On Feige's inequality

Krzysztof Oleszkiewicz

Institute of Mathematics University of Warsaw & Polish Academy of Sciences

Toronto, 2010

Feige's inequality

Theorem (Uriel Feige, SIAM Journal on Computing, 2006): For every $\delta > 0$ there exists some $\varepsilon = \varepsilon(\delta) > 0$ such that for any positive integer n and any sequence of independent non-negative random variables X_1, X_2, \ldots, X_n with $\mathbb{E}X_i \leq 1$ for $i = 1, 2, \ldots, n$ there is

$$\mathbb{P}(S \leq \mathbb{E}S + \delta) \geq \varepsilon(\delta),$$

where
$$S = X_1 + X_2 + ... + X_n$$
.

The theorem may be proved with $\liminf_{\delta\to 0} \varepsilon(\delta)/\delta > 0$ and, obviously, $\varepsilon(\delta)$ non-decreasing. It is easy to prove that, in general, one cannot hope for better asymptotics at zero.

Toulouse: Franck Barthe

Feige's inequality

Theorem (Uriel Feige, SIAM Journal on Computing, 2006): For every $\delta > 0$ there exists some $\varepsilon = \varepsilon(\delta) > 0$ such that for any positive integer n and any sequence of independent non-negative random variables X_1, X_2, \ldots, X_n with $\mathbb{E}X_i \leq 1$ for $i = 1, 2, \ldots, n$ there is

$$\mathbb{P}(S \leq \mathbb{E}S + \delta) \geq \varepsilon(\delta),$$

where
$$S = X_1 + X_2 + ... + X_n$$
.

The theorem may be proved with $\liminf_{\delta\to 0} \varepsilon(\delta)/\delta > 0$ and, obviously, $\varepsilon(\delta)$ non-decreasing. It is easy to prove that, in general, one cannot hope for better asymptotics at zero.

Toulouse: Franck Barthe

Feige's inequality

Theorem (Uriel Feige, SIAM Journal on Computing, 2006): For every $\delta > 0$ there exists some $\varepsilon = \varepsilon(\delta) > 0$ such that for any positive integer n and any sequence of independent non-negative random variables X_1, X_2, \ldots, X_n with $\mathbb{E}X_i \leq 1$ for $i = 1, 2, \ldots, n$ there is

$$\mathbb{P}(S \leq \mathbb{E}S + \delta) \geq \varepsilon(\delta),$$

where $S = X_1 + X_2 + ... + X_n$.

The theorem may be proved with $\liminf_{\delta\to 0} \varepsilon(\delta)/\delta > 0$ and, obviously, $\varepsilon(\delta)$ non-decreasing. It is easy to prove that, in general, one cannot hope for better asymptotics at zero.

Toulouse: Franck Barthe

Reduction to two-point variables

Let $\xi_1, \, \xi_2, \ldots, \, \xi_n$ be independent, non-negative random variables with $\mathbb{P}(\xi_i = x_i) = p_i$ and $\mathbb{P}(\xi_i = y_i) = 1 - p_i$, where $x_i > y_i > 0$ and $p_i \in (0,1)$ for $i=1,2,\ldots,n$. Let $s_i = x_i - y_i$ (spread). Without loss of generality we may and will assume that $s_1 \geq s_2 \geq \ldots \geq s_n > 0$. We assume that $m_i = \mathbb{E}\xi_i \leq 1$ for all i's.

Note that $m_i - y_i = p_i s_i$, so that $p_i \leq 1/s_i$ for every $i \leq n$.

Note that distribution of any non-constant X_i from Feige's theorem is a mixture of distributions of two-point random variables of the above type (with mean $m_i = \mathbb{E}X_i$ fixed and parameters x_i , y_i and p_i varying). Since the quantity we want to estimate from below,

$$\mathbb{P}(S \leq \mathbb{E}S + \delta) = \Big(\bigotimes_{i=1}^{n} \mu_{X_i}\Big) (\{t \in \mathbb{R}^n : \sum_{i=1}^{n} t_i \leq \delta + \sum_{i=1}^{n} m_i\}),$$

is multilinear with respect to μ_{X_i} 's it suffices to prove the theorem with X_i 's replaced by \mathcal{E}_i 's.

Reduction to two-point variables

Let $\xi_1, \, \xi_2, \ldots, \, \xi_n$ be independent, non-negative random variables with $\mathbb{P}(\xi_i = x_i) = p_i$ and $\mathbb{P}(\xi_i = y_i) = 1 - p_i$, where $x_i > y_i > 0$ and $p_i \in (0,1)$ for $i=1,2,\ldots,n$. Let $s_i = x_i - y_i$ (spread). Without loss of generality we may and will assume that $s_1 \geq s_2 \geq \ldots \geq s_n > 0$. We assume that $m_i = \mathbb{E}\xi_i \leq 1$ for all i's.

Note that $m_i - y_i = p_i s_i$, so that $p_i \le 1/s_i$ for every $i \le n$.

Note that distribution of any non-constant X_i from Feige's theorem is a mixture of distributions of two-point random variables of the above type (with mean $m_i = \mathbb{E}X_i$ fixed and parameters x_i , y_i and p_i varying). Since the quantity we want to estimate from below,

$$\mathbb{P}(S \leq \mathbb{E}S + \delta) = \Big(\bigotimes_{i=1}^{n} \mu_{X_i}\Big) (\{t \in \mathbb{R}^n : \sum_{i=1}^{n} t_i \leq \delta + \sum_{i=1}^{n} m_i\}),$$

is multilinear with respect to μ_{X_i} 's it suffices to prove the theorem with X_i 's replaced by \mathcal{E}_i 's.

Reduction to two-point variables

Let $\xi_1, \, \xi_2, \ldots, \, \xi_n$ be independent, non-negative random variables with $\mathbb{P}(\xi_i = x_i) = p_i$ and $\mathbb{P}(\xi_i = y_i) = 1 - p_i$, where $x_i > y_i > 0$ and $p_i \in (0,1)$ for $i=1,2,\ldots,n$. Let $s_i = x_i - y_i$ (spread). Without loss of generality we may and will assume that $s_1 \geq s_2 \geq \ldots \geq s_n > 0$. We assume that $m_i = \mathbb{E}\xi_i \leq 1$ for all i's.

Note that $m_i - y_i = p_i s_i$, so that $p_i \le 1/s_i$ for every $i \le n$.

Note that distribution of any non-constant X_i from Feige's theorem is a mixture of distributions of two-point random variables of the above type (with mean $m_i = \mathbb{E}X_i$ fixed and parameters x_i , y_i and p_i varying). Since the quantity we want to estimate from below,

$$\mathbb{P}(S \leq \mathbb{E}S + \delta) = \Big(\bigotimes_{i=1}^{n} \mu_{X_i}\Big) (\{t \in \mathbb{R}^n : \sum_{i=1}^{n} t_i \leq \delta + \sum_{i=1}^{n} m_i\}),$$

is multilinear with respect to μ_{X_i} 's it suffices to prove the theorem with X_i 's replaced by \mathcal{E}_i 's.

Auxiliary estimate

We will need the following auxiliary bound:

Proposition: For every positive C there exists $\kappa(C) > 0$ such that for any positive integer n and any sequence of independent random variables Z_1, Z_2, \ldots, Z_n , satisfying $\mathbb{E}Z_i = 0$ and $-K \leq Z_i \leq K$ a.s. for $i = 1, 2, \ldots, n$ and some constant K, we have

$$\mathbb{P}(Z_1 + Z_2 + \ldots + Z_n \leq C \cdot K) \geq \kappa(C).$$

Remark: In fact, much weaker assumptions suffice, for example $\mathbb{E}Z_i = 0$ and $\mathbb{E}|Z_i|^p \leq K^{p-2} \cdot \mathbb{E}Z_i^2$ for i = 1, 2, ..., n and some fixed p > 2 (κ depends then both on C and p).

Auxiliary estimate

We will need the following auxiliary bound:

Proposition: For every positive C there exists $\kappa(C) > 0$ such that for any positive integer n and any sequence of independent random variables Z_1, Z_2, \ldots, Z_n , satisfying $\mathbb{E}Z_i = 0$ and $-K \leq Z_i \leq K$ a.s. for $i = 1, 2, \ldots, n$ and some constant K, we have

$$\mathbb{P}(Z_1 + Z_2 + \ldots + Z_n \leq C \cdot K) \geq \kappa(C).$$

Remark: In fact, much weaker assumptions suffice, for example $\mathbb{E}Z_i = 0$ and $\mathbb{E}|Z_i|^p \leq K^{p-2} \cdot \mathbb{E}Z_i^2$ for i = 1, 2, ..., n and some fixed p > 2 (κ depends then both on C and p).

Proof of the auxiliary estimate

Proof of Proposition: Let $\bar{\kappa}(C)$ denote the optimal (largest) value of $\kappa(C)$ for which Proposition holds true for given C>0. A priori, $\bar{\kappa}(C)$ may be equal to zero. Obviously, by considering symmetric ± 1 random variables and $n\to\infty$ we have $\bar{\kappa}(C)\le 1/2$ for all C>0. Also, it is clear that $\bar{\kappa}(C)$ is a non-decreasing function.

In Concentration of capital - the product form of the LLN (O., Stat. Probab. Letters, 2001) it is proved, with help of the Berry-Esseen inequality, that for C large enough there is $\bar{\kappa}(C)=1/2$. Here, however, we will prove only a weaker estimate, namely:

There exists C > 0 such that $\bar{\kappa}(C) > 0$.

The amplifier trick will do the rest.

Proof of the auxiliary estimate

Proof of Proposition: Let $\bar{\kappa}(C)$ denote the optimal (largest) value of $\kappa(C)$ for which Proposition holds true for given C>0. A priori, $\bar{\kappa}(C)$ may be equal to zero. Obviously, by considering symmetric ± 1 random variables and $n\to\infty$ we have $\bar{\kappa}(C)\le 1/2$ for all C>0. Also, it is clear that $\bar{\kappa}(C)$ is a non-decreasing function.

In Concentration of capital - the product form of the LLN (O., Stat. Probab. Letters, 2001) it is proved, with help of the Berry-Esseen inequality, that for C large enough there is $\bar{\kappa}(C)=1/2$. Here, however, we will prove only a weaker estimate, namely:

There exists C > 0 such that $\bar{\kappa}(C) > 0$.

The amplifier trick will do the rest.

Proof of the auxiliary estimate

Proof of Proposition: Let $\bar{\kappa}(C)$ denote the optimal (largest) value of $\kappa(C)$ for which Proposition holds true for given C>0. A priori, $\bar{\kappa}(C)$ may be equal to zero. Obviously, by considering symmetric ± 1 random variables and $n\to\infty$ we have $\bar{\kappa}(C)\le 1/2$ for all C>0. Also, it is clear that $\bar{\kappa}(C)$ is a non-decreasing function.

In Concentration of capital - the product form of the LLN (O., Stat. Probab. Letters, 2001) it is proved, with help of the Berry-Esseen inequality, that for C large enough there is $\bar{\kappa}(C)=1/2$. Here, however, we will prove only a weaker estimate, namely:

There exists C > 0 such that $\bar{\kappa}(C) > 0$.

The amplifier trick will do the rest.

Amplifier trick

Let $S = Z_1 + Z_2 + \ldots + Z_n$. Consider i.i.d. copies of $S: S_1, S_2, \ldots$ Then

$$\mathbb{P}(S_1 + S_2 + \ldots + S_m \leq C \cdot K) \geq \bar{\kappa}(C)$$

since $S_1 + S_2 + \ldots + S_m$ is a sum of mn independent mean-zero random variables with values in [-K, K] a.s.

On the other hand, we have

$$\mathbb{P}(S_1 + S_2 + \ldots + S_m \le C \cdot K) \le$$

$$\le \mathbb{P}(S_1 \le \frac{C}{m}K) + \ldots + \mathbb{P}(S_m \le \frac{C}{m}K) = m \cdot \mathbb{P}(S \le \frac{C}{m}K)$$

Thus we have proved that, under assumptions of Proposition, $\mathbb{P}(S \leq \frac{C}{m}K) \geq \bar{\kappa}(C)/m$, so that $\bar{\kappa}(C/m) \geq \bar{\kappa}(C)/m$ for $m \geq 1$

Amplifier trick

Let $S = Z_1 + Z_2 + \ldots + Z_n$. Consider i.i.d. copies of $S: S_1, S_2, \ldots$ Then

$$\mathbb{P}(S_1 + S_2 + \ldots + S_m \leq C \cdot K) \geq \bar{\kappa}(C)$$

since $S_1 + S_2 + \ldots + S_m$ is a sum of mn independent mean-zero random variables with values in [-K, K] a.s.

On the other hand, we have

$$\mathbb{P}(S_1 + S_2 + \ldots + S_m \le C \cdot K) \le$$

$$\le \mathbb{P}(S_1 \le \frac{C}{m}K) + \ldots + \mathbb{P}(S_m \le \frac{C}{m}K) = m \cdot \mathbb{P}(S \le \frac{C}{m}K).$$

Thus we have proved that, under assumptions of Proposition, $\mathbb{P}(S < \frac{C}{K}) > \bar{\kappa}(C)/m$, so that $\bar{\kappa}(C/m) > \bar{\kappa}(C)/m$ for m > 1

Amplifier trick

Let $S = Z_1 + Z_2 + \ldots + Z_n$. Consider i.i.d. copies of $S: S_1, S_2, \ldots$ Then

$$\mathbb{P}(S_1 + S_2 + \ldots + S_m \leq C \cdot K) \geq \bar{\kappa}(C)$$

since $S_1 + S_2 + \ldots + S_m$ is a sum of mn independent mean-zero random variables with values in [-K, K] a.s.

On the other hand, we have

$$\mathbb{P}(S_1 + S_2 + \ldots + S_m \le C \cdot K) \le$$

$$\le \mathbb{P}(S_1 \le \frac{C}{m}K) + \ldots + \mathbb{P}(S_m \le \frac{C}{m}K) = m \cdot \mathbb{P}(S \le \frac{C}{m}K).$$

Thus we have proved that, under assumptions of Proposition, $\mathbb{P}(S \leq \frac{C}{m}K) \geq \bar{\kappa}(C)/m$, so that $\bar{\kappa}(C/m) \geq \bar{\kappa}(C)/m$ for $m \geq 1$.

We have observed that it suffices to prove $\bar{\kappa}(C) > 0$ for some C > 0 to have it for all C > 0, with $\liminf_{C \to 0^+} \bar{\kappa}(C)/C > 0$.

Now, let as before $S = Z_1 + Z_2 + \ldots + Z_n$ and let $\sigma^2 = \mathbb{E}S^2$.

$$\mathbb{E}S^{4} = \sum_{i=1}^{n} \mathbb{E}Z_{i}^{4} + 6 \sum_{1 \leq i < j \leq n} \mathbb{E}Z_{i}^{2} \cdot \mathbb{E}Z_{j}^{2} \leq$$

$$\leq K^{2} \sum_{i=1}^{n} \mathbb{E}Z_{i}^{2} + 3(\sum_{i=1}^{n} \mathbb{E}Z_{i}^{2})^{2} = K^{2}\sigma^{2} + 3\sigma^{4}.$$

$$\mathbb{E}S^{2} = \mathbb{E}(|S|^{2/3} \cdot |S|^{4/3}) \overset{H}{\leq} (\mathbb{E}|S|)^{2/3} (\mathbb{E}S^{4})^{1/3}, \text{ so }$$

$$|S|^{2}/\mathbb{E}S^{2} \geq \sigma^{4}(K^{2}\sigma^{2} + 3\sigma^{4})^{-1} = 1/(3 + K^{2}\sigma^{-2})$$

We have observed that it suffices to prove $\bar{\kappa}(C) > 0$ for some C > 0 to have it for all C > 0, with $\liminf_{C \to 0^+} \bar{\kappa}(C)/C > 0$.

Now, let as before $S = Z_1 + Z_2 + \ldots + Z_n$ and let $\sigma^2 = \mathbb{E}S^2$.

$$\mathbb{E}S^{4} = \sum_{i=1}^{n} \mathbb{E}Z_{i}^{4} + 6 \sum_{1 \leq i < j \leq n} \mathbb{E}Z_{i}^{2} \cdot \mathbb{E}Z_{j}^{2} \leq$$

$$\leq K^{2} \sum_{i=1}^{n} \mathbb{E}Z_{i}^{2} + 3(\sum_{i=1}^{n} \mathbb{E}Z_{i}^{2})^{2} = K^{2}\sigma^{2} + 3\sigma^{4}.$$

$$\mathbb{E}S^{2} = \mathbb{E}(|S|^{2/3} \cdot |S|^{4/3}) \overset{H}{\leq} (\mathbb{E}|S|)^{2/3} (\mathbb{E}S^{4})^{1/3}, \text{ so }$$

$$|S|^{2}/\mathbb{E}S^{2} \geq \sigma^{4}(K^{2}\sigma^{2} + 3\sigma^{4})^{-1} = 1/(3 + K^{2}\sigma^{-2})$$

We have observed that it suffices to prove $\bar{\kappa}(C) > 0$ for some C > 0 to have it for all C > 0, with $\liminf_{C \to 0^+} \bar{\kappa}(C)/C > 0$.

Now, let as before $S = Z_1 + Z_2 + \ldots + Z_n$ and let $\sigma^2 = \mathbb{E}S^2$.

$$\mathbb{E}S^{4} = \sum_{i=1}^{n} \mathbb{E}Z_{i}^{4} + 6 \sum_{1 \leq i < j \leq n} \mathbb{E}Z_{i}^{2} \cdot \mathbb{E}Z_{j}^{2} \leq$$

$$\leq K^{2} \sum_{i=1}^{n} \mathbb{E}Z_{i}^{2} + 3(\sum_{i=1}^{n} \mathbb{E}Z_{i}^{2})^{2} = K^{2}\sigma^{2} + 3\sigma^{4}.$$

$$S^{2} = \mathbb{E}(|S|^{2/3} \cdot |S|^{4/3}) \stackrel{H}{\leq} (\mathbb{E}|S|)^{2/3} (\mathbb{E}S^{4})^{1/3}, \text{ so}$$

We have observed that it suffices to prove $\bar{\kappa}(C) > 0$ for some C > 0 to have it for all C > 0, with $\liminf_{C \to 0^+} \bar{\kappa}(C)/C > 0$.

Now, let as before $S = Z_1 + Z_2 + \ldots + Z_n$ and let $\sigma^2 = \mathbb{E}S^2$.

$$\mathbb{E}S^{4} = \sum_{i=1}^{n} \mathbb{E}Z_{i}^{4} + 6 \sum_{1 \leq i < j \leq n} \mathbb{E}Z_{i}^{2} \cdot \mathbb{E}Z_{j}^{2} \leq$$

$$\leq K^{2} \sum_{i=1}^{n} \mathbb{E}Z_{i}^{2} + 3(\sum_{i=1}^{n} \mathbb{E}Z_{i}^{2})^{2} = K^{2}\sigma^{2} + 3\sigma^{4}.$$

$$\mathbb{E}S^{2} = \mathbb{E}(|S|^{2/3} \cdot |S|^{4/3}) \stackrel{H}{\leq} (\mathbb{E}|S|)^{2/3} (\mathbb{E}S^{4})^{1/3}, \text{ so}$$

$$(\mathbb{E}|S|)^{2}/\mathbb{E}S^{2} > \sigma^{4}(K^{2}\sigma^{2} + 3\sigma^{4})^{-1} = 1/(3 + K^{2}\sigma^{-2}).$$

We have proved that $(\mathbb{E}|S|)^2/\mathbb{E}S^2 \geq 1/(3+K^2\sigma^{-2})$.

The classical Paley-Zygmund estimate states that

$$\mathbb{E}|S|/2 = \mathbb{E}|S|1_{S<0} \le (\mathbb{E}S^2)^{1/2} \cdot (\mathbb{P}(S<0))^{1/2}$$

so that

$$\mathbb{P}(S \leq C \cdot K) \geq \mathbb{P}(S < 0) \geq \frac{(\mathbb{E}|S|)^2}{4\mathbb{E}S^2} \geq \frac{1}{4(3 + K^2\sigma^{-2})}.$$

Thus $\mathbb{P}(S \leq C \cdot K) \geq 1/16$ if only $\sigma \geq K$, whereas for $\sigma \leq K$ by Chebyshev's inequality we get

$$\mathbb{P}(S > C \cdot K) \le \frac{\sigma^2}{C^2 K^2} \le C^{-2},$$

so in particular $\mathbb{P}(S \leq 2K) \geq 1 - 2^{-2} = 3/4$

We have proved that $\bar{\kappa}(2) > 1/16 > 0$.

We have proved that $(\mathbb{E}|S|)^2/\mathbb{E}S^2 \geq 1/(3+K^2\sigma^{-2})$.

The classical Paley-Zygmund estimate states that

$$\mathbb{E}|S|/2 = \mathbb{E}|S|1_{S<0} \le (\mathbb{E}S^2)^{1/2} \cdot (\mathbb{P}(S<0))^{1/2},$$

so that

$$\mathbb{P}(S \leq C \cdot K) \geq \mathbb{P}(S < 0) \geq \frac{(\mathbb{E}|S|)^2}{4 \mathbb{E}S^2} \geq \frac{1}{4(3 + K^2 \sigma^{-2})}.$$

Thus $\mathbb{P}(S \leq C \cdot K) \geq 1/16$ if only $\sigma \geq K$, whereas for $\sigma \leq K$ by Chebyshev's inequality we get

$$\mathbb{P}(S > C \cdot K) \le \frac{\sigma^2}{C^2 K^2} \le C^{-2},$$

so in particular $\mathbb{P}(S \leq 2K) \geq 1 - 2^{-2} = 3/4$.

We have proved that $\bar{\kappa}(2) > 1/16 > 0$.

We have proved that $(\mathbb{E}|S|)^2/\mathbb{E}S^2 \geq 1/(3+K^2\sigma^{-2})$.

The classical Paley-Zygmund estimate states that

$$\mathbb{E}|S|/2 = \mathbb{E}|S|1_{S<0} \le (\mathbb{E}S^2)^{1/2} \cdot (\mathbb{P}(S<0))^{1/2},$$

so that

$$\mathbb{P}(S \leq C \cdot K) \geq \mathbb{P}(S < 0) \geq \frac{(\mathbb{E}|S|)^2}{4\mathbb{E}S^2} \geq \frac{1}{4(3 + K^2\sigma^{-2})}.$$

Thus $\mathbb{P}(S \leq C \cdot K) \geq 1/16$ if only $\sigma \geq K$, whereas for $\sigma \leq K$ by Chebyshev's inequality we get

$$\mathbb{P}(S > C \cdot K) \le \frac{\sigma^2}{C^2 K^2} \le C^{-2},$$

so in particular $\mathbb{P}(S \leq 2K) \geq 1 - 2^{-2} = 3/4$

We have proved that $\bar{\kappa}(2) > 1/16 > 0$.

We have proved that $(\mathbb{E}|S|)^2/\mathbb{E}S^2 \geq 1/(3+K^2\sigma^{-2})$.

The classical Paley-Zygmund estimate states that

$$\mathbb{E}|S|/2 = \mathbb{E}|S|1_{S<0} \le (\mathbb{E}S^2)^{1/2} \cdot (\mathbb{P}(S<0))^{1/2},$$

so that

$$\mathbb{P}(S \leq C \cdot K) \geq \mathbb{P}(S < 0) \geq \frac{(\mathbb{E}|S|)^2}{4\mathbb{E}S^2} \geq \frac{1}{4(3 + K^2\sigma^{-2})}.$$

Thus $\mathbb{P}(S \leq C \cdot K) \geq 1/16$ if only $\sigma \geq K$, whereas for $\sigma \leq K$ by Chebyshev's inequality we get

$$\mathbb{P}(S > C \cdot K) \leq \frac{\sigma^2}{C^2 K^2} \leq C^{-2},$$

so in particular $\mathbb{P}(S \leq 2K) \geq 1 - 2^{-2} = 3/4$.

We have proved that $\bar{\kappa}(2) \geq 1/16 > 0$.

We have proved that $(\mathbb{E}|S|)^2/\mathbb{E}S^2 \geq 1/(3+K^2\sigma^{-2})$.

The classical Paley-Zygmund estimate states that

$$\mathbb{E}|S|/2 = \mathbb{E}|S|1_{S<0} \le (\mathbb{E}S^2)^{1/2} \cdot (\mathbb{P}(S<0))^{1/2},$$

so that

$$\mathbb{P}(S \leq C \cdot K) \geq \mathbb{P}(S < 0) \geq \frac{(\mathbb{E}|S|)^2}{4\mathbb{E}S^2} \geq \frac{1}{4(3 + K^2\sigma^{-2})}.$$

Thus $\mathbb{P}(S \leq C \cdot K) \geq 1/16$ if only $\sigma \geq K$, whereas for $\sigma \leq K$ by Chebyshev's inequality we get

$$\mathbb{P}(S > C \cdot K) \leq \frac{\sigma^2}{C^2 K^2} \leq C^{-2},$$

so in particular $\mathbb{P}(S \leq 2K) \geq 1 - 2^{-2} = 3/4$.

We have proved that $\bar{\kappa}(2) \geq 1/16 > 0$.

Recall: $\xi_1, \xi_2, \ldots, \xi_n$ are independent with $\mathbb{P}(\xi_i = x_i) = p_i$, $\mathbb{P}(\xi_i = y_i) = 1 - p_i$, $x_i > y_i > 0$, $p_i \in (0,1)$, $s_i = x_i - y_i$ (spread), $s_1 \geq s_2 \geq \ldots \geq s_n > 0$, $m_i = \mathbb{E}\xi_i \leq 1$, so that $p_i \leq 1/s_i$.

We are to prove that

$$\mathbb{P}\Big(\xi_1+\xi_2+\ldots+\xi_n\leq\mathbb{E}(\xi_1+\xi_2+\ldots+\xi_n)+\delta\Big)\geq\varepsilon(\delta).$$

Proof of Theorem: Let k be the least index i such that $p_1s_1 + \ldots + p_is_i \ge s_{i+1}/2$. So, $p_1s_1 + \ldots + p_ks_k \ge s_{k+1}/2$ but $p_1s_1 + \ldots + p_{k-1}s_{k-1} < s_k/2$ and hence $p_1 + \ldots + p_{k-1} < 1/2$.

Case 1: $s_k \le 2$ and thus also $s_{k+1}, \ldots, s_n \le 2$. Case 2: $s_k > 2$ and thus $p_k < 1/2$. He, Zhang and Zhang, Math. Operations Research, 2010

Recall: $\xi_1, \xi_2, \ldots, \xi_n$ are independent with $\mathbb{P}(\xi_i = x_i) = p_i$, $\mathbb{P}(\xi_i = y_i) = 1 - p_i$, $x_i > y_i > 0$, $p_i \in (0,1)$, $s_i = x_i - y_i$ (spread), $s_1 \geq s_2 \geq \ldots \geq s_n > 0$, $m_i = \mathbb{E}\xi_i \leq 1$, so that $p_i \leq 1/s_i$.

We are to prove that

$$\mathbb{P}\Big(\xi_1+\xi_2+\ldots+\xi_n\leq\mathbb{E}(\xi_1+\xi_2+\ldots+\xi_n)+\delta\Big)\geq\varepsilon(\delta).$$

Proof of Theorem: Let k be the least index i such that $p_1s_1 + \ldots + p_is_i \ge s_{i+1}/2$. So, $p_1s_1 + \ldots + p_ks_k \ge s_{k+1}/2$ but $p_1s_1 + \ldots + p_{k-1}s_{k-1} < s_k/2$ and hence $p_1 + \ldots + p_{k-1} < 1/2$.

Case 1: $s_k \le 2$ and thus also $s_{k+1}, \ldots, s_n \le 2$. Case 2: $s_k > 2$ and thus $p_k < 1/2$. He, Zhang and Zhang, Math. Operations Research, 2010

Recall: $\xi_1, \xi_2, \ldots, \xi_n$ are independent with $\mathbb{P}(\xi_i = x_i) = p_i$, $\mathbb{P}(\xi_i = y_i) = 1 - p_i$, $x_i > y_i > 0$, $p_i \in (0,1)$, $s_i = x_i - y_i$ (spread), $s_1 \geq s_2 \geq \ldots \geq s_n > 0$, $m_i = \mathbb{E}\xi_i \leq 1$, so that $p_i \leq 1/s_i$.

We are to prove that

$$\mathbb{P}\Big(\xi_1+\xi_2+\ldots+\xi_n\leq\mathbb{E}(\xi_1+\xi_2+\ldots+\xi_n)+\delta\Big)\geq\varepsilon(\delta).$$

Proof of Theorem: Let k be the least index i such that $p_1s_1 + \ldots + p_is_i \ge s_{i+1}/2$. So, $p_1s_1 + \ldots + p_ks_k \ge s_{k+1}/2$ but $p_1s_1 + \ldots + p_{k-1}s_{k-1} < s_k/2$ and hence $p_1 + \ldots + p_{k-1} < 1/2$.

Case 1: $s_k \le 2$ and thus also $s_{k+1}, \ldots, s_n \le 2$. Case 2: $s_k > 2$ and thus $p_k < 1/2$. He, Zhang and Zhang, Math. Operations Research, 2010

Recall: $\xi_1, \xi_2, \ldots, \xi_n$ are independent with $\mathbb{P}(\xi_i = x_i) = p_i$, $\mathbb{P}(\xi_i = y_i) = 1 - p_i$, $x_i > y_i > 0$, $p_i \in (0,1)$, $s_i = x_i - y_i$ (spread), $s_1 \geq s_2 \geq \ldots \geq s_n > 0$, $m_i = \mathbb{E}\xi_i \leq 1$, so that $p_i \leq 1/s_i$.

We are to prove that

$$\mathbb{P}\Big(\xi_1+\xi_2+\ldots+\xi_n\leq\mathbb{E}(\xi_1+\xi_2+\ldots+\xi_n)+\delta\Big)\geq\varepsilon(\delta).$$

Proof of Theorem: Let *k* be the least index *i* such that $p_1s_1 + \ldots + p_is_i \ge s_{i+1}/2$. So, $p_1s_1 + \ldots + p_ks_k \ge s_{k+1}/2$ but $p_1s_1 + \ldots + p_{k-1}s_{k-1} < s_k/2$ and hence $p_1 + \ldots + p_{k-1} < 1/2$.

Case 1: $s_k \leq 2$ and thus also $s_{k+1}, \ldots, s_n \leq 2$.

Case 2: $s_k > 2$ and thus $p_k < 1/2$.

He, Zhang and Zhang, Math. Operations Research, 2010

Recall:
$$\mathbb{P}(\xi_i = x_i) = p_i$$
; $\mathbb{P}(\xi_i = y_i) = 1 - p_i$; $x_i > y_i > 0$; $p_i \in (0,1)$, $s_i = x_i - y_i$ (spread); $s_1 \ge s_2 \ge \ldots \ge s_n > 0$; $m_i = \mathbb{E}\xi_i \le 1$, so that $p_i \le 1/s_i$; $p_1 + \ldots + p_{k-1} < 1/2$.

Case 1: $s_k \leq 2$ and thus also $s_{k+1}, \ldots, s_n \leq 2$, so that $\xi_k - m_k, \ldots, \xi_n - m_n$ are independent mean-zero random variables with values in [-2, 2].

$$\mathbb{P}(\xi_1 + \ldots + \xi_n \leq m_1 + \ldots + m_n + \delta) \geq$$

$$\mathbb{P}(\xi_{1} = y_{1}, \dots, \xi_{k-1} = y_{k-1}, \xi_{k} + \dots + \xi_{n} \leq m_{k} + \dots + m_{n} + \delta) = (1 - p_{1}) \dots (1 - p_{k-1}) \mathbb{P}((\xi_{k} - m_{k}) + \dots + (\xi_{n} - m_{n}) \leq \delta) \geq (1 - (p_{1} + \dots + p_{k-1})) \kappa(\delta/2) \geq \frac{1}{2} \kappa(\delta/2),$$

K. Oleszkiewicz On Feige's inequality

Recall:
$$\mathbb{P}(\xi_i = x_i) = p_i$$
; $\mathbb{P}(\xi_i = y_i) = 1 - p_i$; $x_i > y_i > 0$; $p_i \in (0,1)$, $s_i = x_i - y_i$ (spread); $s_1 \ge s_2 \ge \ldots \ge s_n > 0$; $m_i = \mathbb{E}\xi_i \le 1$, so that $p_i \le 1/s_i$; $p_1 + \ldots + p_{k-1} < 1/2$.

Case 1: $s_k \le 2$ and thus also $s_{k+1}, \ldots, s_n \le 2$, so that $\xi_k - m_k, \ldots, \xi_n - m_n$ are independent mean-zero random variables with values in [-2, 2].

$$\mathbb{P}(\xi_1 + \ldots + \xi_n \leq m_1 + \ldots + m_n + \delta) \geq$$

$$\mathbb{P}(\xi_1 = y_1, \dots, \xi_{k-1} = y_{k-1}, \xi_k + \dots + \xi_n \leq m_k + \dots + m_n + \delta) =$$

$$(1-p_1)\dots(1-p_{k-1})\mathbb{P}\Big((\xi_k-m_k)+\dots+(\xi_n-m_n)\leq\delta\Big)\geq$$

$$(1-(p_1+\ldots+p_{k-1}))\kappa(\delta/2)\geq \frac{1}{2}\kappa(\delta/2),$$

where we have used Proposition for $C = \delta/2$ and K = 2.

K. Oleszkiewicz

Recall:
$$\mathbb{P}(\xi_i = x_i) = p_i$$
; $\mathbb{P}(\xi_i = y_i) = 1 - p_i$; $x_i > y_i > 0$; $p_i \in (0,1)$, $s_i = x_i - y_i$ (spread); $s_1 \ge s_2 \ge \ldots \ge s_n > 0$; $m_i = \mathbb{E}\xi_i \le 1$, so that $p_i \le 1/s_i$; $p_1 + \ldots + p_{k-1} < 1/2$.

Case 1: $s_k \leq 2$ and thus also $s_{k+1}, \ldots, s_n \leq 2$, so that $\xi_k - m_k, \ldots, \xi_n - m_n$ are independent mean-zero random variables with values in [-2, 2].

$$\mathbb{P}(\xi_1 + \ldots + \xi_n \leq m_1 + \ldots + m_n + \delta) \geq$$

$$\mathbb{P}(\xi_{1} = y_{1}, \dots, \xi_{k-1} = y_{k-1}, \xi_{k} + \dots + \xi_{n} \leq m_{k} + \dots + m_{n} + \delta) =$$

$$(1 - p_{1}) \dots (1 - p_{k-1}) \mathbb{P}\left((\xi_{k} - m_{k}) + \dots + (\xi_{n} - m_{n}) \leq \delta\right) \geq$$

where we have used Proposition for $C = \delta/2$ and K = 2.

Recall:
$$\mathbb{P}(\xi_i = x_i) = p_i$$
; $\mathbb{P}(\xi_i = y_i) = 1 - p_i$; $x_i > y_i > 0$; $p_i \in (0,1)$, $s_i = x_i - y_i$ (spread); $s_1 \ge s_2 \ge \ldots \ge s_n > 0$; $m_i = \mathbb{E}\xi_i \le 1$, so that $p_i \le 1/s_i$; $p_1 + \ldots + p_{k-1} < 1/2$.

Case 1: $s_k \leq 2$ and thus also $s_{k+1}, \ldots, s_n \leq 2$, so that $\xi_k - m_k, \ldots, \xi_n - m_n$ are independent mean-zero random variables with values in [-2, 2].

$$\mathbb{P}(\xi_1 + \ldots + \xi_n \leq m_1 + \ldots + m_n + \delta) \geq$$

$$\mathbb{P}(\xi_1 = y_1, \dots, \xi_{k-1} = y_{k-1}, \xi_k + \dots + \xi_n \le m_k + \dots + m_n + \delta) =$$

$$(1 - p_1) \dots (1 - p_{k-1}) \mathbb{P}\left((\xi_k - m_k) + \dots + (\xi_n - m_n) \le \delta\right) \ge$$

$$\left(1 - (p_1 + \dots + p_{k-1})\right) \kappa(\delta/2) \ge \frac{1}{2} \kappa(\delta/2),$$

where we have used Proposition for $C = \delta/2$ and K = 2.

Recall:
$$\mathbb{P}(\xi_i = x_i) = p_i$$
; $\mathbb{P}(\xi_i = y_i) = 1 - p_i$; $x_i > y_i > 0$; $p_i \in (0,1)$, $s_i = x_i - y_i$ (spread); $s_1 \ge s_2 \ge \ldots \ge s_n > 0$; $m_i = \mathbb{E}\xi_i \le 1$, so that $p_i \le 1/s_i$; $p_1 + \ldots + p_{k-1} < 1/2$; $p_1s_1 + \ldots + p_ks_k \ge s_{k+1}/2$.

Case 2: $s_k > 2$ and thus $p_k < 1/2$.

$$\mathbb{P}(\xi_1 + \ldots + \xi_n \le m_1 + \ldots + m_n + \delta) \ge$$

$$\mathbb{P}(\xi_1 = y_1, \ldots, \xi_k = y_k, \xi_{k+1} + \ldots + \xi_n \le$$

$$\le (m_1 - y_1) + \ldots + (m_k - y_k) + m_{k+1} + \ldots + m_n) =$$

$$(1 - p_1) \ldots (1 - p_{k-1})(1 - p_k) \times$$

$$(\xi_{k+1} - m_{k+1}) + \ldots + (\xi_n - m_n) \le p_1 s_1 + \ldots + p_k s_k) =$$

Recall:
$$\mathbb{P}(\xi_i = x_i) = p_i$$
; $\mathbb{P}(\xi_i = y_i) = 1 - p_i$; $x_i > y_i > 0$; $p_i \in (0,1)$, $s_i = x_i - y_i$ (spread); $s_1 \ge s_2 \ge \ldots \ge s_n > 0$; $m_i = \mathbb{E}\xi_i \le 1$, so that $p_i \le 1/s_i$; $p_1 + \ldots + p_{k-1} < 1/2$; $p_1s_1 + \ldots + p_ks_k \ge s_{k+1}/2$.

Case 2: $s_k > 2$ and thus $p_k < 1/2$.

$$\mathbb{P}(\xi_{1} + \ldots + \xi_{n} \leq m_{1} + \ldots + m_{n} + \delta) \geq$$

$$\mathbb{P}(\xi_{1} = y_{1}, \ldots, \xi_{k} = y_{k}, \xi_{k+1} + \ldots + \xi_{n} \leq$$

$$\leq (m_{1} - y_{1}) + \ldots + (m_{k} - y_{k}) + m_{k+1} + \ldots + m_{n}) =$$

$$(1 - p_{1}) \ldots (1 - p_{k-1})(1 - p_{k}) \times$$

$$((\xi_{k+1} - m_{k+1}) + \ldots + (\xi_{n} - m_{n}) \leq p_{1}s_{1} + \ldots + p_{k}s_{k}) =$$

Recall:
$$\mathbb{P}(\xi_i = x_i) = p_i$$
; $\mathbb{P}(\xi_i = y_i) = 1 - p_i$; $x_i > y_i > 0$; $p_i \in (0,1)$, $s_i = x_i - y_i$ (spread); $s_1 \ge s_2 \ge \ldots \ge s_n > 0$; $m_i = \mathbb{E}\xi_i \le 1$, so that $p_i \le 1/s_i$; $p_1 + \ldots + p_{k-1} < 1/2$; $p_1s_1 + \ldots + p_ks_k \ge s_{k+1}/2$.

Case 2: $s_k > 2$ and thus $p_k < 1/2$.

$$\mathbb{P}(\xi_1 + \ldots + \xi_n \leq m_1 + \ldots + m_n + \delta) \geq$$

$$\mathbb{P}\Big(\xi_1 = y_1, \ldots, \xi_k = y_k, \xi_{k+1} + \ldots + \xi_n \leq$$

$$\leq (m_1 - y_1) + \ldots + (m_k - y_k) + m_{k+1} + \ldots + m_n\Big) =$$

$$(1 - p_1) \ldots (1 - p_{k-1})(1 - p_k) \times$$

$$\mathbb{P}\Big((\xi_{k+1} - m_{k+1}) + \ldots + (\xi_n - m_n) \leq p_1 s_1 + \ldots + p_k s_k\Big) =$$

$$\dots = (1 - p_1) \dots (1 - p_{k-1})(1 - p_k) \times$$

$$\mathbb{P} \Big((\xi_{k+1} - m_{k+1}) + \dots + (\xi_n - m_n) \le p_1 s_1 + \dots + p_k s_k \Big) \ge$$

$$\Big(1 - (p_1 + \dots + p_{k-1}) \Big) \times \frac{1}{2} \times$$

$$\mathbb{P} \Big((\xi_{k+1} - m_{k+1}) + \dots + (\xi_n - m_n) \le s_{k+1}/2 \Big) \ge$$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \kappa(1/2) = \kappa(1/2)/4,$$

where we have used Proposition for C = 1/2 and $K = s_{k+1}$.

Putting together both cases we finish the proof of Theorem with $\varepsilon(\delta) = \min \Big(\kappa(\delta/2)/2, \kappa(1/2)/4\Big)$.

$$\dots = (1 - p_1) \dots (1 - p_{k-1})(1 - p_k) \times$$

$$\mathbb{P}\Big((\xi_{k+1} - m_{k+1}) + \dots + (\xi_n - m_n) \le p_1 s_1 + \dots + p_k s_k \Big) \ge$$

$$\Big(1 - (p_1 + \dots + p_{k-1}) \Big) \times \frac{1}{2} \times$$

$$\mathbb{P}\Big((\xi_{k+1} - m_{k+1}) + \dots + (\xi_n - m_n) \le s_{k+1}/2 \Big) \ge$$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \kappa(1/2) = \kappa(1/2)/4,$$

where we have used Proposition for C = 1/2 and $K = s_{k+1}$.

Putting together both cases we finish the proof of Theorem with $\varepsilon(\delta) = \min \Big(\kappa(\delta/2)/2, \kappa(1/2)/4\Big)$.

$$\dots = (1 - p_1) \dots (1 - p_{k-1})(1 - p_k) \times$$

$$\mathbb{P}\Big((\xi_{k+1} - m_{k+1}) + \dots + (\xi_n - m_n) \le p_1 s_1 + \dots + p_k s_k \Big) \ge$$

$$\Big(1 - (p_1 + \dots + p_{k-1}) \Big) \times \frac{1}{2} \times$$

$$\mathbb{P}\Big((\xi_{k+1} - m_{k+1}) + \dots + (\xi_n - m_n) \le s_{k+1}/2 \Big) \ge$$

$$\frac{1}{2} \cdot \frac{1}{2} \cdot \kappa(1/2) = \kappa(1/2)/4,$$

where we have used Proposition for C = 1/2 and $K = s_{k+1}$.

Putting together both cases we finish the proof of Theorem with $\varepsilon(\delta) = \min \left(\kappa(\delta/2)/2, \kappa(1/2)/4 \right)$.

$$egin{aligned} \ldots &= (1-p_1) \ldots (1-p_{k-1})(1-p_k) imes \ & \mathbb{P}\Big((\xi_{k+1}-m_{k+1}) + \ldots + (\xi_n-m_n) \leq p_1 s_1 + \ldots + p_k s_k\Big) \geq \ & \Big(1-(p_1+\ldots+p_{k-1})\Big) imes rac{1}{2} imes \ & \mathbb{P}\Big((\xi_{k+1}-m_{k+1}) + \ldots + (\xi_n-m_n) \leq s_{k+1}/2\Big) \geq \ & rac{1}{2} \cdot rac{1}{2} \cdot \kappa(1/2) = \kappa(1/2)/4, \end{aligned}$$

where we have used Proposition for C = 1/2 and $K = s_{k+1}$.

Putting together both cases we finish the proof of Theorem with $\varepsilon(\delta) = \min\Big(\kappa(\delta/2)/2, \kappa(1/2)/4\Big).$

Extension

Theorem 2: Let $t_0, M > 0$. Assume that X_1, X_2, \ldots, X_n are independent random variables with $\mathbb{E}X_i = 0$ for $i = 1, 2, \ldots, n$. Assume also that they satisfy the following condition:

$$\forall_{t>t_0} \ \mathbb{E}X_i 1_{X_i \geq t} \geq \mathbb{E}|X_i| 1_{X_i \leq -Mt}.$$

Then for every $\delta > 0$ we have

$$\mathbb{P}(X_1+\ldots+X_n)\geq \varepsilon(\delta,t_0,M)>0.$$

Feige's theorem follows immediately from the case $M=1,\,t_0=1$ (after centering procedure to switch from non-negative setting to mean-zero framework).

The proof goes basically along the same lines.

Extension

Theorem 2: Let $t_0, M > 0$. Assume that X_1, X_2, \ldots, X_n are independent random variables with $\mathbb{E}X_i = 0$ for $i = 1, 2, \ldots, n$. Assume also that they satisfy the following condition:

$$\forall_{t>t_0} \ \mathbb{E}X_i 1_{X_i \geq t} \geq \mathbb{E}|X_i| 1_{X_i \leq -Mt}.$$

Then for every $\delta > 0$ we have

$$\mathbb{P}(X_1+\ldots+X_n)\geq \varepsilon(\delta,t_0,M)>0.$$

Feige's theorem follows immediately from the case $M=1, t_0=1$ (after centering procedure to switch from non-negative setting to mean-zero framework).

The proof goes basically along the same lines

Extension

Theorem 2: Let $t_0, M > 0$. Assume that X_1, X_2, \ldots, X_n are independent random variables with $\mathbb{E}X_i = 0$ for $i = 1, 2, \ldots, n$. Assume also that they satisfy the following condition:

$$\forall_{t>t_0} \ \mathbb{E}X_i 1_{X_i \geq t} \geq \mathbb{E}|X_i| 1_{X_i \leq -Mt}.$$

Then for every $\delta > 0$ we have

$$\mathbb{P}(X_1+\ldots+X_n)\geq \varepsilon(\delta,t_0,M)>0.$$

Feige's theorem follows immediately from the case $M=1, t_0=1$ (after centering procedure to switch from non-negative setting to mean-zero framework).

The proof goes basically along the same lines.