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Comment on ‘asymptotic’

I The topic of my talk is “asymptotic” in a somewhat different
sense than topics of most of the other talks of this workshop.
Instead of considering ‘dimension →∞’ we consider
properties of metric spaces which reflect their behavior only as
‘distances →∞’.
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Definitions, Examples

I More precisely, the main definition of this talk is the following
Definition (Gromov). A mapping F : (X , dX )→ (Y , dY )
between two metric spaces is called a coarse embedding if
there exist two non-decreasing functions
ρ1, ρ2 : [0,∞)→ [0,∞) such that ρ2 has finite values (it is
implicit in the condition above), limt→∞ ρ1(t) =∞, and

∀u, v ∈ X ρ1(dX (u, v)) ≤ dY (F (u),F (v)) ≤ ρ2(dX (u, v)).

I Example 1. The mapping F : R→ N given by F (x) = bxc is
a coarse embedding.

I Example 2. The vertex set V of an infinite dyadic tree T
rooted at vertex O with its graph metric can be coarsely
embedded into `2 in the following way: we consider a
bijection between the set of all edges of T and vectors of an
orthonormal basis {ei} in `2, and map each vertex from V
onto the sum of those vectors from {ei} which correspond to
a path from a root O of T to the vertex, O is mapped to 0.
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History

I The restrictions in the definition of a coarse embedding are
weak and it is far from being obvious that there exist
separable metric spaces which are not coarsely embeddable
into a Hilbert space. Gromov (1993) wrote: “There is no
known geometric obstruction for coarse embeddings into
infinite dimensional Banach spaces.”

I Writing this Gromov was unaware of Enflo’s work (1969) in
which it was shown that there are no uniform (that is,
uniformly continuous with the uniformly continuous inverse)
embeddings of the Banach space c0 into a Hilbert space.
Dranishnikov, Gong, V. Lafforgue, and Yu showed (2002) that
the construction due to Enflo (1969) can be used to construct
locally finite metric spaces which are not coarsely embeddable
into `2. (A metric space is called locally finite is all balls in it
have finitely many elements.)
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Applications

I The idea of Gromov was to approach some well-known
problems in Topology using coarse embeddings of certain
finitely generated groups with their word metrics into “good”
Banach spaces.

I This idea turned out to be very fruitful, see the survey of Yu
[in: International Congress of Mathematicians. Vol. II,
1623–1639, Eur. Math. Soc., Zürich, 2006].
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Coarse embeddings into Hilbert space

I It became important to understand which classes of discrete
metric spaces embed coarsely into a Hilbert space. For
applications in topology the most important class of metric
spaces is the class of spaces with bounded geometry.

I Definition
A metric space A is said to have a bounded geometry if for each
r > 0 there exists a positive integer M(r) such that each ball in A
of radius r contains at most M(r) elements.

I The first example of a metric space with bounded geometry
which is not coarsely embeddable into a Hilbert space (and,
more generally, into `p with 1 ≤ p <∞) was found by
Gromov (2000). All inequalities needed for the example were
known before: I mean the papers of Linial, London, and
Rabinovich (1995, Hilbert space case), and Matoušek (1997,
`p-case).
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`p-case).

Mikhail Ostrovskii, St. John’s University Coarse embeddings



Coarse embeddings into Hilbert space

I It became important to understand which classes of discrete
metric spaces embed coarsely into a Hilbert space. For
applications in topology the most important class of metric
spaces is the class of spaces with bounded geometry.

I Definition
A metric space A is said to have a bounded geometry if for each
r > 0 there exists a positive integer M(r) such that each ball in A
of radius r contains at most M(r) elements.

I The first example of a metric space with bounded geometry
which is not coarsely embeddable into a Hilbert space (and,
more generally, into `p with 1 ≤ p <∞) was found by
Gromov (2000). All inequalities needed for the example were
known before: I mean the papers of Linial, London, and
Rabinovich (1995, Hilbert space case), and Matoušek (1997,
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Some remarks before presenting the example: L2 vs L1

I It turns out that coarse embeddability into L2 is equivalent to
coarse embeddability into L1. This statement follows from the
following well-known facts:

I L2 is linearly isometric to a subspace of L1 (can be proved
using independent Gaussian variables).

I The metric space (L1, || · ||1/21 ) is isometric to a subset of L2.

I We define the embedding in the following way: we map each
function from L1(R) to the indicator function of the set
between the graph of the function and the x-axis. This
indicator function is considered as an element of L2(R2). One
can check that this mapping has the desired properties.

I These results show that to prove coarse
embeddability/non-embeddability results for a Hilbert space it
suffices to prove similar results for L1.
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Expanders

I Definition
For a graph G with vertex set V and a subset F ⊂ V by ∂F we
denote the set of edges connecting F and V \F . The expanding
constant (also known as the Cheeger constant) of G is

h(G ) = inf

{
|∂F |

min{|F |, |V \F |}
: F ⊂ V , 0 < |F | < +∞

}
.

A sequence {Gn} of graphs is called a family of expanders if all of
Gn are finite, connected, k-regular for some k ∈ N, their expanding
constants h(Gn) are bounded away from 0 (that is, there exists
ε > 0 such that h(Gn) ≥ ε for all n), and their sizes (numbers of
vertices) →∞ as n→∞.
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I Theorem (Gromov, Linial-London-Rabinovich, Matoušek)

If a metric space A contains isometric copies of all {Gn} (with
their graph distances) from some family of expanders, then A does
not embed coarsely into Lp, (1 ≤ p <∞).

I We consider the L1 case only. The proof is based on a
Sobolev-type inequality (also called a Poincaré-type
inequality), which is proved using the change of order of
summation argument.

I Lemma (Sobolev-type inequality)

Let G = (V ,E ) be a graph with the expanding constant h, and
f : V → R be a function with the median m. Then∑

uv∈E
|f (u)− f (v)| ≥ h

∑
v∈V
|f (v)−m|. (1)
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Description of the proof

I The Theorem is proved as follows: Assume that there exists a
coarse embedding F : A→ L1. We may assume that the
images of elements of A are continuous functions, so F (x , t)
is well-defined for x ∈ A, t ∈ [0, 1].

I Writing the Sobolev-type inequalities for each graph Gn, for
each t ∈ [0, 1], and integrating we get, for some Mn ∈ L1:∑
uv∈E(Gn)

||F (u)−F (v)||L1 ≥ h(Gn)
∑

v∈V (Gn)

||F (v)−Mn||L1 (2)

I Inequality (2) implies that there exists a constant D
independent of n such at least half of the images of F (V (Gn))
is in a ball of radius D centered at Mn. On the other hand, in
a k-regular graph the number of vertices in a ball of radius R
can be estimated in terms of k only. From here one can derive
a contradiction with the definition of a coarse embedding.
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I It would be very interesting to find out whether each metric
space with bounded geometry which is not coarsely
embeddable into a Hilbert space contains a substructure
similar to a family of expanders.

I The following theorem can help with search of an
expander-like structure in metric spaces with bounded
geometry which are not coarsely embeddable into a Hilbert
space. (As we know coarse embeddability into L1 is equivalent
to coarse embeddability into a Hilbert space.)

I Theorem (MO (2009), Tessera (2009))
Let M be a locally finite metric space which is not coarsely
embeddable into L1. Then there exists a constant D, depending on
M only, such that for each n ∈ N there exists a finite set
Bn ⊂ M ×M and a probability measure µ on Bn such that

I dM(u, v) ≥ n for each (u, v) ∈ Bn.
I For each Lipschitz function f : M → L1 we have∫

Bn

||f (u)− f (v)||L1dµ(u, v) ≤ DLip(f ). (3)
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I Lemma
Let M be a locally finite metric space which is not coarsely
embeddable into L1. There exists a constant C depending on M
only such that for each Lipschitz function f : M → L1 there exists
a subset Bf ⊂ M ×M such that sup

(x ,y)∈Bf

dM(x , y) =∞, but

sup
(x ,y)∈Bf

||f (x)− f (y)||L1 ≤ CLip(f ).

I Proof. Assume the contrary. Then, for each n ∈ N, the
number n3 cannot serve as C . This means, that for each
n ∈ N there exists a Lipschitz mapping fn : M → L1 such that
for each subset U ⊂ M ×M with

sup
(x ,y)∈U

dM(x , y) =∞,

we have
sup

(x ,y)∈U
||fn(x)− fn(y)|| > n3Lip(fn).
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I We choose a point in M and denote it by O. Without loss of
generality we may assume that fn(O) = 0.

I Consider the mapping

f : M →

( ∞∑
n=1

⊕L1

)
1

⊂ L1

given by

f (x) =
∞∑
n=1

1

Kn2
· fn(x)

Lip(fn)
,

where K =
∑∞

n=1
1
n2

.

I It is clear that the series converges and Lip(f ) ≤ 1. It is not
difficult to verify that f is a coarse embedding. We get a
contradiction.
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I Lemma
Let C be the constant whose existence is proved in the previous
Lemma and let ε > 0 be arbitrary. For each n ∈ N we can find a
finite subset Mn ⊂ M such that for each Lipschitz mapping
f : M → L1 there is a pair (uf ,n, vf ,n) ∈ Mn ×Mn such that

I dM(uf ,n, vf ,n) ≥ n.
I ||f (uf ,n)− f (vf ,n)|| ≤ (C + ε)Lip(f ).

I Proof. More-or-less standard ultraproduct argument.
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I Proof of the Theorem. Let D be a number satisfying
D > C , and let B be a number satisfying C < B < D.

I According to the second Lemma, there is a finite subset
Mn ⊂ M such that for each 1-Lipschitz function f on M there
is a pair (u, v) in Mn such that dM(u, v) ≥ n and
||f (u)− f (v)|| ≤ B.

I So we can consider this as a kind of a two-person game: one
person picks a 1-Lipschitz function and the other a pair of
points in Mn at distance ≥ n. The second person wins if
||f (u)− f (v)|| ≤ B.

I The set of 1-Lipschitz functions is not finite. Nevertheless
everything can be worked out in a suitable way. Applying the
von Neumann minimax theorem we get the desired measure.
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This is still far from the desired result

I Using the result of Johnson-Randrianarivony (2006) (or its
strengthening due to Mendel-Naor (2008)) one can construct
a locally finite metric space which is a subset of `p, p is some
number satisfying p > 2, which is not coarsely embeddable
into `2, and thus contains structures described above. Recall,
on the other hand, that `p (1 ≤ p <∞) do not contain
expanders.

I The following result was proved with the purpose to get from
the previous result something more suitable for search of
expander-like constructions.
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Expansion properties of sets Mn.

I Let s be a positive integer. We consider graphs
G (n, s) = (Mn,E (Mn, s)), where the edge set E (Mn, s) is
obtained by joining those pairs of vertices of Mn which are at
distance ≤ s. The graphs G (n, s) have uniformly bounded
degrees if the metric space M has bounded geometry.
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I Consider the following condition:

I (*) For some s ∈ N there is a number hs > 0 and subgraphs
Hn of G (n, s) of indefinitely growing sizes (as n→∞) such
that the expansion constants of {Hn} are uniformly bounded
from below by hs .

I If we would prove that in the bounded geometry case the
condition (*) is satisfied, it would solve the problem
mentioned at the beginning of the talk: whether each metric
space with bounded geometry which does not embed coarsely
into a Hilbert space contains weak expanders? For spaces
with bounded geometry weak expanders are defined as
Lipschitz images fm(Xm) of (vertex sets) of a family of
expanders with uniformly bounded Lipschitz constants of
{fm}∞m=1 and without dominating pre-images in the sense that
lim

m→∞
max

z∈fm(Xm)
(|f −1m (z)|/|Xm|) = 0.
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I At this point we are able to prove only the following weaker
expansion property of the graphs G (n, s). We introduce the
measure νn on Mn by νn(A) = µn(A×Mn). Let F be an
induced subgraph of G (n, s). We denote the vertex boundary
of a set A of vertices in F by δFA.

I Theorem (MO (2009))

Let s and n be such that 2n > s > 8D. Let ϕ(D, s) = s
4D − 2.

Then G (n, s) contains an induced subgraph F with dM -diameter
≥ n − s

2 , such that each subset A ⊂ F of dM -diameter < n − s
2

satisfies the condition: νn(δFA) > ϕ(D, s)νn(A).

I The proof uses the exhaustion process similar to the one used
by Linial-Saks (1993) and “random” signing of functions
similar to the way it was used by Rao (1999) in his work on
Lipschitz embeddings of planar graphs into `2.
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Final comment

I The problem on relation between the expansion condition
from the last theorem and the desired expansion resembles the
well-known open problem: whether each sequence {Gn} of
k-regular (k ≥ 3) graphs with indefinitely growing girth
contains weak expanders?
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