On the existence of subgaussian directions for log-concave measures

joint work with A. Giannopoulos and P. Valettas.

Grigoris Paouris

Department of Mathematics Texas A&M University

Fields Institute - 2010

Notation

 $\mathcal{P}_{[n]}$: the class of all probability measures in \mathbb{R}^n which are absolutely continuous with respect to the Lebesgue measure.

 μ in $\mathcal{P}_{[n]}$ is called log-concave if for any Borel sets A,B and any $\lambda \in (0,1)$, $\mu(\lambda A + (1-\lambda)B) \ge \mu(A)^{\lambda}\mu(B)^{1-\lambda}$.

 $\mu \in \mathcal{P}_{[n]}$ is called centered if for all $\theta \in S^{n-1}$, $\int_{\mathbb{R}^n} \langle x, \theta \rangle d\mu(x) = 0$.

Let K a convex body in \mathbb{R}^n . Then $d\mu := \mathbf{1}_K dx$ is log-concave.

Notation

A direction $\theta \in S^{n-1}$ is subgaussian for μ with constant r > 0 if

$$\|\langle \cdot, \theta \rangle\|_{\psi_2} \le rm_{\theta},$$

where m_{θ} is the median of $|\langle \cdot, \theta \rangle|$ with respect to μ , and

$$\|f\|_{\psi_2}=\inf\left\{t>0:\int_{\mathbb{R}^n}\exp\left((|f(x)|/t)^2
ight)\,d\mu(x)\leq 2
ight\}.$$

Let K centered convex body in \mathbb{R}^n , |K| = 1,

$$h_{Z_2(K)}(\theta) = \left(\int_K |\langle x, \theta \rangle|^2 dx\right)^{\frac{1}{2}}, \ \theta \in S^{n-1}$$

We say that K is isotropic if $Z_2(K) = L_K B_2^n$.

The Question

```
[Bourgain] If r_K(\theta) = O(1) for all \theta, then L_K = O(1). Question: [V. Milman] is it true that every convex body K has at least one "subgaussian" direction (with constant r = O(1))? [Bobkov- Nazarov] Yes, if K is 1-uncoditional. [Klartag] Yes, with r = \log^2 n. [G-P-P] Yes, with r = \log n. [G-P-V] Yes, with r = \sqrt{\log n}.
```

The result

Theorem (i) If K is a centered convex body of volume 1 in \mathbb{R}^n , then there exists $\theta \in S^{n-1}$ such that

$$|\{x \in \mathcal{K}: |\langle x, \theta \rangle| \geq cth_{Z_2(\mathcal{K})}(\theta)\}| \leq e^{-\frac{t^2}{\log{(t+1)}}}$$

for all $t \ge 1$, where c > 0 is an absolute constant.

(ii) If μ is a centered log-concave probability measure on \mathbb{R}^n , then there exists $\theta \in S^{n-1}$ such that

$$\mu\left(\left\{x \in \mathbb{R}^n : |\langle x, \theta \rangle| \ge ct\mathbb{E}|\langle \cdot, \theta \rangle|\right\}\right) \le e^{-\frac{t^2}{\log(t+1)}}$$

for all $1 \le t \le \sqrt{n \log n}$, where c > 0 is an absolute constant.

Let K be a centered convex body of volume 1 in \mathbb{R}^n and $p \ge 1$. We define the $Z_p(K)$ as the symmetric convex body with support function

$$h_{Z_p(K)}(\theta) := \left(\int_K |\langle x, \theta \rangle|^p dx\right)^{\frac{1}{p}}.$$

Also we define the $\Psi_2(K)$ as the symmetric convex body with support function

$$h_{\Psi_2(K)}(\theta) := \sup_{1 \le p \le n} \frac{h_{Z_p(K)}(\theta)}{\sqrt{p}}.$$

From the definitions, one has $Z_p(K) \subseteq \sqrt{p}\Psi_2(K)$ for all $1 \le p \le n$. In particular,

$$Z_2(K) \subseteq \sqrt{2}\Psi_2(K),$$

which implies that

$$|\Psi_2(K)|^{1/n} \geq c \frac{L_K}{\sqrt{n}}.$$

Conjecture: $|\Psi_2(K)|^{1/n} \leq c' \frac{L_K}{\sqrt{n}}$.

Since $Z_2(K)$ is an ellipsoid contained in $\Psi_2(K)$ with volume $\frac{cL_K}{\sqrt{n}}$, the conjecture implies that $\Psi_2(K)$ is a "bounded volume ratio" body.

Theorem Let K be a centered convex body of volume 1 in \mathbb{R}^n . Then,

$$|\Psi_2(K)|^{1/n} \le c \frac{\sqrt{\log n}}{\sqrt{n}} L_K.$$

Note that $\Psi_2(K) = \operatorname{conv}\left\{\frac{Z_p(K)}{\sqrt{p}}, p \in [1, n]\right\}$, and using the fact that $Z_{2p}(K) \simeq Z_p(K)$, we may write

$$\Psi_2(K) \simeq \operatorname{conv}\left\{\frac{Z_p(K)}{\sqrt{p}}, p=2^k, \ k=1,\ldots,\log_2 n\right\}.$$

 $\mathsf{Known}\; (\mathsf{P.,\; L\text{-}Y\text{-}Z}): |Z_p(K)|^{\frac{1}{n}} \leq c \sqrt{\frac{p}{n}} L_K, \; |Z_p(K)|^{\frac{1}{n}} \geq c \sqrt{\frac{p}{n}}.$

For any $A, B, |A| \leq N(A, B)|B|$.

Lemma

Let A_1, \ldots, A_s be subsets of RB_2^k . For every t > 0,

$$N(\operatorname{conv}(A_1 \cup \cdots \cup A_s), 2tB_2^k) \leq \left(\frac{cR}{t}\right)^s \prod_{i=1}^s N(A_i, tB_2^k).$$

"Regularity" of the covering numbers of $Z_q(K)$: (G-P-P)

$$\log N(Z_q(K), t\sqrt{q}L_KB_2^n) \leq \frac{c_1n}{t} + \frac{c_2\sqrt{n}\sqrt{q}}{\sqrt{t}}, \ t \geq 1.$$

Regularity of the covering numbers of $Z_q(K)$

Proposition Let K be an isotropic convex body in \mathbb{R}^n , let $1 \leq q \leq n$ and $t \geq 1$. Then,

$$\log N\left(Z_q(K), c_1 t \sqrt{q} L_K B_2^n\right) \leq c_2 \frac{n}{t^2} + c_3 \frac{\sqrt{n} \sqrt{q}}{t},$$

where $c_1, c_2, c_3 > 0$ are absolute constants.

Corollary Let K be an isotropic convex body in \mathbb{R}^n and let $1 \le q \le n$. Define $\beta \ge 1$ by the equation $q = n^{1/\beta}$. Let $\alpha := \min\{\beta, 2\}$. Then,

$$N(Z_q(K), c_1 t \sqrt{q} L_K B_2^n) \leq \exp\left(c_2 \frac{n}{t^{\alpha}}\right),$$

where $c_1, c_2 > 0$ are absolute constants.

Sudakov-type estimates

Let $C \subseteq \mathbb{R}^n$ be a symmetric convex body. We define

$$W(C) := \int_{S^{n-1}} h_C(\theta) d\sigma(\theta).$$

[Talagrand] Let γ_n be the n-dimensional Gaussian measure . Then, for any s,t>0 we have:

$$N(B_2^n, tC^\circ) \le e^{(2s/t)^2} [\gamma_n(sC^\circ)]^{-1}.$$

Let m_1 such that $\gamma_n(m_1C^\circ)=\frac{1}{2}$. Also

$$m_1 \simeq I_1(\gamma_n, C^\circ) = \int_{\mathbb{R}^n} \|x\|_{C^\circ} d\gamma_n(x) \simeq \sqrt{n}W(C).$$

Then $\log N(B_2^n, tC^\circ) \leq c \frac{nW(C)^2}{t^2}$.

Sudakov-type estimates

Let 0 < p and let m_p such that $\gamma_n(m_pC^\circ) = \frac{1}{2^p}$. Also we write I_{-p} and $W_{-p}(C)$ for

$$I_{-p} \equiv I_{-p}(\gamma_n, C) := \left(\int_{\mathbb{R}^n} \|x\|_K^{-p} d\gamma_n(x) \right)^{-1/p},$$

$$W_{-p}(C) := \left(\int_{S^{n-1}} h_C^{-p}(\theta) d\sigma(\theta) \right)^{-\frac{1}{p}}$$

Then (Markov's inequality) $m_p \ge \frac{1}{2}I_{-p}$.

Assume that for some p and some $\alpha>1$ we have the following "regularity" condition:

$$I_{-p} \leq \alpha I_{-2p}$$
.

Then, by applying the Paley-Zygmund inequality we get

$$\gamma_n(x: ||x||_C^\circ \le 2I_{-p}) \ge 2^{-2p\log(2\alpha)}.$$

It follows that $m_{2p\log(2\alpha)} \leq 2I_{-p}$ and $I_{-p}(\gamma_n, C^{\circ}) \simeq \sqrt{n}W_{-p}(C)$.

Sudakov-type estimates

Corollary Let C be a symmetric convex body in \mathbb{R}^n and let $1 \le p \le n/2$ be such that $W_{-2p}(C) \simeq W_{-p}(C)$. Then,

$$\log N\left(C,c_1\sqrt{n/p}W_{-p}(C)B_2^n\right)\leq c_2p,$$

where $c_1, c_2 > 0$ are absolute constants.

Proof: Choose $s := m_p \simeq \sqrt{n} W_{-p}(C)$. Then

$$N(B_2^n, tK^\circ) \le e^{\frac{nW_{-p}(C)^2}{t^2}} [\gamma_n(sK^\circ)]^{-1} \le e^{\frac{nW_{-p}(C)^2}{t^2}} e^p.$$

Choose $t = \sqrt{n/p}W_{-p}(C)$, then $\log N(B_2^n, tK^\circ) \le cp$. Then "duality of entropy" (A-M-S).

Back to $Z_q(K)$

Let
$$-n < q \le n$$
, $I_q(K) = \left(\int_K \|x\|_2^q dx\right)^{\frac{1}{q}}$. Let $q > 0$, then (P.),
$$I_q(K) \simeq \sqrt{\frac{n}{q}} W_q(Z_q(K)),$$

$$I_{-q}(K) \simeq \sqrt{\frac{n}{q}} W_{-q}(Z_q(K)).$$

Then

$$c_1\sqrt{q} \leq W_{-n}(Z_q(K)) \leq W_{-q}(Z_q(K)) \leq c_2\sqrt{q}L_K.$$

Convolutions

Proposition Let K be an isotropic convex body in \mathbb{R}^n . There exists an isotropic convex body K_1 in \mathbb{R}^n with the following properties:

- **1** $L_{K_1} \leq c_1$.

The constants c_i , i = 1, ..., 5 are absolute positive constants.

Back to $Z_q(K)$

Proposition Let K_1 be an isotropic convex body as before , let $1 \le q \le n/2$ and $1 \le t \le \sqrt{n/q}$. Then,

$$\log N(Z_q(K_1), c_1 t \sqrt{q} B_2^n) \leq c_2 \frac{n}{t^2}.$$

Proof: For $q \leq r \leq n$, $W_{-r}(Z_q(K)) \simeq \sqrt{q}$. Then

$$\log N\left(Z_q(K_1), \sqrt{\frac{n}{r}}W_{-r}(Z_q(K))B_2^n\right) \leq r.$$

Set
$$t = \sqrt{\frac{n}{r}}$$
.

Back to $\Psi_2(K)$

Let
$$2^{k_1} = \frac{n}{\log n}$$
. Let $V_1 := \operatorname{conv}\left\{\frac{Z_p(K_1)}{\sqrt{p}}, p = 2^k, k = 1, \dots, k_1\right\}$ and $V_2 := \operatorname{conv}\left\{\frac{Z_p(K_1)}{\sqrt{p}}, p = 2^k, k = k_1, \dots, \log_2 n\right\}$. Note that $\Psi_2(K_1) \simeq \operatorname{conv}\left\{V_1, V_2\right\}$. Then $\log N\left(V_1, \sqrt{\log n}B_2^n\right) \le n$ and $\log N\left(V_2, \log\log nB_2^n\right) \le n$. So, $\log N\left(\Psi_2(K_1, c\sqrt{\log n}B_2^n\right) \le n$ and

$$|\Psi_2(K_1)|^{\frac{1}{n}} \leq c \frac{\sqrt{\log n}}{\sqrt{n}}$$

So,

$$|\Psi_2(K)|^{\frac{1}{n}} \le c \frac{\sqrt{\log n}}{\sqrt{n}} L_K$$