an ellipsoid such that IK ⊂ E ⊂ dIK , for some d .
Then

IK ⊂ conv(IK ) ⊂ E ⊂ dIK .

Therefore, d > r , where r = min{t : conv(IK ) ⊂ tIK}.
Thus,

dBM(IK ,Bn
2 ) > r = max

{

ρconv(IK)(θ)

ρIK (θ)
, θ ∈ Sn−1

}

>
ρconv(IK)(en)

ρIK (en)
.
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Proof

The convexity of conv(IK ) gives

ρconv(IK)(en)

>

∥

∥

∥

∥

1

2

(

ρIK

(

en + e1√
2

)

en + e1√
2

+ ρIK

(

en − e1√
2

)

en − e1√
2

)
∥

∥

∥

∥

2

=
1√
2
ρIK

(

en + e1√
2

)

.
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Proof

The convexity of conv(IK ) gives

ρconv(IK)(en)

>

∥

∥

∥

∥

1

2

(

ρIK

(

en + e1√
2

)

en + e1√
2

+ ρIK

(

en − e1√
2

)

en − e1√
2

)
∥

∥

∥

∥

2

=
1√
2
ρIK

(

en + e1√
2

)

.

Using estimates from the previous theorem, we get

dBM(IK ,Bn
2 ) >

ρIK ( en+e1√
2

)
√

2ρIK (en)
>

(

21/p

2

)n−1
1

n − 1
.
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Proof

The convexity of conv(IK ) gives

ρconv(IK)(en)

>

∥

∥

∥

∥

1

2

(

ρIK

(

en + e1√
2

)

en + e1√
2

+ ρIK

(

en − e1√
2

)

en − e1√
2

)
∥

∥

∥

∥

2

=
1√
2
ρIK

(

en + e1√
2

)

.

Using estimates from the previous theorem, we get

dBM(IK ,Bn
2 ) >

ρIK ( en+e1√
2

)
√

2ρIK (en)
>

(

21/p

2

)n−1
1

n − 1
.

Now compare this with

dBM(K ,Bn
2 ) 6 2

1−p
p
√

n.
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Generalization to log-concave measures

A measure µ on R
n is called log-concave if for any measurable

A,B ⊂ R
n and 0 < λ < 1, we have

µ(λA + (1 − λ)B) > µ(A)λµ(B)(1−λ)

whenever λA + (1 − λ)B is measurable.
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Generalization to log-concave measures

A measure µ on R
n is called log-concave if for any measurable

A,B ⊂ R
n and 0 < λ < 1, we have

µ(λA + (1 − λ)B) > µ(A)λµ(B)(1−λ)

whenever λA + (1 − λ)B is measurable.
Borell: log-concave measures are measures with log-concave
densities.
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Generalization to log-concave measures

A measure µ on R
n is called log-concave if for any measurable

A,B ⊂ R
n and 0 < λ < 1, we have

µ(λA + (1 − λ)B) > µ(A)λµ(B)(1−λ)

whenever λA + (1 − λ)B is measurable.
Borell: log-concave measures are measures with log-concave
densities.

Next we will need the following theorem of Ball.

Theorem (Ball)

Let f : R
n → [0,∞) be an even log-concave function satisfying

0 <
∫

Rn f < ∞ and let k > 1. Then the map

x 7−→
[

∫ ∞

0
f (rx)rk−1dr

]− 1
k

defines a norm on R
n.
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Generalization to log-concave measures

Let µ be a measure on R
n, absolutely continuous with respect to

the Lebesgue measure m, and let its density function f be locally
integrable on n − 1-dimensional subspaces of R

n.
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Generalization to log-concave measures

Let µ be a measure on R
n, absolutely continuous with respect to

the Lebesgue measure m, and let its density function f be locally
integrable on n − 1-dimensional subspaces of R

n.

Define the intersection body IµK of a star body K with respect to
µ by

ρIµK (u) = µn−1(K ∩ u⊥), u ∈ Sn−1.
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Generalization to log-concave measures

Let µ be a symmetric log-concave measure on R
n with density f ,

and K a symmetric convex body in R
n.
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Generalization to log-concave measures

Let µ be a symmetric log-concave measure on R
n with density f ,

and K a symmetric convex body in R
n.

If we apply Ball’s Theorem to the log-concave function 1K f , we get
a symmetric convex body L whose Minkowski functional is given by

‖x‖L =
[

(n − 1)

∫ ∞

0
(1K f )(rx)rn−2dr

]− 1
n−1

.
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Generalization to log-concave measures

Let µ be a symmetric log-concave measure on R
n with density f ,

and K a symmetric convex body in R
n.

If we apply Ball’s Theorem to the log-concave function 1K f , we get
a symmetric convex body L whose Minkowski functional is given by

‖x‖L =
[

(n − 1)

∫ ∞

0
(1K f )(rx)rn−2dr

]− 1
n−1

.

Then for every u ∈ Sn−1,

µn−1(K ∩ u⊥) =

∫

Sn−1∩u⊥

∫ ∞

0
(1K f )(rθ)rn−2drdθ

=
1

n − 1

∫

Sn−1∩u⊥

‖θ‖−n+1
L dθ = |L ∩ u⊥|.
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Generalization to log-concave measures

Using Busemann’s Theorem for the convex body L, one obtains the
following version of Busemann’s theorem for log-concave measures.

Theorem

Let µ be a symmetric log-concave measure on R
n and K a

symmetric convex body in R
n. Then the intersection body IµK is

convex.
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Generalization to log-concave measures

Using Busemann’s Theorem for the convex body L, one obtains the
following version of Busemann’s theorem for log-concave measures.

Theorem

Let µ be a symmetric log-concave measure on R
n and K a

symmetric convex body in R
n. Then the intersection body IµK is

convex.

In order to generalize this Theorem to p-convex bodies, we will
first prove a version of Ball’s theorem for p-convex bodies.
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Generalization to log-concave measures

Theorem 5

Let f : R
n → [0,∞) be an even log-concave function, k > 1, and

K a p-convex body in R
n for 0 < p 6 1. Then the body L defined

by the Minkowski functional

‖x‖L =
[

∫ ‖x‖−1
K

0
f (rx)rk−1dr

]− 1
k
, x ∈ R

n,

is p-convex.
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Proof

Fix two non-parallel vectors x1, x2 ∈ R
n and denote x3 = x1 + x2.

We claim that ‖x3‖p
L 6 ‖x1‖p

L + ‖x2‖p
L.
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Proof

Fix two non-parallel vectors x1, x2 ∈ R
n and denote x3 = x1 + x2.

We claim that ‖x3‖p
L 6 ‖x1‖p

L + ‖x2‖p
L.

Consider the following 2-dimensional bodies in the plane
E = span{x1, x2},

K̄ =

{

t1x1

‖x1‖K

+
t2x2

‖x2‖K

: t1, t2 > 0, tp
1 + t

p
2 6 1

}

and

L̄ =







x ∈ R
n : ‖x‖L̄ =

[

∫ ‖x‖−1
K̄

0
f (rx)rk−1dr

]− 1
k

6 1







.
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Proof

x
|

1

K

x2

K

K

| x1|| K

|| x2||

Clearly K̄ is p-convex and K̄ ⊂ K . Also note that ‖xi‖K̄ = ‖xi‖K

for i = 1, 2, and ‖x3‖K̄ > ‖x3‖K .
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Proof

x
|

1

K

x2

K

K

| x1|| K

|| x2||

Clearly K̄ is p-convex and K̄ ⊂ K . Also note that ‖xi‖K̄ = ‖xi‖K

for i = 1, 2, and ‖x3‖K̄ > ‖x3‖K .
Therefore, ‖xi‖L̄ = ‖xi‖L (i = 1, 2), and ‖x3‖L̄ > ‖x3‖L.
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Proof

Consider the point y =
‖x1‖L̄

‖x1‖K̄
x1 +

‖x2‖L̄

‖x2‖K̄
x2 in the plane E .

The point y
‖y‖K̄

lies on the p-arc connecting x1
‖x1‖K̄

and x2
‖x2‖K̄

.

x
|

1

K

x2

K

| x1|| K

|| x2||
|| y || K

y
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Proof

Consider the point y =
‖x1‖L̄

‖x1‖K̄
x1 +

‖x2‖L̄

‖x2‖K̄
x2 in the plane E .

The point y
‖y‖K̄

lies on the p-arc connecting x1
‖x1‖K̄

and x2
‖x2‖K̄

.

x
|

1

K

x2

K

| x1|| K

|| x2||
|| y || K

y

Consider the tangent line to this arc at the point y
‖y‖K̄

.
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Proof

Consider the point y =
‖x1‖L̄

‖x1‖K̄
x1 +

‖x2‖L̄

‖x2‖K̄
x2 in the plane E .

The point y
‖y‖K̄

lies on the p-arc connecting x1
‖x1‖K̄

and x2
‖x2‖K̄

.

K

|| y || K

y

K

x2

|| x2||

K

x2

|| x2||

x
|

1

| x1|| K

x
|

1

| x1|| Kt

t

1

2

Consider the tangent line to this arc at the point y
‖y‖K̄

. This line

intersects the segments [0, xi/‖xi‖K̄ ], i = 1, 2, at some points tixi

‖xi‖K̄

with ti ∈ (0, 1).
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Proof

Since t1x1
‖x1‖K̄

, t2x2
‖x2‖K̄

and y
‖y‖K̄

are on the same line, it follows that

the coefficients of t1x1
‖x1‖K̄

and t2x2
‖x2‖K̄

in the equality

y

‖y‖K̄

=
1

‖y‖K̄

(‖x1‖L̄

t1
· t1x1

‖x1‖K̄

+
‖x2‖L̄

t2
· t2x2

‖x2‖K̄

)

have to add up to 1.
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Proof

Since t1x1
‖x1‖K̄

, t2x2
‖x2‖K̄

and y
‖y‖K̄

are on the same line, it follows that

the coefficients of t1x1
‖x1‖K̄

and t2x2
‖x2‖K̄

in the equality

y

‖y‖K̄

=
1

‖y‖K̄

(‖x1‖L̄

t1
· t1x1

‖x1‖K̄

+
‖x2‖L̄

t2
· t2x2

‖x2‖K̄

)

have to add up to 1.
Therefore,

‖y‖K̄ =
‖x1‖L̄

t1
+

‖x2‖L̄

t2
.
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Proof

Note that the line between t1x1
‖x1‖K̄

and t2x2
‖x2‖K̄

separates x3
‖x3‖K̄

from

the origin, i.e. the three points t1x1
‖x1‖K̄

, t2x2
‖x2‖K̄

and x3
‖x3‖K̄

are in the

“convex position”.
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Proof

Note that the line between t1x1
‖x1‖K̄

and t2x2
‖x2‖K̄

separates x3
‖x3‖K̄

from

the origin, i.e. the three points t1x1
‖x1‖K̄

, t2x2
‖x2‖K̄

and x3
‖x3‖K̄

are in the

“convex position”.
Applying Ball’s theorem to these three points,

[

∫ 1
‖x3‖K̄

0
f (rx3)r

k−1dr

]− 1
k

6

[

∫

t1
‖x1‖K̄

0
f (rx1)r

k−1dr

]− 1
k

+

[

∫

t2
‖x2‖K̄

0
f (rx2)r

k−1dr

]− 1
k

.
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Proof

Let si = ‖xi‖L̄

[

∫

ti
‖xi‖K̄

0 f (rxi)r
k−1dr

]
1
k

for i = 1, 2.
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Proof

Let si = ‖xi‖L̄

[

∫

ti
‖xi‖K̄

0 f (rxi)r
k−1dr

]
1
k

for i = 1, 2. The above

inequality becomes

‖x3‖L̄ 6
‖x1‖L̄

s1
+

‖x2‖L̄

s2
.
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Proof

Let si = ‖xi‖L̄

[

∫

ti
‖xi‖K̄

0 f (rxi)r
k−1dr

]
1
k

for i = 1, 2. The above

inequality becomes

‖x3‖L̄ 6
‖x1‖L̄

s1
+

‖x2‖L̄

s2
.

By a change of variables, we get

si = ti‖xi‖L̄

[

∫ 1
‖xi‖K̄

0
f (ti rxi )r

k−1dr

]
1
k

> ti‖xi‖L̄

[

∫ 1
‖xi‖K̄

0
f (rxi )r

k−1dr

]
1
k

= ti

for each i = 1, 2.
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Proof

Putting all together, we have

‖x3‖L 6 ‖x3‖L̄ 6
‖x1‖L̄

s1
+

‖x2‖L̄

s2
6

‖x1‖L̄

t1
+

‖x2‖L̄

t2
= ‖y‖K̄ .
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Proof

Putting all together, we have

‖x3‖L 6 ‖x3‖L̄ 6
‖x1‖L̄

s1
+

‖x2‖L̄

s2
6

‖x1‖L̄

t1
+

‖x2‖L̄

t2
= ‖y‖K̄ .

Using the p-convexity of K̄ , we have

‖y‖p

K̄
6

∥

∥

∥

∥

‖x1‖L̄

‖x1‖K̄

x1

∥

∥

∥

∥

p

K̄

+

∥

∥

∥

∥

‖x2‖L̄

‖x2‖K̄

x2

∥

∥

∥

∥

p

K̄

= ‖x1‖p

L̄
+ ‖x2‖p

L̄
= ‖x1‖p

L + ‖x2‖p
L,

and therefore ‖x3‖p
L 6 ‖x1‖p

L + ‖x2‖p
L.
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Generalization to log-concave measures

Corollary

Let µ be a symmetric log-concave measure and K a symmetric
p-convex body in R

n for p ∈ (0, 1]. Then the intersection body

IµK of K is q-convex with q =
[

(1/p − 1)(n − 1) + 1
]−1

.
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Proof

Let f be the density function of µ. By Theorem 5, the body L with
the Minkowski functional

‖x‖L =
[

(n − 1)

∫ ‖x‖−1
K

0
f (rx)rn−2dr

]
−1
n−1

, x ∈ R
n,

is p-convex.
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Proof

Let f be the density function of µ. By Theorem 5, the body L with
the Minkowski functional

‖x‖L =
[

(n − 1)

∫ ‖x‖−1
K

0
f (rx)rn−2dr

]
−1
n−1

, x ∈ R
n,

is p-convex.

On the other hand,

ρIµK (u) = µn−1(K ∩ u⊥)

=

∫

Rn

1K∩u⊥(x)f (x)dx =

∫

Sn−1∩u⊥

∫ ‖u‖−1
K

0
f (rv)rn−2drdv

=
1

n − 1

∫

Sn−1∩u⊥

‖v‖−n+1
L dv = |L ∩ u⊥|n−1

= ρIL(u),

which means IµK = IL.
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Proof

IL is q-convex with q =
[

(1/p − 1)(n − 1) + 1
]−1

, and therefore so

is IµK .
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Generalization to log-concave measures

Remark

We have an example that shows that the condition on f to be even
in Theorem 5 cannot be dropped.
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Non-symmetric cases and s-concave measures

However, it is possible to give a version of Theorem 5 for
non-symmetric s-concave measures.
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Non-symmetric cases and s-concave measures

However, it is possible to give a version of Theorem 5 for
non-symmetric s-concave measures.

Borell introduced the classes Ms(Ω), (−∞ 6 s 6 ∞, Ω ⊂ R
n

open convex) of s-concave measures, satisfying

µ(λA + (1 − λ)B) >

[

λµ(A)s + (1 − λ)µ(B)s
]

1
s

holds for all nonempty compact A,B ⊂ Ω and all λ ∈ (0, 1).
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Non-symmetric cases and s-concave measures

However, it is possible to give a version of Theorem 5 for
non-symmetric s-concave measures.

Borell introduced the classes Ms(Ω), (−∞ 6 s 6 ∞, Ω ⊂ R
n

open convex) of s-concave measures, satisfying

µ(λA + (1 − λ)B) >

[

λµ(A)s + (1 − λ)µ(B)s
]

1
s

holds for all nonempty compact A,B ⊂ Ω and all λ ∈ (0, 1).
In particular, s = 0 gives the class of log-concave measures.
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Non-symmetric cases and s-concave measures

Let us consider the case 0 < s < 1/n. According to Borell, µ is
s-concave if and only if the support of µ is n-dimensional and
dµ = fdm for some f ∈ L1

loc(Ω) such that f
s

1−ns is a concave
function on Ω.
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Non-symmetric cases and s-concave measures

Theorem 6

Let µ be an s-concave measure on Ω ⊂ R
n with density f , for

0 < s < 1/n, and K a p-convex body in Ω, for p ∈ (0, 1]. If k > 1,
then the body L whose Minkowski functional is given by

‖x‖L =
[

∫ ∞

0
1K (rx)f (rx)rk−1dr

]− 1
k
, x ∈ R

n

is q-convex with q =
[

(

1
p
− 1
)(

1
s
− n
)

1
k

+ 1
p

]−1
.
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Non-symmetric cases and s-concave measures

Theorem 6

Let µ be an s-concave measure on Ω ⊂ R
n with density f , for

0 < s < 1/n, and K a p-convex body in Ω, for p ∈ (0, 1]. If k > 1,
then the body L whose Minkowski functional is given by

‖x‖L =
[

∫ ∞

0
1K (rx)f (rx)rk−1dr

]− 1
k
, x ∈ R

n

is q-convex with q =
[

(

1
p
− 1
)(

1
s
− n
)

1
k

+ 1
p

]−1
.

Remark

We have an example showing that the above theorem is sharp.
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THANK YOU!!!
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