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Feige's inequality

Theorem (Uriel Feige, SIAM Journal on Computing, 2006):
For every 6 > 0 there exists some ¢ = ¢(d) > 0 such that for any
positive integer n and any sequence of independent non-negative
random variables X1, X5,..., X, with EX; <1fori=1,2,...,n
there is

P(S <ES +6) > ¢(9),

where S=X{ + X5 + ...+ X,.
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For every 6 > 0 there exists some ¢ = ¢(d) > 0 such that for any
positive integer n and any sequence of independent non-negative
random variables X1, X5,..., X, with EX; <1fori=1,2,...,n
there is

P(S <ES +6) > ¢(9),

where S=X{ + X5 + ...+ X,.
The theorem may be proved with liminfs_qe(8)/d > 0 and,

obviously, £(9) non-decreasing. It is easy to prove that, in general,
one cannot hope for better asymptotics at zero.
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Theorem (Uriel Feige, SIAM Journal on Computing, 2006):
For every 6 > 0 there exists some ¢ = ¢(d) > 0 such that for any
positive integer n and any sequence of independent non-negative
random variables X1, X5,..., X, with EX; <1fori=1,2,...,n
there is

P(S <ES +6) > ¢(9),

where S=X{ + X5 + ...+ X,.
The theorem may be proved with liminfs_qe(8)/d > 0 and,
obviously, £(9) non-decreasing. It is easy to prove that, in general,

one cannot hope for better asymptotics at zero.

Toulouse: Franck Barthe
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Reduction to two-point variables

Let &1, &o,. .., &, be independent, non-negative random variables
with P(&; = x;) = pj and P(&§; = yi) = 1 — p;, where x; > y; >0
and p; € (0,1) for i =1,2,...,n. Let s; = x; — y; (spread).
Without loss of generality we may and will assume that

Ss1 > 5 > ...> s, >0. We assume that m; = E&; < 1 for all /’s.
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Reduction to two-point variables

Let &1, &o,. .., &, be independent, non-negative random variables
with P(&; = x;) = pj and P(&§; = yi) = 1 — p;, where x; > y; >0
and p; € (0,1) for i =1,2,...,n. Let s; = x; — y; (spread).
Without loss of generality we may and will assume that

Ss1 > 5 > ...> s, >0. We assume that m; = E&; < 1 for all /’s.

Note that m; — y; = p;s;, so that p; < 1/s; for every i < n.
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Reduction to two-point variables

Let &1, &o,. .., &, be independent, non-negative random variables
with P(&; = x;) = pj and P(&§; = yi) = 1 — p;, where x; > y; >0
and p; € (0,1) for i =1,2,...,n. Let s; = x; — y; (spread).
Without loss of generality we may and will assume that

Ss1 > 5 > ...> s, >0. We assume that m; = E&; < 1 for all /’s.

Note that m; — y; = p;s;, so that p; < 1/s; for every i < n.

Note that distribution of any non-constant X; from Feige's theorem
is a mixture of distributions of two-point random variables of the
above type (with mean m; = EX; fixed and parameters x;, y; and
pi varying). Since the quantity we want to estimate from below,

P(S <ES +4) = (@MX) ({teR": Zt,<5+Zm,}

is multilinear with respect to px.'s it sufﬁces to prove the theorem
with X;'s replaced by &;'s



Auxiliary estimate

We will need the following auxiliary bound:

Proposition: For every positive C there exists x(C) > 0 such that
for any positive integer n and any sequence of independent random
variables Zy, 2, ..., Z,, satisfying EZ; =0 and —K < Z; < K a.s.
for i =1,2,...,n and some constant K, we have

P(Zl—l-Zz—l-...—i-ZnSC‘K)ZFL(C).
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Auxiliary estimate

We will need the following auxiliary bound:

Proposition: For every positive C there exists x(C) > 0 such that
for any positive integer n and any sequence of independent random
variables Zy, 2, ..., Z,, satisfying EZ; =0 and —K < Z; < K a.s.
for i =1,2,...,n and some constant K, we have

P(Zl—l-Zz—l-...—i-ZnSC‘K)ZFL(C).

Remark: In fact, much weaker assumptions suffice, for example
EZ; =0and E|Z;|P < KP72.EZ? for i = 1,2,...,n and some
fixed p > 2 (k depends then both on C and p).
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Proof of the auxiliary estimate

Proof of Proposition: Let £(C) denote the optimal (largest)
value of x(C) for which Proposition holds true for given C > 0.
A priori, R(C) may be equal to zero. Obviously, by considering
symmetric =1 random variables and n — oo we have £(C) < 1/2
for all C > 0. Also, it is clear that %(C) is a non-decreasing
function.
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Proof of the auxiliary estimate

Proof of Proposition: Let £(C) denote the optimal (largest)
value of x(C) for which Proposition holds true for given C > 0.
A priori, R(C) may be equal to zero. Obviously, by considering
symmetric =1 random variables and n — oo we have £(C) < 1/2
for all C > 0. Also, it is clear that %(C) is a non-decreasing
function.

In Concentration of capital - the product form of the LLN (O., Stat.
Probab. Letters, 2001) it is proved, with help of the Berry-Esseen
inequality, that for C large enough there is 5(C) = 1/2. Here,
however, we will prove only a weaker estimate, namely:

K. Oleszkiewicz On Feige's inequality



Proof of the auxiliary estimate

Proof of Proposition: Let £(C) denote the optimal (largest)
value of x(C) for which Proposition holds true for given C > 0.
A priori, R(C) may be equal to zero. Obviously, by considering
symmetric =1 random variables and n — oo we have £(C) < 1/2
for all C > 0. Also, it is clear that %(C) is a non-decreasing
function.

In Concentration of capital - the product form of the LLN (O., Stat.
Probab. Letters, 2001) it is proved, with help of the Berry-Esseen
inequality, that for C large enough there is 5(C) = 1/2. Here,
however, we will prove only a weaker estimate, namely:

There exists C > 0 such that £(C) > 0.

The amplifier trick will do the rest.
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Amplifier trick

let S=2+ 2+ ...+ Z,. Consider i.i.d. copies of S: 51, Sy, ...
Then
PS1+S+...+45, < C-K)>R(C)

since 51 + S> + ...+ S, is a sum of mn independent mean-zero
random variables with values in [-K, K] a.s.
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random variables with values in [-K, K] a.s.
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Amplifier trick

let S=2+ 2+ ...+ Z,. Consider i.i.d. copies of S: 51, Sy, ...
Then
PS1+S+...+45, < C-K)>R(C)

since 51 + S> + ...+ S, is a sum of mn independent mean-zero
random variables with values in [-K, K] a.s.

On the other hand, we have

P(51+52+...+5m§C'K)§

A
310

<P(S; < —K)+...+P(Sm < K):m.P(SS%K)‘

3

Thus we have proved that, under assumptions of Proposition,
P(S < £K) > R(C)/m, so that K(C/m) > &(C)/m for m > 1.
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Fourth moment bound

We have observed that it suffices to prove £(C) > 0 for some
C > 0 to have it for all C > 0, with liminfc_ o+ &(C)/C > 0.
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Fourth moment bound

We have observed that it suffices to prove £(C) > 0 for some
C > 0 to have it for all C > 0, with liminfc_ o+ &(C)/C > 0.

Now, let as before S = Zy + Z» + ... + Z, and let 0% = ES2.
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Fourth moment bound

We have observed that it suffices to prove £(C) > 0 for some
C > 0 to have it for all C > 0, with liminfc_ o+ &(C)/C > 0.

Now, let as before S = Zy + Z» + ... + Z, and let 0% = ES2.

Note that

n
ES*=Y"EZ'+6 > EZ’-EZ’<
i=1 1<i<j<n

n n
< K*) EZ? +3() _EZ?)’ = K?0? + 30",
i=1 i=1
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Fourth moment bound

We have observed that it suffices to prove £(C) > 0 for some
C > 0 to have it for all C > 0, with liminfc_ o+ &(C)/C > 0.

Now, let as before S = Zy + Z» + ... + Z, and let 0% = ES2.

Note that

n
ES*=Y"EZ'+6 > EZ’-EZ’<
i=1 1<i<j<n

n n
< K*) EZ? +3() _EZ?)’ = K?0? + 30",
i=1 i=1

H
ES® = E(|S]*2 - |S|*?) < (EIS|)*(ES*)>, so
(E|5D2/E52 Z J4(K20_2 —|—3(74)_1 — 1/(3 + K2U_2).
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Paley-Zygmund inequality

We have proved that (E|S|)?/ES? > 1/(3 + K2072).
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Paley-Zygmund inequality

We have proved that (E|S|)?/ES? > 1/(3 + K2072).

The classical Paley-Zygmund estimate states that
21/2 1/2
E[S|/2 = E|S|1s<o < (ES2)Y/2. (IP’(S < 0)) ,

so that
Es)? 1
4ES%2 — 43+ K2072)’

P(S< C-K)>P(S<0)>
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Paley-Zygmund inequality

We have proved that (E|S|)?/ES? > 1/(3 + K2072).

The classical Paley-Zygmund estimate states that
21/2 1/2
E[S|/2 = E|S|1s<o < (ES2)Y/2. (IP’(S < 0)) ,

so that
Es)? 1
4ES%2 — 43+ K2072)’

P(S< C-K)>P(S<0)>

Thus P(S < C-K) >1/16 if only 0 > K,
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Paley-Zygmund inequality

We have proved that (E|S|)?/ES? > 1/(3 + K2072).

The classical Paley-Zygmund estimate states that
1/2
E[S|/2 = E|S|1s<o < (ES2)Y/2. ( (S < 0))

so that

(ElS)? 1
>
4ES? ~ 43+ K2072)

P(S< C-K)>P(S<0)>

Thus P(S < C-K) >1/16 if only 0 > K,
whereas for 0 < K by Chebyshev's inequality we get

o2

P(S>C-K)< C2K2<c 2

so in particular P(S < 2K) >1—-272 =3/4.
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Paley-Zygmund inequality

We have proved that (E|S|)?/ES? > 1/(3 + K2072).

The classical Paley-Zygmund estimate states that
1/2
E[S|/2 = E|S|1s<o < (ES2)Y/2. ( (S < 0))

so that

(ElS)? 1
>
4ES? ~ 43+ K2072)

P(S< C-K)>P(S<0)>

Thus P(S < C-K) >1/16 if only 0 > K,
whereas for 0 < K by Chebyshev's inequality we get

o2

P(S>C-K)< C2K2<c 2

so in particular P(S < 2K) >1—-272 =3/4.

We have proved that £(2) > 1/16 > 0.



Proof of Feige's inequality

Recall: &1,&,...,&, are independent with P(&; = x;) = pj,
P =yi) =1—pi, xi > yi >0, pi € (0,1), s; = x; — y; (spread),
sS1>5>...>25,>0 m=E <1, sothat p; < 1/s;.
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Proof of Feige's inequality

Recall: &1,&,...,&, are independent with P(&; = x;) = pj,

P =yi) =1—pi, xi > yi >0, pi € (0,1), s; = x; — y; (spread),
sS1>5>...>25,>0 m=E <1, sothat p; < 1/s;.

We are to prove that

Pei+&+.  +&n <EE +&+.+E)+0) > e(9).

Proof of Theorem: Let k be the least index / such that
piS1 + ...+ pisi > sit1/2. So, pisi + ... + pkSk > Sk+1/2 but
piS1+ ...+ pk—15k—1 < Sk/2 and hence py + ... + px_1 < 1/2.
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Proof of Feige's inequality

Recall: &1,&,...,&, are independent with P(&; = x;) = pj,
P =yi) =1—pi, xi > yi >0, pi € (0,1), s; = x; — y; (spread),
sS1>5>...>25,>0 m=E <1, sothat p; < 1/s;.

We are to prove that

Pei+&+.  +&n <EE +&+.+E)+0) > e(9).

Proof of Theorem: Let k be the least index / such that
piS1 + ...+ pisi > sit1/2. So, pisi + ... + pkSk > Sk+1/2 but
piS1+ ...+ pk—15k—1 < Sk/2 and hence py + ... + px_1 < 1/2.

Case 1: s, < 2 and thus also sy 1,...,5, < 2.
Case 2: s, > 2 and thus py < 1/2.
He, Zhang and Zhang, Math. Operations Research, 2010
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Recall: P(&;=x)=pii P(&=y))=1—pi; xi > yi > 0;
pi €(0,1),s; =x —y; (spread); s > s, > ... > s, > 0;
m; =E¢& <1, so that pi < ]./5,'; pr+ ...+ Ppr—1 < 1/2.

Case 1: s, < 2 and thus also siy1,...,5, <2, so that
& — my, ..., &, — my, are independent mean-zero random variables

with values in [-2,2].

P&+...+4&<m+...+mp+9) >
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Recall: P(&;=x)=pii P(&=y))=1—pi; xi > yi > 0;
pi €(0,1),s; =x —y; (spread); s > s, > ... > s, > 0;
m; =E¢& <1, so that pi < ]./5,'; pr+ ...+ Ppr—1 < 1/2.

Case 1: s, < 2 and thus also siy1,...,5, <2, so that
& — my, ..., &, — my, are independent mean-zero random variables
with values in [-2,2].

P&+...+4&<m+...+mp+9) >

Pl =y, k1 =Y-1,&k+ - -+ & <m+ ...+ mp+0) =
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Recall: P(&;=x)=pii P(&=y))=1—pi; xi > yi > 0;
pi €(0,1),s; =x —y; (spread); s > s, > ... > s, > 0;
m; =E¢& <1, so that pi < ]./5,'; pr+ ...+ Ppr—1 < 1/2.

Case 1: s, < 2 and thus also siy1,...,5, <2, so that
& — my, ..., &, — my, are independent mean-zero random variables

with values in [-2,2].

P&+...+4&<m+...+mp+9) >
P& =y1,. . &1 =Yh—1,& + ..+ <me+ ...+ mp+0) =

(=) (1= e )P((6 = )+ (€0 — o) <8) >
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Recall: P(&;=x)=pii P(&=y))=1—pi; xi > yi > 0;
pi €(0,1),s; =x —y; (spread); s > s, > ... > s, > 0;
m; =E¢& <1, so that pi < ]./5,'; pr+ ...+ Ppr—1 < 1/2.

Case 1: s, < 2 and thus also siy1,...,5, <2, so that
& — my, ..., &, — my, are independent mean-zero random variables

with values in [-2,2].

P(&+...4& <m+...+ my+6) >
P& =y1,. . &1 =Yh—1,& + ..+ <me+ ...+ mp+0) =
(1= ) (1= e )P((6 = M)+ (€0 — ma) < 9) =

(1 (ort o+ pic) ) 5(5/2) = 34(5/2),

where we have used Proposition for C = §/2 and K = 2.
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Recall: P(&;=x)=pii P(&=y))=1—pi; xi > yi > 0;
pi €(0,1),s; =x —y; (spread); s > s, > ... > s, > 0;
m; =E¢& <1, so that pi < ]./5,'; pr+ ...+ Ppr—1 < 1/2;

p1S1 + ...+ PkSk = Sk1/2.
Case 2: s, > 2 and thus p, < 1/2.

P&+...+& <m+...+mp+9)>
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Recall: P(&;=x)=pii P(&=y))=1—pi; xi > yi > 0;
pi €(0,1),s; =x —y; (spread); s > s, > ... > s, > 0;
m; =E¢& <1, so that pi < ]./5,'; pr+ ...+ Ppr—1 < 1/2;

p1S1 + ...+ PkSk = Sk1/2.
Case 2: s, > 2 and thus p, < 1/2.

P&+...+& <m+...+mp+9)>

P(‘Sl:)/1,---7£k:)/kafk+1+---+fn§

g(m1—yl)—l—...—l—(mk—yk)+mk+1+...+mn>:
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Recall: P(&;=x)=pii P(&=y))=1—pi; xi > yi > 0;
pi €(0,1),s; =x —y; (spread); s > s, > ... > s, > 0;
m; =E¢& <1, so that pi < ]./5,'; pr+ ...+ Ppr—1 < 1/2;

p1S1 + ...+ PkSk = Sk1/2.
Case 2: s, > 2 and thus p, < 1/2.

P&+...+& <m+...+mp+9)>

P(‘Sl:)/1,---7£k:)/kafk+1+---+fn§
g(m1—yl)—l—...—l—(mk—yk)+mk+1+...+mn>:
(I=p1)- - (L= pr—1)(1 = p) %
P((fk_H—mk+1)—|—...—|—(fn—mn)§p151+...—|—pk5k> =
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Case 2 (sx > 2, so that py < 1/2) - the end

...:(1—p1)...(1—pk71)(1—pk)><

P((fkﬂ —Mii1) + .+ (= mn) Sprsi+ .. +Pk5k> >
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Case 2 (sx > 2, so that py < 1/2) - the end

...:(1—p1)...(1—pk71)(1—pk)><

P((fkﬂ —Mii1) + .+ (= mn) Sprsi+ .. +Pk5k> >

1

(1_(P1+---+Pk—1)> X 5 X

P((fkﬂ —mpi1)+ .o+ (En—mp) < sk+1/2) >
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Case 2 (sx > 2, so that py < 1/2) - the end

...:(1—p1)...(1—pk71)(1—pk)><

P((fkﬂ —Mii1) + .+ (= mn) Sprsi+ .. +Pk5k> >

1

(1_(P1+---+Pk—1)> X 5 X

P((fkﬂ —mpi1)+ .o+ (En—mp) < sk+1/2) >

11
55 K(1/2) = K(1/2)/4,

where we have used Proposition for C =1/2 and K = s;;.
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Case 2 (sx > 2, so that py < 1/2) - the end

...:(1—p1)...(1—pk71)(1—pk)><

P((fkﬂ —Mii1) + .+ (= mn) Sprsi+ .. +Pk5k> >

1

(1_(P1+---+Pk—1)> X 5 X

P((fkﬂ —mpi1)+ .o+ (En—mp) < sk+1/2) >

11
55 K(1/2) = K(1/2)/4,

where we have used Proposition for C =1/2 and K = s;;.

Putting together both cases we finish the proof of Theorem with

£(5) = min (n(5/2)/2,/<;(1/2)/4).



Extension

Theorem 2: Let t9, M > 0. Assume that X1, Xo,..., X, are
independent random variables with EX; =0 for i = 1,2,...,n.
Assume also that they satisfy the following condition:

Viste EXilx>t > E|Xi|1x,<—me-

Then for every § > 0 we have

P(X1 + ...+ Xp) > (0, tg, M) > 0.
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Extension

Theorem 2: Let t9, M > 0. Assume that X1, Xo,..., X, are
independent random variables with EX; =0 for i = 1,2,...,n.
Assume also that they satisfy the following condition:

Viste EXilx>t > E|Xi|1x,<—me-

Then for every § > 0 we have

P(X1 + ...+ Xp) > (0, tg, M) > 0.

Feige's theorem follows immediately from the case M =1, =1
(after centering procedure to switch from non-negative setting to
mean-zero framework).
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Extension

Theorem 2: Let t9, M > 0. Assume that X1, Xo,..., X, are
independent random variables with EX; =0 for i = 1,2,...,n.
Assume also that they satisfy the following condition:

Viste EXilx>t > E|Xi|1x,<—me-

Then for every § > 0 we have

P(X1 + ...+ Xp) > (0, tg, M) > 0.

Feige's theorem follows immediately from the case M =1, =1
(after centering procedure to switch from non-negative setting to
mean-zero framework).

The proof goes basically along the same lines.
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