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Feige’s inequality

Theorem (Uriel Feige, SIAM Journal on Computing, 2006):
For every δ > 0 there exists some ε = ε(δ) > 0 such that for any
positive integer n and any sequence of independent non-negative
random variables X1, X2, . . . ,Xn with EXi ≤ 1 for i = 1, 2, . . . , n
there is

P(S ≤ ES + δ) ≥ ε(δ),

where S = X1 + X2 + . . .+ Xn.

The theorem may be proved with lim infδ→0 ε(δ)/δ > 0 and,
obviously, ε(δ) non-decreasing. It is easy to prove that, in general,
one cannot hope for better asymptotics at zero.

Toulouse: Franck Barthe
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Reduction to two-point variables

Let ξ1, ξ2, . . . , ξn be independent, non-negative random variables
with P(ξi = xi ) = pi and P(ξi = yi ) = 1− pi , where xi > yi > 0
and pi ∈ (0, 1) for i = 1, 2, . . . , n. Let si = xi − yi (spread).
Without loss of generality we may and will assume that
s1 ≥ s2 ≥ . . . ≥ sn > 0. We assume that mi = Eξi ≤ 1 for all i ’s.

Note that mi − yi = pi si , so that pi ≤ 1/si for every i ≤ n.

Note that distribution of any non-constant Xi from Feige’s theorem
is a mixture of distributions of two-point random variables of the
above type (with mean mi = EXi fixed and parameters xi , yi and
pi varying). Since the quantity we want to estimate from below,

P(S ≤ ES + δ) =
( n⊗

i=1

µXi

)
({t ∈ Rn :

n∑
i=1

ti ≤ δ +
n∑

i=1

mi}),

is multilinear with respect to µXi ’s it suffices to prove the theorem
with Xi ’s replaced by ξi ’s.
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Auxiliary estimate

We will need the following auxiliary bound:

Proposition: For every positive C there exists κ(C ) > 0 such that
for any positive integer n and any sequence of independent random
variables Z1, Z2, . . . , Zn, satisfying EZi = 0 and −K ≤ Zi ≤ K a.s.
for i = 1, 2, . . . , n and some constant K , we have

P(Z1 + Z2 + . . .+ Zn ≤ C · K ) ≥ κ(C ).

Remark: In fact, much weaker assumptions suffice, for example
EZi = 0 and E|Zi |p ≤ Kp−2 · EZ 2

i for i = 1, 2, . . . , n and some
fixed p > 2 (κ depends then both on C and p).
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Proof of the auxiliary estimate

Proof of Proposition: Let κ̄(C ) denote the optimal (largest)
value of κ(C ) for which Proposition holds true for given C > 0.
A priori, κ̄(C ) may be equal to zero. Obviously, by considering
symmetric ±1 random variables and n→∞ we have κ̄(C ) ≤ 1/2
for all C > 0. Also, it is clear that κ̄(C ) is a non-decreasing
function.

In Concentration of capital - the product form of the LLN (O., Stat.
Probab. Letters, 2001) it is proved, with help of the Berry-Esseen
inequality, that for C large enough there is κ̄(C ) = 1/2. Here,
however, we will prove only a weaker estimate, namely:

There exists C > 0 such that κ̄(C ) > 0.

The amplifier trick will do the rest.
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Amplifier trick

Let S = Z1 + Z2 + . . .+ Zn. Consider i.i.d. copies of S : S1, S2, . . .
Then

P(S1 + S2 + . . .+ Sm ≤ C · K ) ≥ κ̄(C )

since S1 + S2 + . . .+ Sm is a sum of mn independent mean-zero
random variables with values in [−K ,K ] a.s.

On the other hand, we have

P(S1 + S2 + . . .+ Sm ≤ C · K ) ≤

≤ P(S1 ≤
C
m

K ) + . . .+ P(Sm ≤
C
m

K ) = m · P(S ≤ C
m

K ).

Thus we have proved that, under assumptions of Proposition,
P(S ≤ C

mK ) ≥ κ̄(C )/m, so that κ̄(C/m) ≥ κ̄(C )/m for m ≥ 1.
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Fourth moment bound

We have observed that it suffices to prove κ̄(C ) > 0 for some
C > 0 to have it for all C > 0, with lim infC→0+ κ̄(C )/C > 0.

Now, let as before S = Z1 + Z2 + . . .+ Zn and let σ2 = ES2.

Note that

ES4 =
n∑

i=1

EZ 4
i + 6

∑
1≤i<j≤n

EZ 2
i · EZ 2

j ≤

≤ K 2
n∑

i=1

EZ 2
i + 3(

n∑
i=1

EZ 2
i )2 = K 2σ2 + 3σ4.

ES2 = E(|S |2/3 · |S |4/3)
H
≤ (E|S |)2/3(ES4)1/3, so

(E|S |)2/ES2 ≥ σ4(K 2σ2 + 3σ4)−1 = 1/(3 + K 2σ−2).
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Paley-Zygmund inequality

We have proved that (E|S |)2/ES2 ≥ 1/(3 + K 2σ−2).

The classical Paley-Zygmund estimate states that

E|S |/2 = E|S |1S<0 ≤ (ES2)1/2 ·
(
P(S < 0)

)1/2
,

so that

P(S ≤ C · K ) ≥ P(S < 0) ≥ (E|S |)2

4ES2 ≥
1

4(3 + K 2σ−2)
.

Thus P(S ≤ C · K ) ≥ 1/16 if only σ ≥ K ,
whereas for σ ≤ K by Chebyshev’s inequality we get

P(S > C · K ) ≤ σ2

C 2K 2 ≤ C−2,

so in particular P(S ≤ 2K ) ≥ 1− 2−2 = 3/4.

We have proved that κ̄(2) ≥ 1/16 > 0.
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Proof of Feige’s inequality

Recall: ξ1, ξ2, . . . , ξn are independent with P(ξi = xi ) = pi ,
P(ξi = yi ) = 1− pi , xi > yi > 0, pi ∈ (0, 1), si = xi − yi (spread),
s1 ≥ s2 ≥ . . . ≥ sn > 0, mi = Eξi ≤ 1, so that pi ≤ 1/si .

We are to prove that

P
(
ξ1 + ξ2 + . . .+ ξn ≤ E(ξ1 + ξ2 + . . .+ ξn) + δ

)
≥ ε(δ).

Proof of Theorem: Let k be the least index i such that
p1s1 + . . .+ pi si ≥ si+1/2. So, p1s1 + . . .+ pksk ≥ sk+1/2 but
p1s1 + . . .+ pk−1sk−1 < sk/2 and hence p1 + . . .+ pk−1 < 1/2.

Case 1: sk ≤ 2 and thus also sk+1, . . . , sn ≤ 2.
Case 2: sk > 2 and thus pk < 1/2.
He, Zhang and Zhang, Math. Operations Research, 2010
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Case 1

Recall: P(ξi = xi ) = pi ; P(ξi = yi ) = 1− pi ; xi > yi > 0;
pi ∈ (0, 1), si = xi − yi (spread); s1 ≥ s2 ≥ . . . ≥ sn > 0;
mi = Eξi ≤ 1, so that pi ≤ 1/si ; p1 + . . .+ pk−1 < 1/2.

Case 1: sk ≤ 2 and thus also sk+1, . . . , sn ≤ 2, so that
ξk −mk , . . . , ξn −mn are independent mean-zero random variables
with values in [−2, 2].

P(ξ1 + . . .+ ξn ≤ m1 + . . .+ mn + δ) ≥

P(ξ1 = y1, . . . , ξk−1 = yk−1, ξk + . . .+ ξn ≤ mk + . . .+ mn + δ) =

(1− p1) . . . (1− pk−1)P
(

(ξk −mk) + . . .+ (ξn −mn) ≤ δ
)
≥

(
1− (p1 + . . .+ pk−1)

)
κ(δ/2) ≥ 1

2
κ(δ/2),

where we have used Proposition for C = δ/2 and K = 2.
K. Oleszkiewicz On Feige’s inequality
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Case 2

Recall: P(ξi = xi ) = pi ; P(ξi = yi ) = 1− pi ; xi > yi > 0;
pi ∈ (0, 1), si = xi − yi (spread); s1 ≥ s2 ≥ . . . ≥ sn > 0;
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P
(
ξ1 = y1, . . . , ξk = yk , ξk+1 + . . .+ ξn ≤

≤ (m1 − y1) + . . .+ (mk − yk) + mk+1 + . . .+ mn

)
=

(1− p1) . . . (1− pk−1)(1− pk)×

P
(

(ξk+1 −mk+1) + . . .+ (ξn −mn) ≤ p1s1 + . . .+ pksk
)

=
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Case 2 (sk > 2, so that pk < 1/2) - the end

. . . = (1− p1) . . . (1− pk−1)(1− pk)×

P
(

(ξk+1 −mk+1) + . . .+ (ξn −mn) ≤ p1s1 + . . .+ pksk
)
≥

(
1− (p1 + . . .+ pk−1)

)
× 1

2
×

P
(

(ξk+1 −mk+1) + . . .+ (ξn −mn) ≤ sk+1/2
)
≥

1
2
· 1
2
· κ(1/2) = κ(1/2)/4,

where we have used Proposition for C = 1/2 and K = sk+1.

Putting together both cases we finish the proof of Theorem with
ε(δ) = min

(
κ(δ/2)/2, κ(1/2)/4

)
.
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Extension

Theorem 2: Let t0,M > 0. Assume that X1, X2, . . . ,Xn are
independent random variables with EXi = 0 for i = 1, 2, . . . , n.
Assume also that they satisfy the following condition:

∀t>t0 EXi1Xi≥t ≥ E|Xi |1Xi≤−Mt .

Then for every δ > 0 we have

P(X1 + . . .+ Xn) ≥ ε(δ, t0,M) > 0.

Feige’s theorem follows immediately from the case M = 1, t0 = 1
(after centering procedure to switch from non-negative setting to
mean-zero framework).

The proof goes basically along the same lines.
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