Spectral properties of random conjunction matrices

Mark Rudelson

Department of Mathematics
University of Michigan
joint work with Shiva Kasiwiswanathan, Adam Smith, and Jon Ullman

Toronto 2010

Contingency tables

- Data base: a $d \times n$ matrix D with $\{0,1\}$ entries.
- n individual records;
- d attributes of each individual.
- Contingency table: let $k<n$.

For each subset $J \subset\{1, \ldots, d\}$ of $|J|=k$ attributes record $m_{J}-$ the percentage of the individual records having all attributes from J.

Conjunction matrix

- All attributes $=$ Conjunction $=$ product of $\{0,1\}$ variables
- Conjunction matrix: construct a $\binom{d}{k} \times n$ matrix $M^{(k)}$ as follows: for the set $J \subset\{1, \ldots, d\}$, define the row $M_{J}^{(k)}$ as the entry-wise product of corresponding rows of D.

$$
\left(\begin{array}{cccc}
* & * & \ldots & * \\
\delta_{1} & \delta_{2} & \ldots & \delta_{n} \\
* & * & \ldots & * \\
\varepsilon_{1} & \varepsilon_{2} & \ldots & \varepsilon_{n} \\
* & * & \ldots & * \\
\nu_{1} & \nu_{2} & \ldots & \nu_{n} \\
* & * & \ldots & *
\end{array}\right) \rightarrow\left(\delta_{1} \cdot \varepsilon_{1} \cdot \nu_{1}, \delta_{2} \cdot \varepsilon_{2} \cdot \nu_{2}, \ldots, \delta_{n} \cdot \varepsilon_{n} \cdot \nu_{n}\right)=: \delta \odot \varepsilon \odot \nu .
$$

- $M^{(k)}$ is a $\{0,1\}$ matrix.
- m_{J} is the percentage of 1-s in the row $M_{J}^{(k)}$.

Attribute non-privacy

Assume that the data base D contains $(d-1)$ publicly available attribute, and 1 sensitive one.
The privacy is violated for a table, one can reconstruct
data base D if knowing the contingency coordinates of the sensitive vector

Attribute non-privacy

Assume that the data base D contains $(d-1)$ publicly available attribute, and 1 sensitive one.
The privacy is violated for a data base D if knowing the contingency table, one can reconstruct coordinates of the sensitive vector

- Denote $D=\binom{D_{0}}{x}$, where x is the sensitive vector. If D_{0} is known, and the table of m_{J} is revealed, than one can form the conjunction matrix for D_{0}, and recover x_{j} solving a linear system.

Attribute non-privacy

Assume that the data base D contains $(d-1)$ publicly available attribute, and 1 sensitive one.
The privacy is violated for a data base D if knowing the contingency table, one can reconstruct coordinates of the sensitive vector

- Denote $D=\binom{D_{0}}{x}$, where x is the sensitive vector. If D_{0} is known, and the table of m_{J} is revealed, than one can form the conjunction matrix for D_{0}, and recover x_{j} solving a linear system.
- Observation: m_{J} does not significantly depend on x.
- Privacy protection: release the contingency table with some noise.

Attribute non-privacy

Assume that the data base D contains $(d-1)$ publicly available attribute, and 1 sensitive one.
The privacy is violated for a data base D if knowing the noisy contingency table, one can reconstruct $(1-o(1)) n$ coordinates of the sensitive vector with probability $(1-o(1))$.

- Denote $D=\binom{D_{0}}{x}$, where x is the sensitive vector. If D_{0} is known, and the table of m_{J} is revealed, than one can form the conjunction matrix for D_{0}, and recover x_{j} solving a linear system.
- Observation: m_{J} does not significantly depend on x.
- Privacy protection: release the contingency table with some noise.

Attribute non-privacy

Assume that the data base D contains $(d-1)$ publicly available attribute, and 1 sensitive one.
The privacy is violated for a random data base D if knowing the noisy contingency table, one can reconstruct $(1-o(1)) n$ coordinates of the sensitive vector with probability $(1-o(1))$.

- Denote $D=\binom{D_{0}}{x}$, where x is the sensitive vector. If D_{0} is known, and the table of m_{J} is revealed, than one can form the conjunction matrix for D_{0}, and recover x_{j} solving a linear system.
- Observation: m_{J} does not significantly depend on x.
- Privacy protection: release the contingency table with some noise.
- Typical case: random data base.

Noise

- Let x be the private vector. The contingency table contains the vector $M^{(k)} x$.
- We release

$$
y=M^{(k)} x+w, \quad \text { where } w \text { is the noise vector. }
$$

Noise

- Let x be the private vector. The contingency table contains the vector $M^{(k)} x$.
- We release

$$
y=M^{(k)} x+w, \quad \text { where } w \text { is the noise vector. }
$$

- The noise should be as small as possible to make the contingency table more reliable.
- The noise has to be big enough to protect the private vector.

Recovery and singular values

Singular value decomposition:

$M^{(k)}=P \Gamma Q$, where

- Q is an $n \times n$ isometry matrix;
- Γ is an $n \times n$ diagonal matrix of the singular values:

$$
\Gamma=\operatorname{diag}\left(s_{1}\left(M^{(k)}\right), \ldots, s_{n}\left(M^{(k)}\right)\right)
$$

- P is an $\binom{d}{k} \times n$ isometric embedding.

Recovery and singular values

Singular value decomposition:

$M^{(k)}=P \Gamma Q$, where

- Q is an $n \times n$ isometry matrix;
- Γ is an $n \times n$ diagonal matrix of the singular values:

$$
\Gamma=\operatorname{diag}\left(s_{1}\left(M^{(k)}\right), \ldots, s_{n}\left(M^{(k)}\right)\right)
$$

- P is an $\binom{d}{k} \times n$ isometric embedding.

Set $L=Q^{T} \Gamma^{-1} P^{T}$. Then $y=M^{(k)} x+w \quad \Rightarrow \quad x=L y-L w$.
Hence, $\quad\|x-L y\| \leq\|L\| \cdot\|w\| \leq \frac{1}{s_{n}\left(M^{(k)}\right)} \cdot\|w\|$.

Recovery and singular values

Singular value decomposition:

$M^{(k)}=P \Gamma Q$, where

- Q is an $n \times n$ isometry matrix;
- Γ is an $n \times n$ diagonal matrix of the singular values:

$$
\Gamma=\operatorname{diag}\left(s_{1}\left(M^{(k)}\right), \ldots, s_{n}\left(M^{(k)}\right)\right)
$$

- P is an $\binom{d}{k} \times n$ isometric embedding.

Set $L=Q^{T} \Gamma^{-1} P^{T}$. Then $y=M^{(k)} x+w \quad \Rightarrow \quad x=L y-L w$.
Hence, $\quad\|x-L y\| \leq\|L\| \cdot\|w\| \leq \frac{1}{s_{n}\left(M^{(k)}\right)} \cdot\|w\|$.
The lower bound on the noise.
Assume that $\frac{1}{s_{n}\left(M^{(k)}\right)} \cdot\|w\|=o(\sqrt{n})$ with high probability.
Then $(1-o(1)) n$ coordinates of this vector are of order $o(1)$.
Since x has $\{0,1\}$ coordinates, most of the coordinates of x can be recovered by rounding.

First order contingency tables \Rightarrow random matrices

$$
M^{(1)}=D \quad d \geq n \quad \text { hypothetical case }
$$

Here D is a random matrix with i.i.d. bounded entries.

$$
s_{1}(D)=\max _{x \in S^{n-1}}\|D x\|, \quad s_{n}(D)=\min _{x \in S^{n-1}}\|D x\|
$$

Fact: $\quad s_{1}(D) \leq C(\sqrt{d}+\sqrt{n})$ with probability very close to 1.

First order contingency tables \Rightarrow random matrices

$$
M^{(1)}=D \quad d \geq n \quad \text { hypothetical case }
$$

Here D is a random matrix with i.i.d. bounded entries.

$$
s_{1}(D)=\max _{x \in S^{n-1}}\|D x\|, \quad s_{n}(D)=\min _{x \in S^{n-1}}\|D x\|
$$

Fact: $\quad s_{1}(D) \leq C(\sqrt{d}+\sqrt{n})$ with probability very close to 1. General result [R, Vershynin, 2008]:

$$
s_{n}(D) \geq c(\sqrt{d}-\sqrt{n-1}) \quad \text { with high probability. }
$$

For $d \geq C^{\prime} n$ this means $s_{n}(D) \geq c \sqrt{d}$.
If $d \geq C^{\prime} n$, then the matrix D is nicely invertible (on its image)

Higher order conjunctions

If D is a $d \times n$ random matrix with independent entries, and $d \geq C n$, then

$$
s_{n}(D) \sim \sqrt{d} \quad \text { with high probability. }
$$

Conjecture

If $k \geq 1, M$ is the $\binom{d}{k} \times n$ conjunction matrix of a random matrix D, and $\binom{d}{k} \geq C(k) n$, then

$$
s_{n}(D) \sim_{k} \sqrt{\binom{d}{k}} \quad \text { with high probability }
$$

Higher order conjunctions

If D is a $d \times n$ random matrix with independent entries, and $d \geq C n$, then

$$
s_{n}(D) \sim \sqrt{d} \quad \text { with high probability. }
$$

Conjecture

If $k \geq 1, M$ is the $\binom{d}{k} \times n$ conjunction matrix of a random matrix D, and $\binom{d}{k} \geq C(k) n$, then

$$
s_{n}(D) \sim_{k} \sqrt{\binom{d}{k}} \sim_{k} d^{k / 2} \quad \text { with high probability }
$$

whenever $n \geq n(k)$.
n and d have to be big compare to k.

Higher order conjunctions

If D is a $d \times n$ random matrix with independent entries, and $d \geq C n$, then

$$
s_{n}(D) \sim \sqrt{d} \quad \text { with high probability. }
$$

Conjecture

If $k \geq 1, M$ is the $\binom{d}{k} \times n$ conjunction matrix of a random matrix D, and $\binom{d}{k} \geq C(k) n$, then

$$
s_{n}(D) \sim_{k} \sqrt{\binom{d}{k}} \sim_{k} d^{k / 2} \quad \text { with high probability }
$$

whenever $n \geq n(k)$.
n and d have to be big compare to k.

Numerical experiments

If $k=2$, and $\binom{d}{2} \geq 4 n$, then $\quad s_{n}(D) \sim d \quad$ with high probability

Random data base

- Attributes of different individuals are independent and identically distributed.

Random data base

- Attributes of different individuals are independent and identically distributed. Not very realistic.

Random data base

- Attributes of different individuals are independent and identically distributed. Not very realistic.
- Each attribute has its own distribution.
- Each attribute is random.
- The individual records are independent.

Random data base

- Attributes of different individuals are independent and identically distributed. Not very realistic.
- Each attribute has its own distribution.
- Each attribute is random.
- The individual records are independent.

Random data base

Let $0<p_{1}<p_{2}<1$. Let D be a $\{0,1\}$ random matrix with independent entries. Assume that

$$
\mathbb{P}\left(d_{j, k}=1\right)=\delta_{k},
$$

where $p_{1} \leq \delta_{k} \leq p_{2}$.
δ_{k} is the probability of k-th attribute.

Higher order conjunctions

Conjecture (still open)

If $k \geq 1, M$ is the $\binom{d}{K} \times n$ conjunction matrix of a random data base D, and $\binom{d}{K} \geq C(K) n$, then

$$
s_{n}(D) \sim_{k} d^{K / 2} \quad \text { with high probability, whenever } n \geq n(K)
$$

Higher order conjunctions

Conjecture (still open)

If $k \geq 1, M$ is the $\binom{d}{K} \times n$ conjunction matrix of a random data base D, and $\binom{d}{K} \geq C(K) n$, then

$$
s_{n}(D) \sim_{k} d^{K / 2} \quad \text { with high probability, whenever } n \geq n(K)
$$

Theorem

let D be an $d \times n$ random data base. Let M be the K-conjunction matrix of D.

$$
\text { If } \quad n \leq \frac{c^{\prime}}{\log ^{c(K)} d} \cdot d^{K}, \quad \text { then }
$$

Higher order conjunctions

Conjecture (still open)

If $k \geq 1, M$ is the $\binom{d}{K} \times n$ conjunction matrix of a random data base D, and $\binom{d}{K} \geq C(K) n$, then

$$
s_{n}(D) \sim_{k} d^{K / 2} \quad \text { with high probability, whenever } n \geq n(K)
$$

Theorem

let D be an $d \times n$ random data base. Let M be the K-conjunction matrix of D.

$$
\text { If } \quad n \leq \frac{c^{\prime}}{\log ^{c(K)} d} \cdot d^{K}, \quad \text { then }
$$

$\mathbb{P}\left(s_{n}(M) \leq C_{K} \frac{d^{K / 2}}{\log ^{c_{K}} n}\right) \leq \exp \left(-C_{K}^{\prime} \frac{d}{\log ^{c_{K}^{\prime}} n}\right), \quad$ provided that n is big enough.

Conjunctions of order 2

Iterated logarithm: $\log ^{(q)}, q \in \mathbb{N}$.
(1) $\log ^{(1)} x=\max (\log x, 1)$.
(2) $\log ^{(k+1)} x=\max \left(\log \log ^{(k)} x, 1\right)$.

Conjunctions of order 2

Iterated logarithm: $\log ^{(q)}, q \in \mathbb{N}$.
(1) $\log ^{(1)} x=\max (\log x, 1)$.
(2) $\log ^{(k+1)} x=\max \left(\log \log ^{(k)} x, 1\right)$.

Theorem ($k=2$)

let D be an $d \times n$ random data base. Let M be the 2 -conjunction matrix of D.

$$
\text { If } \quad n \leq \frac{c^{\prime}}{\log ^{(q)} d} \cdot d^{2},
$$

Conjunctions of order 2

Iterated logarithm: $\log ^{(q)}, q \in \mathbb{N}$.
(1) $\log ^{(1)} x=\max (\log x, 1)$.
(2) $\log ^{(k+1)} x=\max \left(\log \log ^{(k)} x, 1\right)$.

Theorem ($k=2$)

let D be an $d \times n$ random data base. Let M be the 2 -conjunction matrix of D.

$$
\text { If } \quad n \leq \frac{c^{\prime}}{\log ^{(q)} d} \cdot d^{2},
$$

then $\mathbb{P}\left(s_{n}(M) \leq c^{q} d\right) \leq e^{-c d}, \quad$ provided that n is big enough.

ε-net argument for matrices with independent entries.

$$
s_{n}(D)=\min _{x \in S^{n-1}}\|D x\|
$$

(1) Individual estimate: $\mathbb{P}(\|D y\|<t)$ is small for a fixed $y \in S^{n-1}$.
(2) Discretization: Find a small ε-net $\mathcal{N} \subset S^{n-1}$ and use the union bound.
(3) Approximation:

ε-net argument for matrices with independent entries.

$$
s_{n}(D)=\min _{x \in S^{n-1}}\|D x\|
$$

(1) Individual estimate: $\mathbb{P}(\|D y\|<t)$ is small for a fixed $y \in S^{n-1}$.
(1) Each coordinate of $D y$ is a linear combination of independent random variables.
(2) Small ball probability: $\mathbb{P}\left(\left|(D y)_{j}\right|<\mu\right)<\nu$ for some $\mu, \nu<1$.
(3) Rows are independent

$$
\mathbb{P}\left(\|D y\|<\mu^{\prime} \sqrt{d}\right) \leq \eta^{d}
$$

(2) Discretization: Find a small ε-net $\mathcal{N} \subset S^{n-1}$ and use the union bound.
(3) Approximation:

ε-net argument for matrices with independent entries.

$$
s_{n}(D)=\min _{x \in S^{n-1}}\|D x\|
$$

(1) Individual estimate: $\mathbb{P}(\|D y\|<t)$ is small for a fixed $y \in S^{n-1}$.
(1) Each coordinate of $D y$ is a linear combination of independent random variables.
(2) Small ball probability: $\mathbb{P}\left(\left|(D y)_{j}\right|<\mu\right)<\nu$ for some $\mu, \nu<1$.
(3) Rows are independent

$$
\mathbb{P}\left(\|D y\|<\mu^{\prime} \sqrt{d}\right) \leq \eta^{d}
$$

(2) Discretization: Find a small ε-net $\mathcal{N} \subset S^{n-1}$ and use the union bound.

$$
\text { Volumetric estimate : } \quad|\mathcal{N}| \leq(3 / \varepsilon)^{n}
$$

Union bound:

$$
\mathbb{P}\left(\exists y \in \mathcal{N}\|D y\|<\mu^{\prime} \sqrt{d}\right) \leq \eta^{d} \cdot(3 / \varepsilon)^{n}
$$

Since $d \gg n$, this probability is very small.
(3) Approximation:

ε-net argument for matrices with independent entries.

$$
s_{n}(D)=\min _{x \in S^{n-1}}\|D x\|
$$

(1) Individual estimate: $\mathbb{P}(\|D y\|<t)$ is small for a fixed $y \in S^{n-1}$.
(1) Each coordinate of $D y$ is a linear combination of independent random variables.
(2) Small ball probability: $\mathbb{P}\left(\left|(D y)_{j}\right|<\mu\right)<\nu$ for some $\mu, \nu<1$.
(3) Rows are independent

$$
\mathbb{P}\left(\|D y\|<\mu^{\prime} \sqrt{d}\right) \leq \eta^{d}
$$

(2) Discretization: Find a small ε-net $\mathcal{N} \subset S^{n-1}$ and use the union bound.

$$
\text { Volumetric estimate : } \quad|\mathcal{N}| \leq(3 / \varepsilon)^{n}
$$

Union bound:

$$
\mathbb{P}\left(\exists y \in \mathcal{N}\|D y\|<\mu^{\prime} \sqrt{d}\right) \leq \eta^{d} \cdot(3 / \varepsilon)^{n}
$$

Since $d \gg n$, this probability is very small.
(3) Approximation: assume that $\|D y\| \geq \mu^{\prime} \sqrt{d}$ for all $y \in \mathcal{N}$.

Then $\|D x\| \geq \mu^{\prime} \sqrt{d} / 2$ for all $x \in S^{n-1}$.

ε-net argument: a failing attempt.

(1) Individual estimate: $\mathbb{P}(\|M y\|<t)$ is small for a fixed $y \in S^{n-1}$.
(2) Discretization (geometry): Find a small ε-net $\mathcal{N} \subset S^{n-1}$.
(0) Approximation

ε-net argument: a failing attempt.

(1) Individual estimate: $\mathbb{P}(\|M y\|<t)$ is small for a fixed $y \in S^{n-1}$.
(1) Each coordinate of $D x$ is a linear combination of independent random variables.
(2) Small ball probability: $\mathbb{P}\left(\left|(M y)_{j}\right|<\mu\right)<\nu$ for some $\mu, \nu<1$.
(3) The coordinates of $M x$ are dependent \Rightarrow one cannot bound $\mathbb{P}\left(\|M y\|<\mu^{\prime} d\right)$
(2) Discretization (geometry): Find a small ε-net $\mathcal{N} \subset S^{n-1}$.
(3) Approximation

Obstacles:

- Insufficient independence.

ε-net argument: a failing attempt.

(1) Individual estimate: $\mathbb{P}(\|M y\|<t)$ is small for a fixed $y \in S^{n-1}$.
(1) Each coordinate of $D x$ is a linear combination of independent random variables.
(2) Small ball probability: $\mathbb{P}\left(\left|(M y)_{j}\right|<\mu\right)<\nu$ for some $\mu, \nu<1$.
(3) The coordinates of $M x$ are dependent \Rightarrow one cannot bound $\mathbb{P}\left(\|M y\|<\mu^{\prime} d\right)$
(2) Discretization (geometry): Find a small ε-net $\mathcal{N} \subset S^{n-1}$.

$$
\text { Volumetric estimate : } \quad|\mathcal{N}| \leq(3 / \varepsilon)^{n}
$$

Union bound:

$$
\mathbb{P}\left(\exists y \in \mathcal{N} \quad\|M y\|<\mu^{\prime} \sqrt{d}\right) \leq \eta^{d} \cdot(3 / \varepsilon)^{n}
$$

(3) Approximation

Obstacles:

- Insufficient independence.

ε-net argument: a failing attempt.

(1) Individual estimate: $\mathbb{P}(\|M y\|<t)$ is small for a fixed $y \in S^{n-1}$.
(1) Each coordinate of $D x$ is a linear combination of independent random variables.
(2) Small ball probability: $\mathbb{P}\left(\left|(M y)_{j}\right|<\mu\right)<\nu$ for some $\mu, \nu<1$.
(3) The coordinates of $M x$ are dependent \Rightarrow one cannot bound $\mathbb{P}\left(\|M y\|<\mu^{\prime} d\right)$
(2) Discretization (geometry): Find a small ε-net $\mathcal{N} \subset S^{n-1}$.

$$
\text { Volumetric estimate : } \quad|\mathcal{N}| \leq(3 / \varepsilon)^{n} \text {. }
$$

Union bound:

$$
\mathbb{P}\left(\exists y \in \mathcal{N}\|M y\|<\mu^{\prime} \sqrt{d}\right) \leq \eta^{d} \cdot(3 / \varepsilon)^{n} \gg 1
$$

- If $n \gg d$ this is too big.
- Volumetric estimate cannot be significantly improved.
© Approximation ???
Obstacles:
- Insufficient independence.
- Insufficient randomness.

Strategy of the proof

(1) Decoupling $=$ boosting the independence.
(2) Decomposition of the sphere.
(3) Balancing the small ball probability and the complexity of the set for each part separately.

Decoupling $=$ boosting the independence.

The coordinates of $M x$ are dependent

- Let M^{\prime} be a matrix consisting of a part of the rows of M. Then $s_{n}\left(M^{\prime}\right) \leq s_{n}(M)$.
- Divide $\{1, \ldots, d\}$ in two parts I, J of approximately equal size.
- Consider the matrix M^{\prime} with rows $d_{i} \odot d_{j}$, where $i \in I, j \in J$. M corresponds to a complete graph, M^{\prime} corresponds to a complete bipartite graph

$$
M=\left(\begin{array}{cccc}
* & * & \ldots & * \\
* & * & \ldots & *
\end{array}\right)
$$

Decoupling $=$ boosting the independence.

The coordinates of $M x$ are dependent

- Let M^{\prime} be a matrix consisting of a part of the rows of M. Then $s_{n}\left(M^{\prime}\right) \leq s_{n}(M)$.
- Divide $\{1, \ldots, d\}$ in two parts I, J of approximately equal size.
- Consider the matrix M^{\prime} with rows $d_{i} \odot d_{j}$, where $i \in I, j \in J$. M corresponds to a complete graph, M^{\prime} corresponds to a complete bipartite graph

$$
M=\left(\begin{array}{cccc}
* & * & \ldots & * \\
* & * & \ldots & *
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
* \cdot * & * \cdot * & \ldots & * \cdot * \\
* \cdot * & * \cdot * & \ldots & * \cdot * \\
* \cdot * & * \cdot * & \ldots & * \cdot * \\
* & * & \ldots & *
\end{array}\right)
$$

Decoupling $=$ boosting the independence.

The coordinates of $M x$ are dependent

- Let M^{\prime} be a matrix consisting of a part of the rows of M. Then $s_{n}\left(M^{\prime}\right) \leq s_{n}(M)$.
- Divide $\{1, \ldots, d\}$ in two parts I, J of approximately equal size.
- Consider the matrix M^{\prime} with rows $d_{i} \odot d_{j}$, where $i \in I, j \in J$. M corresponds to a complete graph, M^{\prime} corresponds to a complete bipartite graph

$$
M=\left(\begin{array}{cccc}
* & * & \ldots & * \\
* & * & \ldots & *
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
* & * & \ldots & * \\
* & * & \ldots & * \\
* & * & \ldots & * \\
* \cdot * & * \cdot * & \ldots & * \cdot * \\
* \cdot * & * \cdot * & \ldots & * \cdot * \\
* \cdot * & * \cdot * & \ldots & * \cdot * \\
* & * & \ldots & * \\
* & * & \ldots & * \\
* & * & \ldots & *
\end{array}\right)
$$

Decoupling $=$ boosting the independence.

The coordinates of $M x$ are dependent

- Let M^{\prime} be a matrix consisting of a part of the rows of M. Then $s_{n}\left(M^{\prime}\right) \leq s_{n}(M)$.
- Divide $\{1, \ldots, d\}$ in two parts I, J of approximately equal size.
- Consider the matrix M^{\prime} with rows $d_{i} \odot d_{j}$, where $i \in I, j \in J$. M corresponds to a complete graph, M^{\prime} corresponds to a complete bipartite graph

$$
M=\left(\begin{array}{cccc}
* & * & \ldots & * \\
* & * & \ldots & *
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
* & * & \ldots & * \\
* \cdot * & * \cdot * & \ldots & * \cdot * \\
* \cdot * & * \cdot * & \ldots & * \cdot * \\
* \cdot * & * \cdot * & \ldots & * \cdot *
\end{array}\right)
$$

Decoupling $=$ boosting the independence.

The coordinates of $M x$ are dependent

- Condition on $d_{j}, j \in J$.

The matrix M^{\prime} consists of $d / 2$ blocks, which are essentially independent.

- Improvement: more independence.
- Complication: independent entries \Rightarrow independent blocks.

$$
M=\left(\begin{array}{cccc}
* & * & \ldots & * \\
* & * & \ldots & *
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
* & * & \ldots & * \\
* \cdot * & * \cdot * & \ldots & * \cdot * \\
* \cdot * & * \cdot * & \ldots & * \cdot * \\
* \cdot * & * \cdot * & \ldots & * \cdot *
\end{array}\right)
$$

Small ball probability and conditioning: two sides of one coin

- $M^{\prime}=\Pi_{1} \odot \Pi_{2}$, where Π_{1}, Π_{2} are independent random matrices.
- We need to bound $\mathbb{P}\left(\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\|\right.$ is small $)$.

Small ball probability and conditioning: two sides of one coin

- $M^{\prime}=\Pi_{1} \odot \Pi_{2}$, where Π_{1}, Π_{2} are independent random matrices.
- We need to bound $\mathbb{P}\left(\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\|\right.$ is small $)$.
(1) Condition on Π_{2}.
(2) Condition on Π_{1}.

Small ball probability and conditioning: two sides of one coin

- $M^{\prime}=\Pi_{1} \odot \Pi_{2}$, where Π_{1}, Π_{2} are independent random matrices.
- We need to bound $\mathbb{P}\left(\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\|\right.$ is small $)$.
(1) Condition on Π_{2}.
- $\left(\Pi_{1} \odot \Pi_{2}\right) x$ consists of d blocks $\Pi_{1} y_{j}, j=1, \ldots, d$, where y_{j} is the row product of the j-th row of Π_{2} and x.
- $\left\|y_{j}\right\| \geq c\|x\|$ with high probability $\Rightarrow\left\|\Pi_{1} y_{j}\right\| \gtrsim \sqrt{d}$ $\Rightarrow\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\| \gtrsim d$ with high probability.
(2) Condition on Π_{1}.

Small ball probability and conditioning: two sides of one coin

- $M^{\prime}=\Pi_{1} \odot \Pi_{2}$, where Π_{1}, Π_{2} are independent random matrices.
- We need to bound $\mathbb{P}\left(\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\|\right.$ is small $)$.
(1) Condition on Π_{2}.
- $\left(\Pi_{1} \odot \Pi_{2}\right) x$ consists of d blocks $\Pi_{1} y_{j}, j=1, \ldots, d$, where y_{j} is the row product of the j-th row of Π_{2} and x.
- $\left\|y_{j}\right\| \geq c\|x\|$ with high probability $\Rightarrow\left\|\Pi_{1} y_{j}\right\| \gtrsim \sqrt{d}$ $\Rightarrow\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\| \gtrsim d$ with high probability.
(2) Condition on Π_{1}.
- Discarding a set of small probability, we may assume that Π_{1} is typical.
- $\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\|$ is highly concentrated around its mean $\Rightarrow\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\| \gtrsim d$ with high probability.

Small ball probability and conditioning: two sides of one coin

- $M^{\prime}=\Pi_{1} \odot \Pi_{2}$, where Π_{1}, Π_{2} are independent random matrices.
- We need to bound $\mathbb{P}\left(\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\|\right.$ is small $)$.
(1) Condition on Π_{2}.
- $\left(\Pi_{1} \odot \Pi_{2}\right) x$ consists of d blocks $\Pi_{1} y_{j}, j=1, \ldots, d$, where y_{j} is the row product of the j-th row of Π_{2} and x.
- $\left\|y_{j}\right\| \geq c\|x\|$ with high probability $\Rightarrow\left\|\Pi_{1} y_{j}\right\| \gtrsim \sqrt{d}$ $\Rightarrow\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\| \gtrsim d$ with high probability.
(2) Condition on Π_{1}.
- Discarding a set of small probability, we may assume that Π_{1} is typical.
- $\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\|$ is highly concentrated around its mean $\Rightarrow\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\| \gtrsim d$ with high probability.

Which strategy is better?

Small ball probability and conditioning: two sides of one coin

- $M^{\prime}=\Pi_{1} \odot \Pi_{2}$, where Π_{1}, Π_{2} are independent random matrices.
- We need to bound $\mathbb{P}\left(\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\|\right.$ is small $)$.
(1) Condition on Π_{2}.
- $\left(\Pi_{1} \odot \Pi_{2}\right) x$ consists of d blocks $\Pi_{1} y_{j}, j=1, \ldots, d$, where y_{j} is the row product of the j-th row of Π_{2} and x.
- $\left\|y_{j}\right\| \geq c\|x\|$ with high probability $\Rightarrow\left\|\Pi_{1} y_{j}\right\| \gtrsim \sqrt{d}$ $\Rightarrow\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\| \gtrsim d$ with high probability.
- Works when $|\operatorname{supp} x| \ll d$.
(2) Condition on Π_{1}.
- Discarding a set of small probability, we may assume that Π_{1} is typical.
- $\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\|$ is highly concentrated around its mean $\Rightarrow\left\|\left(\Pi_{1} \odot \Pi_{2}\right) x\right\| \gtrsim d$ with high probability.
- Works if x has many commensurate coordinates.

Which strategy is better?

Analysis on one block: random sums of random vectors

Condition on the matrix Π_{1}.
Let B be one of the blocks:

$$
B=\varepsilon \odot \Pi_{1}=\left[\varepsilon_{1} \cdot Y_{1}, \varepsilon_{2} \cdot Y_{2}, \ldots, \varepsilon_{n} \cdot Y_{N}\right]
$$

- Y_{j} is a column of Π_{1} (fixed after conditioning)
- $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent ± 1 random variables.

Individual estimate: we have to bound $\|B x\|$ below.

Analysis on one block: random sums of random vectors

Condition on the matrix Π_{1}.
Let B be one of the blocks:

$$
B=\varepsilon \odot \Pi_{1}=\left[\varepsilon_{1} \cdot Y_{1}, \varepsilon_{2} \cdot Y_{2}, \ldots, \varepsilon_{n} \cdot Y_{N}\right]
$$

- Y_{j} is a column of Π_{1} (fixed after conditioning)
- $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent ± 1 random variables.

Individual estimate: we have to bound $\|B x\|$ below.
Trick: interchanging the roles of ε and x :

$$
B x=\left[\varepsilon_{1} Y_{1}, \varepsilon_{2} Y_{2}, \ldots, \varepsilon_{n} Y_{n}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Analysis on one block: random sums of random vectors

Condition on the matrix Π_{1}.
Let B be one of the blocks:

$$
B=\varepsilon \odot \Pi_{1}=\left[\varepsilon_{1} \cdot Y_{1}, \varepsilon_{2} \cdot Y_{2}, \ldots, \varepsilon_{n} \cdot Y_{N}\right]
$$

- Y_{j} is a column of Π_{1} (fixed after conditioning)
- $\varepsilon_{1}, \ldots, \varepsilon_{n}$ are independent ± 1 random variables.

Individual estimate: we have to bound $\|B x\|$ below.
Trick: interchanging the roles of ε and x :

$$
B x=\left[\varepsilon_{1} Y_{1}, \varepsilon_{2} Y_{2}, \ldots, \varepsilon_{n} Y_{n}\right] \cdot\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[x_{1} Y_{1}, x_{2} Y_{2}, \ldots, x_{n} Y_{n}\right] \cdot\left[\begin{array}{c}
\varepsilon_{1} \\
\varepsilon_{2} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
$$

This is a sum of vectors $\quad x_{1} Y_{1}, x_{2} Y_{2}, \ldots, x_{n} Y_{n}$ with random signs.

Random sums of vectors

Let $V_{1}, V_{2}, \ldots, V_{n} \in \mathbb{R}^{d}$ be fixed vectors.
We want to show that

$$
\mathbb{P}\left(\left\|\sum_{j=1}^{n} \varepsilon_{j} V_{j}\right\| \leq ?\right) \leq ? ?
$$

Parallelogram equality:

$$
\left\|\sum_{j=1}^{n} \varepsilon_{j} V_{j}\right\|^{2}=\sum_{j=1}^{n}\left\|V_{j}\right\|^{2}
$$

We need estimate with high probability.

Random sums of vectors

Let $V_{1}, V_{2}, \ldots, V_{n} \in \mathbb{R}^{d}$ be fixed vectors.
We want to show that

$$
\mathbb{P}\left(\left\|\sum_{j=1}^{n} \varepsilon_{j} V_{j}\right\| \leq ?\right) \leq ? ?
$$

Parallelogram equality:

$$
\left\|\sum_{j=1}^{n} \varepsilon_{j} V_{j}\right\|^{2}=\sum_{j=1}^{n}\left\|V_{j}\right\|^{2}
$$

We need estimate with high probability.
Impossible in general: if $V_{1}=V_{2}$, and $V_{3}=\ldots=V_{n}=0$, then

$$
\mathbb{P}\left(\left\|\sum_{j=1}^{n} \varepsilon_{j} V_{j}\right\|=0\right)=1 / 2 .
$$

Concentration of measure

Let $V_{1}, V_{2}, \ldots, V_{n} \in \mathbb{R}^{d}$ be fixed vectors.
We want to show that

$$
\mathbb{P}\left(\left\|\sum_{j=1}^{n} \varepsilon_{j} V_{j}\right\| \leq\left(\sum_{j=1}^{n}\left\|V_{j}\right\|^{2}\right)^{1 / 2}\right) \leq ? ?
$$

(1) View $F\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=\left\|\sum_{j=1}^{n} \varepsilon_{j} V_{j}\right\|$ as a function on \mathbb{R}^{n}, and on the discrete cube $\{-1,1\}^{n}$ simultaneously.
(2) Talagrand's measure concentration theorem:

Every convex Lipschitz function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is close to a constant on the discrete cube with high probability.
(How close depends on the Lipschitz constant of F)
Lipschitz constant of F is the norm of the matrix $\left[V_{1}, V_{2}, \ldots, V_{n}\right]$.
To get a meaningful estimate, we need $\left\|\left[V_{1}, V_{2}, \ldots, V_{n}\right]\right\| \ll\left(\sum_{j=1}^{n}\left\|V_{j}\right\|^{2}\right)^{1 / 2}$.

Stratification of the sphere

When $\left\|\left[V_{1}, V_{2}, \ldots, V_{n}\right]\right\| \ll\left(\sum_{j=1}^{n}\left\|V_{j}\right\|^{2}\right)^{1 / 2}$?

- If $V_{1}=V_{2}=\ldots=V_{n}$, then " $=$ ".
- If $\left\|V_{1}\right\| \gg\left\|V_{j}\right\|$ for all $j>1$, then " \approx ".
- We need V_{j} to be independent vectors of commensurate norms.

Stratification of the sphere

When $\left\|\left[V_{1}, V_{2}, \ldots, V_{n}\right]\right\| \ll\left(\sum_{j=1}^{n}\left\|V_{j}\right\|^{2}\right)^{1 / 2}$?

- If $V_{1}=V_{2}=\ldots=V_{n}$, then " $=$ ".
- If $\left\|V_{1}\right\| \gg\left\|V_{j}\right\|$ for all $j>1$, then " \approx ".
- We need V_{j} to be independent vectors of commensurate norms.

$$
\left[V_{1}, V_{2}, \ldots, V_{n}\right]=\left[x_{1} Y_{1}, x_{2} Y_{2}, \ldots, x_{n} Y_{n}\right] .
$$

- Independence - yes
- commensurate norms - not for any x

Stratification of the sphere

When $\left\|\left[V_{1}, V_{2}, \ldots, V_{n}\right]\right\| \ll\left(\sum_{j=1}^{n}\left\|V_{j}\right\|^{2}\right)^{1 / 2}$?

- If $V_{1}=V_{2}=\ldots=V_{n}$, then " $=$ ".
- If $\left\|V_{1}\right\| \gg\left\|V_{j}\right\|$ for all $j>1$, then " \approx ".
- We need V_{j} to be independent vectors of commensurate norms.

$$
\left[V_{1}, V_{2}, \ldots, V_{n}\right]=\left[x_{1} Y_{1}, x_{2} Y_{2}, \ldots, x_{n} Y_{n}\right] .
$$

- Independence - yes
- commensurate norms - not for any x
- x is far from a coordinate subspace of a small dimension (incompressible) \Rightarrow many commensurate coordinates.

