Spectral properties of random conjunction matrices

Mark Rudelson

Department of Mathematics University of Michigan

joint work with Shiva Kasiwiswanathan, Adam Smith, and Jon Ullman

Toronto 2010

Contingency tables

- Data base: a $d \times n$ matrix D with $\{0, 1\}$ entries.
 - *n* individual records;
 - d attributes of each individual.
- Contingency table: let k < n. For each subset $J \subset \{1, \dots, d\}$ of |J| = k attributes record m_J – the percentage of the individual records having all attributes from J.

Conjunction matrix

- All attributes = Conjunction = product of $\{0, 1\}$ variables
- Conjunction matrix: construct a $\binom{d}{k} \times n$ matrix $M^{(k)}$ as follows: for the set $J \subset \{1, \ldots, d\}$, define the row $M_J^{(k)}$ as the entry-wise product of corresponding rows of D.

$$\begin{pmatrix} * & * & \dots & * \\ \delta_1 & \delta_2 & \dots & \delta_n \\ * & * & \dots & * \\ \varepsilon_1 & \varepsilon_2 & \dots & \varepsilon_n \\ * & * & \dots & * \\ \nu_1 & \nu_2 & \dots & \nu_n \\ * & * & \dots & * \end{pmatrix} \rightarrow (\delta_1 \cdot \varepsilon_1 \cdot \nu_1, \delta_2 \cdot \varepsilon_2 \cdot \nu_2, \dots, \delta_n \cdot \varepsilon_n \cdot \nu_n) =: \boldsymbol{\delta} \odot \boldsymbol{\varepsilon} \odot \boldsymbol{\nu}.$$

- $M^{(k)}$ is a $\{0,1\}$ matrix.
- m_J is the percentage of 1-s in the row $M_J^{(k)}$.

Assume that the data base D contains (d-1) publicly available attribute, and 1 sensitive one.

The privacy is violated for a table, one can reconstruct

data base *D* if knowing the contingency coordinates of the sensitive vector

Assume that the data base D contains (d-1) publicly available attribute, and 1 sensitive one.

The privacy is violated for a table, one can reconstruct

data base *D* if knowing the contingency coordinates of the sensitive vector

• Denote $D = \binom{D_0}{x}$, where x is the sensitive vector. If D_0 is known, and the table of m_J is revealed, than one can form the conjunction matrix for D_0 , and recover x_j solving a linear system.

Assume that the data base D contains (d-1) publicly available attribute, and 1 sensitive one.

The privacy is violated for a table, one can reconstruct

data base *D* if knowing the contingency coordinates of the sensitive vector

- Denote $D = \binom{D_0}{x}$, where x is the sensitive vector. If D_0 is known, and the table of m_J is revealed, than one can form the conjunction matrix for D_0 , and recover x_j solving a linear system.
- Observation: m_J does not significantly depend on x.
- Privacy protection: release the contingency table with some noise.

Assume that the data base D contains (d-1) publicly available attribute, and 1 sensitive one.

The privacy is violated for a data base D if knowing the noisy contingency table, one can reconstruct (1 - o(1))n coordinates of the sensitive vector with probability (1 - o(1)).

- Denote $D = \binom{D_0}{x}$, where x is the sensitive vector. If D_0 is known, and the table of m_J is revealed, than one can form the conjunction matrix for D_0 , and recover x_j solving a linear system.
- Observation: m_J does not significantly depend on x.
- Privacy protection: release the contingency table with some noise.

Assume that the data base D contains (d-1) publicly available attribute, and 1 sensitive one.

The privacy is violated for a random data base D if knowing the noisy contingency table, one can reconstruct (1 - o(1))n coordinates of the sensitive vector with probability (1 - o(1)).

- Denote $D = \binom{D_0}{x}$, where x is the sensitive vector. If D_0 is known, and the table of m_J is revealed, than one can form the conjunction matrix for D_0 , and recover x_j solving a linear system.
- Observation: m_J does not significantly depend on x.
- Privacy protection: release the contingency table with some noise.
- Typical case: random data base.

Noise

- Let x be the private vector. The contingency table contains the vector $M^{(k)}x$.
- We release

$$y = M^{(k)}x + w$$
, where w is the noise vector.

Noise

- Let x be the private vector. The contingency table contains the vector $M^{(k)}x$.
- We release

$$y = M^{(k)}x + w$$
, where w is the noise vector.

- The noise should be as small as possible to make the contingency table more reliable.
- The noise has to be big enough to protect the private vector.

Recovery and singular values

Singular value decomposition:

 $M^{(k)} = P\Gamma Q$, where

- Q is an $n \times n$ isometry matrix;
- Γ is an $n \times n$ diagonal matrix of the singular values:

$$\Gamma = \operatorname{diag}(s_1(M^{(k)}), \ldots, s_n(M^{(k)})).$$

• *P* is an $\binom{d}{k} \times n$ isometric embedding.

Recovery and singular values

Singular value decomposition:

- $M^{(k)} = P\Gamma Q$, where
 - Q is an $n \times n$ isometry matrix;
 - Γ is an $n \times n$ diagonal matrix of the singular values:

$$\Gamma = \operatorname{diag}(s_1(M^{(k)}), \ldots, s_n(M^{(k)})).$$

• P is an $\binom{d}{k} \times n$ isometric embedding.

Set
$$L = Q^T \Gamma^{-1} P^T$$
. Then $y = M^{(k)} x + w \implies x = Ly - Lw$.

Hence,
$$||x - Ly|| \le ||L|| \cdot ||w|| \le \frac{1}{s_n(M^{(k)})} \cdot ||w||$$
.

Recovery and singular values

Singular value decomposition:

 $M^{(k)} = P\Gamma Q$, where

- Q is an $n \times n$ isometry matrix;
- Γ is an $n \times n$ diagonal matrix of the singular values:

$$\Gamma = \operatorname{diag}(s_1(M^{(k)}), \ldots, s_n(M^{(k)})).$$

• P is an $\binom{d}{k} \times n$ isometric embedding.

Set
$$L = Q^T \Gamma^{-1} P^T$$
. Then $y = M^{(k)} x + w \implies x = Ly - Lw$.

Hence,
$$||x - Ly|| \le ||L|| \cdot ||w|| \le \frac{1}{s_n(M^{(k)})} \cdot ||w||$$
.

The lower bound on the noise.

Assume that $\frac{1}{s_n(M^{(k)})} \cdot ||w|| = o(\sqrt{n})$ with high probability.

Then (1 - o(1))n coordinates of this vector are of order o(1).

Since x has $\{0,1\}$ coordinates, most of the coordinates of x can be recovered by rounding.

First order contingency tables \Rightarrow random matrices

$$M^{(1)} = D$$
 $d \ge n$ hypothetical case

Here D is a random matrix with i.i.d. bounded entries.

$$s_1(D) = \max_{x \in S^{n-1}} ||Dx||, \qquad s_n(D) = \min_{x \in S^{n-1}} ||Dx||.$$

Fact: $s_1(D) \le C(\sqrt{d} + \sqrt{n})$ with probability very close to 1.

First order contingency tables \Rightarrow random matrices

$$M^{(1)} = D$$
 $d \ge n$ hypothetical case

Here *D* is a random matrix with i.i.d. bounded entries.

$$s_1(D) = \max_{x \in S^{n-1}} ||Dx||, \qquad s_n(D) = \min_{x \in S^{n-1}} ||Dx||.$$

Fact: $s_1(D) \le C(\sqrt{d} + \sqrt{n})$ with probability very close to 1. General result [R, Vershynin, 2008]:

$$s_n(D) \ge c(\sqrt{d} - \sqrt{n-1})$$
 with high probability.

For $d \geq C'n$ this means $s_n(D) \geq c\sqrt{d}$.

If $d \ge C'n$, then the matrix D is nicely invertible (on its image)

If D is a $d \times n$ random matrix with independent entries, and $d \ge Cn$, then

$$s_n(D) \sim \sqrt{d}$$
 with high probability.

Conjecture

If $k \ge 1$, M is the $\binom{d}{k} \times n$ conjunction matrix of a random matrix D, and $\binom{d}{k} \ge C(k)n$, then

$$s_n(D) \sim_{\mathbf{k}} \sqrt{\binom{d}{k}}$$

with high probability

If *D* is a $d \times n$ random matrix with independent entries, and $d \ge Cn$, then

$$s_n(D) \sim \sqrt{d}$$
 with high probability.

Conjecture

If $k \ge 1$, M is the $\binom{d}{k} \times n$ conjunction matrix of a random matrix D, and $\binom{d}{k} \ge C(k)n$, then

$$s_n(D) \sim_{\mathbf{k}} \sqrt{\binom{d}{k}} \sim_{\mathbf{k}} d^{k/2}$$
 with high probability

whenever $n \ge n(k)$.

n and d have to be big compare to k.

If *D* is a $d \times n$ random matrix with independent entries, and $d \ge Cn$, then

$$s_n(D) \sim \sqrt{d}$$
 with high probability.

Conjecture

If $k \ge 1$, M is the $\binom{d}{k} \times n$ conjunction matrix of a random matrix D, and $\binom{d}{k} \ge C(k)n$, then

$$s_n(D) \sim_{\mathbf{k}} \sqrt{\binom{d}{k}} \sim_{\mathbf{k}} d^{k/2}$$
 with high probability

whenever $n \ge n(k)$.

n and d have to be big compare to k.

Numerical experiments

If k = 2, and $\binom{d}{2} \ge 4n$, then $s_n(D) \sim d$ with high probability

• Attributes of different individuals are independent and identically distributed.

• Attributes of different individuals are independent and identically distributed. Not very realistic.

- Attributes of different individuals are independent and identically distributed. Not very realistic.
- Each attribute has its own distribution.
- Each attribute is random.
- The individual records are independent.

- Attributes of different individuals are independent and identically distributed.
 Not very realistic.
- Each attribute has its own distribution.
- Each attribute is random.
- The individual records are independent.

Random data base

Let $0 < p_1 < p_2 < 1$. Let *D* be a $\{0, 1\}$ random matrix with independent entries. Assume that

$$\mathbb{P}\left(d_{j,k}=1\right)=\delta_k,$$

where $p_1 \leq \delta_k \leq p_2$.

 δ_k is the probability of k-th attribute.

Conjecture (still open)

If $k \ge 1$, M is the $\binom{d}{K} \times n$ conjunction matrix of a random data base D, and $\binom{d}{K} \ge C(K)n$, then

 $s_n(D) \sim_{\mathbf{k}} d^{K/2}$ with high probability, whenever $n \geq n(K)$

Conjecture (still open)

If $k \ge 1$, M is the $\binom{d}{K} \times n$ conjunction matrix of a random data base D, and $\binom{d}{K} \ge C(K)n$, then

 $s_n(D) \sim_k d^{K/2}$ with high probability, whenever $n \geq n(K)$

Theorem

let D be an $d \times n$ random data base. Let M be the K-conjunction matrix of D.

If
$$n \leq \frac{c'}{\log^{c(K)} d} \cdot d^K$$
, then

Conjecture (still open)

If $k \ge 1$, M is the $\binom{d}{K} \times n$ conjunction matrix of a random data base D, and $\binom{d}{K} \ge C(K)n$, then

 $s_n(D) \sim_k d^{K/2}$ with high probability, whenever $n \geq n(K)$

Theorem

let D be an $d \times n$ random data base. Let M be the K-conjunction matrix of D.

If
$$n \le \frac{c'}{\log^{c(K)} d} \cdot d^K$$
, then

$$\mathbb{P}\left(s_n(M) \le C_K \frac{d^{K/2}}{\log^{c_K} n}\right) \le \exp\left(-C_K' \frac{d}{\log^{c_K'} n}\right), \quad \text{provided that n is big enough.}$$

Conjunctions of order 2

Iterated logarithm: $\log^{(q)}, q \in \mathbb{N}$.

- ② $\log^{(k+1)} x = \max(\log \log^{(k)} x, 1).$

Conjunctions of order 2

Iterated logarithm: $\log^{(q)}, q \in \mathbb{N}$.

- $\log^{(k+1)} x = \max(\log \log^{(k)} x, 1).$

Theorem (k = 2)

let D be an $d \times n$ random data base. Let M be the 2-conjunction matrix of D.

If
$$n \le \frac{c'}{\log^{(q)} d} \cdot d^2$$
,

Conjunctions of order 2

Iterated logarithm: $\log^{(q)}, q \in \mathbb{N}$.

- $\log^{(k+1)} x = \max(\log \log^{(k)} x, 1).$

Theorem (k = 2)

let D be an d \times *n random data base. Let M be the 2-conjunction matrix of D.*

If
$$n \le \frac{c'}{\log^{(q)} d} \cdot d^2$$
,

then $\mathbb{P}\left(s_n(M) \leq c^q \mathbf{d}\right) \leq e^{-cd}$, provided that n is big enough.

$$s_n(D) = \min_{x \in S^{n-1}} ||Dx||.$$

1 Individual estimate: $\mathbb{P}(\|Dy\| < t)$ is small for a fixed $y \in S^{n-1}$.

2 Discretization: Find a small ε -net $\mathcal{N} \subset S^{n-1}$ and use the union bound.

Approximation:

$$s_n(D) = \min_{x \in S^{n-1}} ||Dx||.$$

- **1** Individual estimate: $\mathbb{P}(\|Dy\| < t)$ is small for a fixed $y \in S^{n-1}$.
 - Each coordinate of Dy is a linear combination of independent random variables.
 - **2** Small ball probability: $\mathbb{P}\left(|(Dy)_j| < \mu\right) < \nu$ for some $\mu, \nu < 1$.
 - 8 Rows are independent

$$\mathbb{P}\left(\|D\mathbf{y}\| < \mu'\sqrt{d}\right) \le \eta^d.$$

2 Discretization: Find a small ε -net $\mathcal{N} \subset S^{n-1}$ and use the union bound.

Approximation:

$$s_n(D) = \min_{x \in S^{n-1}} ||Dx||.$$

- **1** Individual estimate: $\mathbb{P}(\|Dy\| < t)$ is small for a fixed $y \in S^{n-1}$.
 - Each coordinate of Dy is a linear combination of independent random variables.
 - **2** Small ball probability: $\mathbb{P}\left(|(Dy)_j| < \mu\right) < \nu$ for some $\mu, \nu < 1$.
 - 3 Rows are independent

$$\mathbb{P}\left(\|D\mathbf{y}\| < \mu'\sqrt{d}\right) \le \eta^d.$$

2 Discretization: Find a small ε -net $\mathcal{N} \subset S^{n-1}$ and use the union bound.

Volumetric estimate :
$$|\mathcal{N}| \leq (3/\varepsilon)^n$$
.

Union bound:

$$\mathbb{P}\left(\exists y \in \mathcal{N} \|Dy\| < \mu' \sqrt{d}\right) \le \eta^{\mathbf{d}} \cdot (3/\varepsilon)^{\mathbf{n}}.$$

Since $d \gg n$, this probability is very small.

Approximation:

$$s_n(D) = \min_{x \in S^{n-1}} ||Dx||.$$

- **1** Individual estimate: $\mathbb{P}(\|Dy\| < t)$ is small for a fixed $y \in S^{n-1}$.
 - Each coordinate of Dy is a linear combination of independent random variables.
 - **2** Small ball probability: $\mathbb{P}\left(|(Dy)_j| < \mu\right) < \nu$ for some $\mu, \nu < 1$.
 - 3 Rows are independent

$$\mathbb{P}\left(\|D\mathbf{y}\| < \mu'\sqrt{d}\right) \le \eta^d.$$

2 Discretization: Find a small ε -net $\mathcal{N} \subset S^{n-1}$ and use the union bound.

Volumetric estimate :
$$|\mathcal{N}| \leq (3/\varepsilon)^n$$
.

Union bound:

$$\mathbb{P}\left(\exists y \in \mathcal{N} \|Dy\| < \mu' \sqrt{d}\right) \le \eta^{\mathbf{d}} \cdot (3/\varepsilon)^{\mathbf{n}}.$$

Since $d \gg n$, this probability is very small.

Approximation: assume that $||Dy|| \ge \mu' \sqrt{d}$ for all $y \in \mathcal{N}$. Then $||Dx|| \ge \mu' \sqrt{d}/2$ for all $x \in S^{n-1}$.

1 Individual estimate: $\mathbb{P}(\|My\| < t)$ is small for a fixed $y \in S^{n-1}$.

2 Discretization (geometry): Find a small ε -net $\mathcal{N} \subset S^{n-1}$.

Approximation

- **1** Individual estimate: $\mathbb{P}(\|My\| < t)$ is small for a fixed $y \in S^{n-1}$.
 - \bullet Each coordinate of Dx is a linear combination of independent random variables.
 - **2** Small ball probability: $\mathbb{P}\left(|(My)_j| < \mu\right) < \nu$ for some $\mu, \nu < 1$.
 - **1** The coordinates of Mx are dependent \Rightarrow one cannot bound $\mathbb{P}(\|My\| < \mu'd)$
- **2** Discretization (geometry): Find a small ε -net $\mathcal{N} \subset S^{n-1}$.

Approximation

Obstacles:

• Insufficient independence.

- **1** Individual estimate: $\mathbb{P}(\|My\| < t)$ is small for a fixed $y \in S^{n-1}$.
 - \bullet Each coordinate of Dx is a linear combination of independent random variables.
 - **2** Small ball probability: $\mathbb{P}\left(|(My)_j| < \mu\right) < \nu$ for some $\mu, \nu < 1$.
 - **1** The coordinates of Mx are dependent \Rightarrow one cannot bound $\mathbb{P}(\|My\| < \mu'd)$
- **2** Discretization (geometry): Find a small ε -net $\mathcal{N} \subset S^{n-1}$.

Volumetric estimate :
$$|\mathcal{N}| \leq (3/\varepsilon)^n$$
.

Union bound:

$$\mathbb{P}\left(\exists y \in \mathcal{N} \|My\| < \mu' \sqrt{d}\right) \le \eta^{\mathbf{d}} \cdot (3/\varepsilon)^{\mathbf{n}}$$

Approximation

Obstacles:

• Insufficient independence.

- **1** Individual estimate: $\mathbb{P}(\|My\| < t)$ is small for a fixed $y \in S^{n-1}$.
 - \bullet Each coordinate of Dx is a linear combination of independent random variables.
 - **2** Small ball probability: $\mathbb{P}\left(|(My)_j| < \mu\right) < \nu$ for some $\mu, \nu < 1$.
 - **1** The coordinates of Mx are dependent \Rightarrow one cannot bound $\mathbb{P}(\|My\| < \mu'd)$
- **2** Discretization (geometry): Find a small ε -net $\mathcal{N} \subset S^{n-1}$.

Volumetric estimate :
$$|\mathcal{N}| \leq (3/\varepsilon)^n$$
.

Union bound:

$$\mathbb{P}\left(\exists y \in \mathcal{N} \ \|My\| < \mu' \sqrt{d}\right) \le \eta^{\frac{d}{2}} \cdot (3/\varepsilon)^{\frac{n}{2}} \gg 1$$

- If $n \gg d$ this is too big.
- Volumetric estimate cannot be significantly improved.
- Approximation ???

Obstacles:

- Insufficient independence.
- Insufficient randomness.

Strategy of the proof

- Decoupling = boosting the independence.
- ② Decomposition of the sphere.
- Salancing the small ball probability and the complexity of the set for each part separately.

The coordinates of Mx are dependent

- Let M' be a matrix consisting of a part of the rows of M. Then $s_n(M') \leq s_n(M)$.
- Divide $\{1, \ldots, d\}$ in two parts I, J of approximately equal size.
- Consider the matrix M' with rows $d_i \odot d_j$, where $i \in I$, $j \in J$. M corresponds to a complete graph, M' corresponds to a complete bipartite graph

$$M = \begin{pmatrix} * & * & \dots & * \\ * & * & \dots & * \end{pmatrix}$$

The coordinates of Mx are dependent

- Let M' be a matrix consisting of a part of the rows of M. Then $s_n(M') \leq s_n(M)$.
- Divide $\{1, \dots, d\}$ in two parts I, J of approximately equal size.
- Consider the matrix M' with rows $d_i \odot d_j$, where $i \in I$, $j \in J$. M corresponds to a complete graph, M' corresponds to a complete bipartite graph

The coordinates of Mx are dependent

- Let M' be a matrix consisting of a part of the rows of M. Then $s_n(M') \leq s_n(M)$.
- Divide $\{1, \ldots, d\}$ in two parts I, J of approximately equal size.
- Consider the matrix M' with rows $d_i \odot d_j$, where $i \in I$, $j \in J$. M corresponds to a complete graph, M' corresponds to a complete bipartite graph

$$M = \begin{pmatrix} * & * & \dots & * \\ * & * & \dots & * \end{pmatrix}
ightarrow \begin{pmatrix} * & * & \dots & * \\ * & * & \dots & * \\ * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \end{pmatrix}$$

Toronto 2010

The coordinates of Mx are dependent

- Let M' be a matrix consisting of a part of the rows of M. Then $s_n(M') \leq s_n(M)$.
- Divide $\{1, \dots, d\}$ in two parts I, J of approximately equal size.
- Consider the matrix M' with rows $d_i \odot d_j$, where $i \in I$, $j \in J$. M corresponds to a complete graph, M' corresponds to a complete bipartite graph

$$M = \begin{pmatrix} * & * & \dots & * \\ * & * & \dots & * \end{pmatrix}
ightarrow \begin{pmatrix} * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & * & \dots & * \\ * & * & *$$

The coordinates of Mx are dependent

- Condition on d_j , $j \in J$. The matrix M' consists of d/2 blocks, which are essentially independent.
- Improvement: more independence.
- Complication: independent entries ⇒ independent blocks.

$$M = \begin{pmatrix} * & * & \dots & * \\ * & * & \dots & * \end{pmatrix}
ightarrow \begin{pmatrix} * & * & \dots & * \\ * & * & \dots & \dots & * \\ * & * & \dots & \dots & * \\ * & * & \dots & \dots & * \\ * & * & \dots & \dots & \dots & * \\ * & * & \dots & \dots & \dots & \dots \\ * & * & \dots & \dots & \dots & \dots \\ * & * & \dots & \dots & \dots & \dots & \dots \\ * & * & \dots & \dots & \dots & \dots & \\ * & * & \dots & \dots & \dots & \dots & \dots \\ * & * & \dots & \dots & \dots & \dots & \dots \\ * & * & \dots & \dots & \dots & \dots & \dots \\ * & * & \dots & \dots & \dots & \dots & \dots \\ * & * & \dots & \dots & \dots & \dots & \dots \\ * & * & \dots & \dots & \dots & \dots & \dots \\ * & * & \dots & \dots & \dots & \dots & \dots & \dots \\ * & * & \dots & \dots & \dots & \dots & \dots \\ * & * & \dots & \dots & \dots & \dots & \dots \\ * & * & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots & \dots & \dots & \dots & \dots \\ * & \dots & \dots &$$

- $M' = \Pi_1 \odot \Pi_2$, where Π_1, Π_2 are independent random matrices.
- We need to bound $\mathbb{P}(\|(\Pi_1 \odot \Pi_2)x\| \text{ is small}).$

- $M' = \Pi_1 \odot \Pi_2$, where Π_1, Π_2 are independent random matrices.
- We need to bound $\mathbb{P}(\|(\Pi_1 \odot \Pi_2)x\| \text{ is small}).$
- **①** Condition on Π_2 .

2 Condition on Π_1 .

- $M' = \Pi_1 \odot \Pi_2$, where Π_1, Π_2 are independent random matrices.
- We need to bound $\mathbb{P}(\|(\Pi_1 \odot \Pi_2)x\| \text{ is small}).$
- Condition on Π_2 .
 - $(\Pi_1 \odot \Pi_2)x$ consists of d blocks $\Pi_1 y_j$, $j = 1, \ldots, d$, where y_j is the row product of the j-th row of Π_2 and x.
 - $||y_j|| \ge c ||x||$ with high probability $\Rightarrow ||\Pi_1 y_j|| \gtrsim \sqrt{d}$ $\Rightarrow ||(\Pi_1 \odot \Pi_2)x|| \ge d$ with high probability.
- **2** Condition on Π_1 .

- $M' = \Pi_1 \odot \Pi_2$, where Π_1, Π_2 are independent random matrices.
- We need to bound $\mathbb{P}(\|(\Pi_1 \odot \Pi_2)x\| \text{ is small}).$
- Condition on Π_2 .
 - $(\Pi_1 \odot \Pi_2)x$ consists of d blocks $\Pi_1 y_j$, $j = 1, \ldots, d$, where y_j is the row product of the j-th row of Π_2 and x.
 - $||y_j|| \ge c ||x||$ with high probability $\Rightarrow ||\Pi_1 y_j|| \gtrsim \sqrt{d}$ $\Rightarrow ||(\Pi_1 \odot \Pi_2)x|| \gtrsim d$ with high probability.
- **2** Condition on Π_1 .
 - Discarding a set of small probability, we may assume that Π_1 is typical.
 - $\|(\Pi_1 \odot \Pi_2)x\|$ is highly concentrated around its mean $\Rightarrow \|(\Pi_1 \odot \Pi_2)x\| \gtrsim d$ with high probability.

- $M' = \Pi_1 \odot \Pi_2$, where Π_1, Π_2 are independent random matrices.
- We need to bound $\mathbb{P}(\|(\Pi_1 \odot \Pi_2)x\| \text{ is small}).$
- Condition on Π_2 .
 - $(\Pi_1 \odot \Pi_2)x$ consists of d blocks $\Pi_1 y_j$, $j = 1, \ldots, d$, where y_j is the row product of the j-th row of Π_2 and x.
 - $||y_j|| \ge c ||x||$ with high probability $\Rightarrow ||\Pi_1 y_j|| \gtrsim \sqrt{d}$ $\Rightarrow ||(\Pi_1 \odot \Pi_2)x|| \ge d$ with high probability.
- **2** Condition on Π_1 .
 - Discarding a set of small probability, we may assume that Π_1 is typical.
 - $\|(\Pi_1 \odot \Pi_2)x\|$ is highly concentrated around its mean $\Rightarrow \|(\Pi_1 \odot \Pi_2)x\| \gtrsim d$ with high probability.

Which strategy is better?

- $M' = \Pi_1 \odot \Pi_2$, where Π_1, Π_2 are independent random matrices.
- We need to bound $\mathbb{P}(\|(\Pi_1 \odot \Pi_2)x\| \text{ is small}).$
- Condition on Π_2 .
 - $(\Pi_1 \odot \Pi_2)x$ consists of d blocks $\Pi_1 y_j$, $j = 1, \ldots, d$, where y_j is the row product of the j-th row of Π_2 and x.
 - $||y_j|| \ge c ||x||$ with high probability $\Rightarrow ||\Pi_1 y_j|| \gtrsim \sqrt{d}$ $\Rightarrow ||(\Pi_1 \odot \Pi_2)x|| \gtrsim d$ with high probability.
 - Works when $|\sup x| \ll d$.
- **2** Condition on Π_1 .
 - Discarding a set of small probability, we may assume that Π_1 is typical.
 - $\|(\Pi_1 \odot \Pi_2)x\|$ is highly concentrated around its mean $\Rightarrow \|(\Pi_1 \odot \Pi_2)x\| \gtrsim d$ with high probability.
 - Works if x has many commensurate coordinates.

Which strategy is better?

Analysis on one block: random sums of random vectors

Condition on the matrix Π_1 . Let *B* be one of the blocks:

$$B = \varepsilon \odot \Pi_1 = \left[\varepsilon_1 \cdot Y_1, \varepsilon_2 \cdot Y_2, \dots, \varepsilon_n \cdot Y_N\right]$$

- Y_i is a column of Π_1 (fixed after conditioning)
- $\varepsilon_1, \ldots, \varepsilon_n$ are independent ± 1 random variables.

Individual estimate: we have to bound ||Bx|| below.

Analysis on one block: random sums of random vectors

Condition on the matrix Π_1 . Let *B* be one of the blocks:

$$B = \varepsilon \odot \Pi_1 = \left[\varepsilon_1 \cdot Y_1, \varepsilon_2 \cdot Y_2, \dots, \varepsilon_n \cdot Y_N\right]$$

- Y_i is a column of Π_1 (fixed after conditioning)
- $\varepsilon_1, \ldots, \varepsilon_n$ are independent ± 1 random variables.

Individual estimate: we have to bound ||Bx|| below. Trick: interchanging the roles of ε and x:

Treat interentinging the foles of a unit with

$$Bx = \begin{bmatrix} \varepsilon_1 Y_1, \varepsilon_2 Y_2, \dots, \varepsilon_n Y_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Analysis on one block: random sums of random vectors

Condition on the matrix Π_1 . Let *B* be one of the blocks:

$$B = \varepsilon \odot \Pi_1 = \left[\varepsilon_1 \cdot Y_1, \varepsilon_2 \cdot Y_2, \dots, \varepsilon_n \cdot Y_N\right]$$

- Y_i is a column of Π_1 (fixed after conditioning)
- $\varepsilon_1, \ldots, \varepsilon_n$ are independent ± 1 random variables.

Individual estimate: we have to bound ||Bx|| below.

Trick: interchanging the roles of ε and x:

$$Bx = \begin{bmatrix} \varepsilon_1 Y_1, \varepsilon_2 Y_2, \dots, \varepsilon_n Y_n \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} x_1 Y_1, x_2 Y_2, \dots, x_n Y_n \end{bmatrix} \cdot \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$

This is a sum of vectors $x_1Y_1, x_2Y_2, \dots, x_nY_n$ with random signs.

Random sums of vectors

Let $V_1, V_2, \ldots, V_n \in \mathbb{R}^d$ be fixed vectors.

We want to show that

$$\mathbb{P}\left(\left\|\sum_{j=1}^n \varepsilon_j V_j\right\| \leq ?\right) \leq ??$$

Parallelogram equality:

$$\left\| \sum_{j=1}^{n} \varepsilon_{j} V_{j} \right\|^{2} = \sum_{j=1}^{n} \left\| V_{j} \right\|^{2}$$

We need estimate with high probability.

Random sums of vectors

Let $V_1, V_2, \ldots, V_n \in \mathbb{R}^d$ be fixed vectors.

We want to show that

$$\mathbb{P}\left(\left\|\sum_{j=1}^n \varepsilon_j V_j\right\| \leq ?\right) \leq ??$$

Parallelogram equality:

$$\left\| \sum_{j=1}^{n} \varepsilon_{j} V_{j} \right\|^{2} = \sum_{j=1}^{n} \left\| V_{j} \right\|^{2}$$

We need estimate with high probability.

Impossible in general: if $V_1 = V_2$, and $V_3 = \ldots = V_n = 0$, then

$$\mathbb{P}\left(\left\|\sum_{j=1}^n \varepsilon_j V_j\right\| = 0\right) = 1/2.$$

Concentration of measure

Let $V_1, V_2, \dots, V_n \in \mathbb{R}^d$ be fixed vectors.

We want to show that

$$\mathbb{P}\left(\left\|\sum_{j=1}^n \varepsilon_j V_j\right\| \le \left(\sum_{j=1}^n \|V_j\|^2\right)^{1/2}\right) \le ??$$

- View $F(\varepsilon_1, \dots, \varepsilon_n) = \left\| \sum_{j=1}^n \varepsilon_j V_j \right\|$ as a function on \mathbb{R}^n , and on the discrete cube $\{-1, 1\}^n$ simultaneously.
- Talagrand's measure concentration theorem: Every convex Lipschitz function F: Rⁿ → R is close to a constant on the discrete cube with high probability. (How close depends on the Lipschitz constant of F)

Lipschitz constant of F is the norm of the matrix $[V_1, V_2, \dots, V_n]$.

To get a meaningful estimate, we need $\|[V_1, V_2, \dots, V_n]\| \ll \left(\sum_{j=1}^n \|V_j\|^2\right)^{1/2}$.

Stratification of the sphere

When
$$\|[V_1, V_2, \dots, V_n]\| \ll \left(\sum_{j=1}^n \|V_j\|^2\right)^{1/2}$$
?

- If $V_1 = V_2 = \ldots = V_n$, then "=".
- If $||V_1|| \gg ||V_j||$ for all j > 1, then "\approx".
- We need V_j to be independent vectors of commensurate norms.

Stratification of the sphere

When
$$\|[V_1, V_2, \dots, V_n]\| \ll \left(\sum_{j=1}^n \|V_j\|^2\right)^{1/2}$$
?

- If $V_1 = V_2 = \ldots = V_n$, then "=".
- If $||V_1|| \gg ||V_j||$ for all j > 1, then " \approx ".
- We need V_i to be independent vectors of commensurate norms.

$$[V_1, V_2, \ldots, V_n] = [x_1Y_1, x_2Y_2, \ldots, x_nY_n].$$

- Independence yes
- commensurate norms not for any x

Stratification of the sphere

When
$$\|[V_1, V_2, \dots, V_n]\| \ll \left(\sum_{j=1}^n \|V_j\|^2\right)^{1/2}$$
?

- If $V_1 = V_2 = \ldots = V_n$, then "=".
- If $||V_1|| \gg ||V_j||$ for all j > 1, then " \approx ".
- We need V_i to be independent vectors of commensurate norms.

$$[V_1, V_2, \ldots, V_n] = [x_1 Y_1, x_2 Y_2, \ldots, x_n Y_n].$$

- Independence yes
- commensurate norms not for any x
- x is far from a coordinate subspace of a small dimension (incompressible) \Rightarrow many commensurate coordinates.