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Contingency tables

Data base: a d × n matrix D with {0, 1} entries.
n individual records;
d attributes of each individual.

Contingency table: let k < n.
For each subset J ⊂ {1, . . . , d} of |J| = k attributes record mJ – the percentage
of the individual records having all attributes from J.
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Conjunction matrix

All attributes = Conjunction = product of {0, 1} variables
Conjunction matrix: construct a

(d
k

)
× n matrix M(k) as follows:

for the set J ⊂ {1, . . . , d}, define the row M(k)
J as the entry-wise product of

corresponding rows of D.

∗ ∗ . . . ∗
δ1 δ2 . . . δn

∗ ∗ . . . ∗
ε1 ε2 . . . εn

∗ ∗ . . . ∗
ν1 ν2 . . . νn

∗ ∗ . . . ∗


→ (δ1 · ε1 · ν1, δ2 · ε2 · ν2, . . . , δn · εn · νn) =: δ � ε� ν.

M(k) is a {0, 1} matrix.
mJ is the percentage of 1-s in the row M(k)

J .
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Attribute non-privacy

Assume that the data base D contains (d − 1) publicly available attribute, and 1
sensitive one.
The privacy is violated for a

random

data base D if knowing the

noisy

contingency
table, one can reconstruct

(1− o(1))n

coordinates of the sensitive vector

with
probability (1− o(1)).

Denote D =
(D0

x

)
, where x is the sensitive vector. If D0 is known, and the table of

mJ is revealed, than one can form the conjunction matrix for D0, and recover xj

solving a linear system.
Observation: mJ does not significantly depend on x.
Privacy protection: release the contingency table with some noise.
Typical case: random data base.
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Noise

Let x be the private vector.
The contingency table contains the vector M(k)x.
We release

y = M(k)x + w, where w is the noise vector.

The noise should be as small as possible to make the contingency table more
reliable.
The noise has to be big enough to protect the private vector.
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Recovery and singular values

Singular value decomposition:

M(k) = PΓQ, where
Q is an n× n isometry matrix;
Γ is an n× n diagonal matrix of the singular values:

Γ = diag
(
s1(M(k)), . . . , sn(M(k))

)
.

P is an
(d

k

)
× n isometric embedding.

Set L = QTΓ−1PT . Then y = M(k)x + w ⇒ x = Ly− Lw.

Hence, ‖x− Ly‖ ≤ ‖L‖ · ‖w‖ ≤ 1
sn(M(k))

· ‖w‖ .

The lower bound on the noise.

Assume that 1
sn(M(k))

· ‖w‖ = o(
√

n) with high probability.
Then (1− o(1))n coordinates of this vector are of order o(1).
Since x has {0, 1} coordinates, most of the coordinates of x can be recovered by
rounding.
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First order contingency tables ⇒ random matrices

M(1) = D d ≥ n hypothetical case

Here D is a random matrix with i.i.d. bounded entries.

s1(D) = max
x∈Sn−1

‖Dx‖ , sn(D) = min
x∈Sn−1

‖Dx‖ .

Fact: s1(D) ≤ C(
√

d +
√

n) with probability very close to 1.

General result [R, Vershynin, 2008]:

sn(D) ≥ c(
√

d −
√

n− 1) with high probability.

For d ≥ C′n this means sn(D) ≥ c
√

d.

If d ≥ C′n, then the matrix D is nicely invertible (on its image)
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Higher order conjunctions

If D is a d × n random matrix with independent entries, and d ≥ Cn, then

sn(D) ∼
√

d with high probability.

Conjecture

If k ≥ 1, M is the
(d

k

)
× n conjunction matrix of a random matrix D, and

(d
k

)
≥ C(k)n,

then

sn(D) ∼k

√(
d
k

)

∼k d k/2

with high probability

whenever n ≥ n(k).

n and d have to be big compare to k.

Numerical experiments

If k = 2, and
(d

2

)
≥ 4n, then sn(D) ∼ d with high probability
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Random data base

Attributes of different individuals are independent and identically distributed.

Not very realistic.
Each attribute has its own distribution.
Each attribute is random.
The individual records are independent.

Random data base
Let 0 < p1 < p2 < 1. Let D be a {0, 1} random matrix with independent entries.
Assume that

P (dj,k = 1) = δk,

where p1 ≤ δk ≤ p2.

δk is the probability of k-th attribute.
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Higher order conjunctions

Conjecture (still open)

If k ≥ 1, M is the
(d

K

)
× n conjunction matrix of a random data base D, and(d

K

)
≥ C(K)n, then

sn(D) ∼k d K/2 with high probability, whenever n ≥ n(K)

Theorem
let D be an d × n random data base. Let M be the K-conjunction matrix of D.

If n ≤ c′

logc(K) d
· dK , then

P
(

sn(M) ≤ CK
dK/2

logcK n

)
≤ exp

(
−C′

K
d

logc′K n

)
, provided that n is big enough.
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Conjunctions of order 2

Iterated logarithm: log(q), q ∈ N.
1 log(1) x = max(log x, 1).
2 log(k+1) x = max(log log(k) x, 1).

Theorem (k = 2)
let D be an d × n random data base. Let M be the 2-conjunction matrix of D.

If n ≤ c′

log(q) d
· d2,

then P (sn(M) ≤ cqd) ≤ e−cd, provided that n is big enough.
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ε-net argument for matrices with independent entries.

sn(D) = min
x∈Sn−1

‖Dx‖ .

1 Individual estimate: P (‖Dy‖ < t) is small for a fixed y ∈ Sn−1.

1 Each coordinate of Dy is a linear combination of independent random variables.
2 Small ball probability: P

`
|(Dy)j| < µ) < ν for some µ, ν < 1.

3 Rows are independent
P (‖Dy‖ < µ′√d) ≤ ηd.

2 Discretization: Find a small ε-net N ⊂ Sn−1 and use the union bound.

Volumetric estimate : |N | ≤ (3/ε)n.

Union bound:
P (∃y ∈ N ‖Dy‖ < µ′

√
d) ≤ ηd · (3/ε)n.

Since d � n, this probability is very small.

3 Approximation:

assume that ‖Dy‖ ≥ µ′
√

d for all y ∈ N .
Then ‖Dx‖ ≥ µ′

√
d/2 for all x ∈ Sn−1.
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ε-net argument: a failing attempt.

1 Individual estimate: P (‖My‖ < t) is small for a fixed y ∈ Sn−1.

1 Each coordinate of Dx is a linear combination of independent random variables.
2 Small ball probability: P

`
|(My)j| < µ) < ν for some µ, ν < 1.

3 The coordinates of Mx are dependent ⇒ one cannot bound P (‖My‖ < µ′d)

2 Discretization (geometry): Find a small ε-net N ⊂ Sn−1.

Volumetric estimate : |N | ≤ (3/ε)n.

Union bound:

P (∃y ∈ N ‖My‖ < µ′
√

d) ≤ ηd · (3/ε)n

� 1

If n � d this is too big.
Volumetric estimate cannot be significantly improved.

3 Approximation

???

Obstacles:
Insufficient independence.

Insufficient randomness.
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Strategy of the proof

1 Decoupling = boosting the independence.
2 Decomposition of the sphere.
3 Balancing the small ball probability and the complexity of the set for each part

separately.
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Decoupling = boosting the independence.

The coordinates of Mx are dependent

Let M′ be a matrix consisting of a part of the rows of M.
Then sn(M′) ≤ sn(M).
Divide {1, . . . , d} in two parts I, J of approximately equal size.
Consider the matrix M′ with rows di � dj, where i ∈ I, j ∈ J.
M corresponds to a complete graph, M′ corresponds to a complete bipartite graph

M =


∗ ∗ . . . ∗
∗ ∗ . . . ∗
∗ ∗ . . . ∗
∗ ∗ . . . ∗
∗ ∗ . . . ∗
∗ ∗ . . . ∗



→



∗ · ∗ ∗ · ∗ . . . ∗ · ∗
∗ · ∗ ∗ · ∗ . . . ∗ · ∗
∗ · ∗ ∗ · ∗ . . . ∗ · ∗
∗ ∗ . . . ∗
∗ ∗ . . . ∗
∗ ∗ . . . ∗
∗ ∗ . . . ∗
∗ ∗ . . . ∗
∗ ∗ . . . ∗


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The coordinates of Mx are dependent

Let M′ be a matrix consisting of a part of the rows of M.
Then sn(M′) ≤ sn(M).
Divide {1, . . . , d} in two parts I, J of approximately equal size.
Consider the matrix M′ with rows di � dj, where i ∈ I, j ∈ J.
M corresponds to a complete graph, M′ corresponds to a complete bipartite graph
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Decoupling = boosting the independence.

The coordinates of Mx are dependent

Condition on dj, j ∈ J.
The matrix M′ consists of d/2 blocks, which are essentially independent.
Improvement: more independence.
Complication: independent entries ⇒ independent blocks.
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Small ball probability and conditioning: two sides of one
coin

M′ = Π1 �Π2, where Π1,Π2 are independent random matrices.
We need to bound P (‖(Π1 �Π2)x‖ is small).

1 Condition on Π2.

(Π1 �Π2)x consists of d blocks Π1yj, j = 1, . . . , d, where yj is the row product of
the j-th row of Π2 and x.
‖yj‖ ≥ c ‖x‖ with high probability ⇒ ‖Π1yj‖ &

√
d

⇒ ‖(Π1 �Π2)x‖ & d with high probability.

Works when | supp x| � d.

2 Condition on Π1.

Discarding a set of small probability, we may assume that Π1 is typical.
‖(Π1 �Π2)x‖ is highly concentrated around its mean
⇒ ‖(Π1 �Π2)x‖ & d with high probability.

Works if x has many commensurate coordinates.

Which strategy is better?
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Analysis on one block: random sums of random vectors

Condition on the matrix Π1.
Let B be one of the blocks:

B = ε�Π1 =
[
ε1 · Y1, ε2 · Y2, . . . , εn · YN

]
Yj is a column of Π1 (fixed after conditioning)
ε1, . . . , εn are independent ±1 random variables.

Individual estimate: we have to bound ‖Bx‖ below.

Trick: interchanging the roles of ε and x:

Bx =
[
ε1Y1, ε2Y2, . . . , εnYn

]
·


x1
x2
...

xn



=
[
x1Y1, x2Y2, . . . , xnYn

]
·


ε1
ε2
...
εn



This is a sum of vectors x1Y1, x2Y2, . . . , xnYn with random signs.
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Random sums of vectors

Let V1, V2, . . . , Vn ∈ Rd be fixed vectors.
We want to show that

P

∥∥∥∥∥∥
n∑

j=1

εjVj

∥∥∥∥∥∥ ≤?

 ≤??

Parallelogram equality: ∥∥∥∥∥∥
n∑

j=1

εjVj

∥∥∥∥∥∥
2

=
n∑

j=1

‖Vj‖2

We need estimate with high probability.

Impossible in general: if V1 = V2, and V3 = . . . = Vn = 0, then

P

∥∥∥∥∥∥
n∑

j=1

εjVj

∥∥∥∥∥∥ = 0

 = 1/2.
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Concentration of measure

Let V1, V2, . . . , Vn ∈ Rd be fixed vectors.
We want to show that

P


∥∥∥∥∥∥

n∑
j=1

εjVj

∥∥∥∥∥∥ ≤
 n∑

j=1

‖Vj‖2

1/2
 ≤??

1 View F(ε1, . . . , εn) =
∥∥∥∑n

j=1 εjVj

∥∥∥ as a function on Rn, and on the discrete cube
{−1, 1}n simultaneously.

2 Talagrand’s measure concentration theorem:
Every convex Lipschitz function F : Rn → R is close to a constant on the
discrete cube with high probability.
(How close depends on the Lipschitz constant of F)

Lipschitz constant of F is the norm of the matrix
[
V1, V2, . . . , Vn

]
.

To get a meaningful estimate, we need
∥∥[

V1, V2, . . . , Vn
]∥∥ � (∑n

j=1 ‖Vj‖2
)1/2

.
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Stratification of the sphere

When
∥∥[

V1, V2, . . . , Vn
]∥∥ � (∑n

j=1 ‖Vj‖2
)1/2

?

If V1 = V2 = . . . = Vn, then “=”.
If ‖V1‖ � ‖Vj‖ for all j > 1, then “≈”.
We need Vj to be independent vectors of commensurate norms.

[
V1, V2, . . . , Vn

]
=

[
x1Y1, x2Y2, . . . , xnYn

]
.

Independence – yes
commensurate norms – not for any x

x is far from a coordinate subspace of a small dimension (incompressible) ⇒
many commensurate coordinates.

Mark Rudelson (Michigan) Random conjunction matrices Toronto 2010 20 / 20



Stratification of the sphere

When
∥∥[

V1, V2, . . . , Vn
]∥∥ � (∑n

j=1 ‖Vj‖2
)1/2

?

If V1 = V2 = . . . = Vn, then “=”.
If ‖V1‖ � ‖Vj‖ for all j > 1, then “≈”.
We need Vj to be independent vectors of commensurate norms.[

V1, V2, . . . , Vn
]

=
[
x1Y1, x2Y2, . . . , xnYn

]
.

Independence – yes
commensurate norms – not for any x

x is far from a coordinate subspace of a small dimension (incompressible) ⇒
many commensurate coordinates.

Mark Rudelson (Michigan) Random conjunction matrices Toronto 2010 20 / 20



Stratification of the sphere

When
∥∥[

V1, V2, . . . , Vn
]∥∥ � (∑n

j=1 ‖Vj‖2
)1/2

?

If V1 = V2 = . . . = Vn, then “=”.
If ‖V1‖ � ‖Vj‖ for all j > 1, then “≈”.
We need Vj to be independent vectors of commensurate norms.[

V1, V2, . . . , Vn
]

=
[
x1Y1, x2Y2, . . . , xnYn

]
.

Independence – yes
commensurate norms – not for any x

x is far from a coordinate subspace of a small dimension (incompressible) ⇒
many commensurate coordinates.

Mark Rudelson (Michigan) Random conjunction matrices Toronto 2010 20 / 20


	Privacy violations
	Recovery
	Higher order conjunctions
	epsilon-net argument
	proof

