On Feige's inequality

Krzysztof Oleszkiewicz

Institute of Mathematics
University of Warsaw \& Polish Academy of Sciences

Toronto, 2010

Theorem (Uriel Feige, SIAM Journal on Computing, 2006): For every $\delta>0$ there exists some $\varepsilon=\varepsilon(\delta)>0$ such that for any positive integer n and any sequence of independent non-negative random variables $X_{1}, X_{2}, \ldots, X_{n}$ with $\mathbb{E} X_{i} \leq 1$ for $i=1,2, \ldots, n$ there is

$$
\mathbb{P}(S \leq \mathbb{E} S+\delta) \geq \varepsilon(\delta),
$$

where $S=X_{1}+X_{2}+\ldots+X_{n}$.
The theorem may be proved with $\lim \inf _{\delta \rightarrow 0} \varepsilon(\delta) / \delta>0$ and, obviously, $\varepsilon(\delta)$ non-decreasing. It is easy to prove that, in general, one cannot hope for better asymptotics at zero.

Toulouse: Franck Barthe

Theorem (Uriel Feige, SIAM Journal on Computing, 2006): For every $\delta>0$ there exists some $\varepsilon=\varepsilon(\delta)>0$ such that for any positive integer n and any sequence of independent non-negative random variables $X_{1}, X_{2}, \ldots, X_{n}$ with $\mathbb{E} X_{i} \leq 1$ for $i=1,2, \ldots, n$ there is

$$
\mathbb{P}(S \leq \mathbb{E} S+\delta) \geq \varepsilon(\delta)
$$

where $S=X_{1}+X_{2}+\ldots+X_{n}$.
The theorem may be proved with $\lim \inf _{\delta \rightarrow 0} \varepsilon(\delta) / \delta>0$ and, obviously, $\varepsilon(\delta)$ non-decreasing. It is easy to prove that, in general, one cannot hope for better asymptotics at zero.

Toulouse: Franck Barthe

Theorem (Uriel Feige, SIAM Journal on Computing, 2006): For every $\delta>0$ there exists some $\varepsilon=\varepsilon(\delta)>0$ such that for any positive integer n and any sequence of independent non-negative random variables $X_{1}, X_{2}, \ldots, X_{n}$ with $\mathbb{E} X_{i} \leq 1$ for $i=1,2, \ldots, n$ there is

$$
\mathbb{P}(S \leq \mathbb{E} S+\delta) \geq \varepsilon(\delta)
$$

where $S=X_{1}+X_{2}+\ldots+X_{n}$.
The theorem may be proved with $\lim \inf _{\delta \rightarrow 0} \varepsilon(\delta) / \delta>0$ and, obviously, $\varepsilon(\delta)$ non-decreasing. It is easy to prove that, in general, one cannot hope for better asymptotics at zero.

Toulouse: Franck Barthe

Reduction to two-point variables

Let $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ be independent, non-negative random variables with $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i}$ and $\mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i}$, where $x_{i}>y_{i}>0$ and $p_{i} \in(0,1)$ for $i=1,2, \ldots, n$. Let $s_{i}=x_{i}-y_{i}$ (spread). Without loss of generality we may and will assume that $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0$. We assume that $m_{i}=\mathbb{E} \xi_{i} \leq 1$ for all i 's.

Note that $m_{i}-y_{i}=p_{i} s_{i}$, so that $p_{i} \leq 1 / s_{i}$ for every $i \leq n$.
Note that distribution of any non-constant X_{i} from Feige's theorem is a mixture of distributions of two-point random variables of the above type (with mean $m_{i}=\mathbb{E} X_{i}$ fixed and parameters x_{i}, y_{i} and p_{i} varying). Since the quantity we want to estimate from below,

is multilinear with respect to $\mu_{X_{i}}$'s it suffices to prove the theorem with X :'s renlaced by

Reduction to two-point variables

Let $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ be independent, non-negative random variables with $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i}$ and $\mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i}$, where $x_{i}>y_{i}>0$ and $p_{i} \in(0,1)$ for $i=1,2, \ldots, n$. Let $s_{i}=x_{i}-y_{i}$ (spread). Without loss of generality we may and will assume that $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0$. We assume that $m_{i}=\mathbb{E} \xi_{i} \leq 1$ for all i 's.

Note that $m_{i}-y_{i}=p_{i} s_{i}$, so that $p_{i} \leq 1 / s_{i}$ for every $i \leq n$.

Note that distribution of any non-constant X_{i} from Feige's theorem is a mixture of distributions of two-point random variables of the above type (with mean $m_{i}=\mathbb{E} X_{i}$ fixed and parameters x_{i}, y_{i} and p_{i} varying). Since the quantity we want to estimate from below,

is multilinear with respect to $\mu_{X_{i}}$'s it suffices to prove the theorem with X 's renlaced by

Reduction to two-point variables

Let $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ be independent, non-negative random variables with $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i}$ and $\mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i}$, where $x_{i}>y_{i}>0$ and $p_{i} \in(0,1)$ for $i=1,2, \ldots, n$. Let $s_{i}=x_{i}-y_{i}$ (spread). Without loss of generality we may and will assume that $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0$. We assume that $m_{i}=\mathbb{E} \xi_{i} \leq 1$ for all i 's.

Note that $m_{i}-y_{i}=p_{i} s_{i}$, so that $p_{i} \leq 1 / s_{i}$ for every $i \leq n$.
Note that distribution of any non-constant X_{i} from Feige's theorem is a mixture of distributions of two-point random variables of the above type (with mean $m_{i}=\mathbb{E} X_{i}$ fixed and parameters x_{i}, y_{i} and p_{i} varying). Since the quantity we want to estimate from below,

$$
\mathbb{P}(S \leq \mathbb{E} S+\delta)=\left(\bigotimes_{i=1}^{n} \mu_{X_{i}}\right)\left(\left\{t \in \mathbb{R}^{n}: \sum_{i=1}^{n} t_{i} \leq \delta+\sum_{i=1}^{n} m_{i}\right\}\right)
$$

is multilinear with respect to $\mu_{X_{i}}$'s it suffices to prove the theorem with X_{i} 's replaced by ξ_{i} 's.

Auxiliary estimate

We will need the following auxiliary bound:
Proposition: For every positive C there exists $\kappa(C)>0$ such that for any positive integer n and any sequence of independent random variables $Z_{1}, Z_{2}, \ldots, Z_{n}$, satisfying $\mathbb{E} Z_{i}=0$ and $-K \leq Z_{i} \leq K$ a.s. for $i=1,2, \ldots, n$ and some constant K, we have

$$
\mathbb{P}\left(Z_{1}+Z_{2}+\ldots+Z_{n} \leq C \cdot K\right) \geq \kappa(C)
$$

Remark: In fact, much weaker assumptions suffice, for example $\mathbb{E} Z_{i}=0$ and $\mathbb{E}\left|Z_{i}\right|^{p} \leq K^{p-2} \cdot \mathbb{E} Z_{i}^{2}$ for $i=1,2, \ldots, n$ and some fixed $p>2(\kappa$ depends then both on C and $p)$.

Auxiliary estimate

We will need the following auxiliary bound:
Proposition: For every positive C there exists $\kappa(C)>0$ such that for any positive integer n and any sequence of independent random variables $Z_{1}, Z_{2}, \ldots, Z_{n}$, satisfying $\mathbb{E} Z_{i}=0$ and $-K \leq Z_{i} \leq K$ a.s. for $i=1,2, \ldots, n$ and some constant K, we have

$$
\mathbb{P}\left(Z_{1}+Z_{2}+\ldots+Z_{n} \leq C \cdot K\right) \geq \kappa(C)
$$

Remark: In fact, much weaker assumptions suffice, for example $\mathbb{E} Z_{i}=0$ and $\mathbb{E}\left|Z_{i}\right|^{p} \leq K^{p-2} \cdot \mathbb{E} Z_{i}^{2}$ for $i=1,2, \ldots, n$ and some fixed $p>2(\kappa$ depends then both on C and $p)$.

Proof of Proposition: Let $\bar{\kappa}(C)$ denote the optimal (largest) value of $\kappa(C)$ for which Proposition holds true for given $C>0$. A priori, $\bar{\kappa}(C)$ may be equal to zero. Obviously, by considering symmetric ± 1 random variables and $n \rightarrow \infty$ we have $\bar{\kappa}(C) \leq 1 / 2$ for all $C>0$. Also, it is clear that $\bar{\kappa}(C)$ is a non-decreasing function.

> In Concentration of capital - the product form of the LLN (O., Stat Probab. Letters, 2001) it is proved, with help of the Berry-Esseen inequality, that for C large enough there is $\bar{\kappa}(C)=1 / 2$. Here, however, we will prove only a weaker estimate, namely:

There exists $C>0$ such that $\bar{\kappa}(C)>0$

The amplifier trick will do the rest.

Proof of the auxiliary estimate

Proof of Proposition: Let $\bar{\kappa}(C)$ denote the optimal (largest) value of $k(C)$ for which Proposition holds true for given $C>0$. A priori, $\bar{\kappa}(C)$ may be equal to zero. Obviously, by considering symmetric ± 1 random variables and $n \rightarrow \infty$ we have $\bar{\kappa}(C) \leq 1 / 2$ for all $C>0$. Also, it is clear that $\bar{\kappa}(C)$ is a non-decreasing function.

In Concentration of capital - the product form of the LLN (O., Stat. Probab. Letters, 2001) it is proved, with help of the Berry-Esseen inequality, that for C large enough there is $\bar{\kappa}(C)=1 / 2$. Here, however, we will prove only a weaker estimate, namely:

There exists $C>0$ such that $\bar{k}(C)>0$
The amplifier trick will do the rest.

Proof of the auxiliary estimate

Proof of Proposition: Let $\bar{\kappa}(C)$ denote the optimal (largest) value of $\kappa(C)$ for which Proposition holds true for given $C>0$. A priori, $\bar{\kappa}(C)$ may be equal to zero. Obviously, by considering symmetric ± 1 random variables and $n \rightarrow \infty$ we have $\bar{\kappa}(C) \leq 1 / 2$ for all $C>0$. Also, it is clear that $\bar{\kappa}(C)$ is a non-decreasing function.

In Concentration of capital - the product form of the LLN (O., Stat. Probab. Letters, 2001) it is proved, with help of the Berry-Esseen inequality, that for C large enough there is $\bar{\kappa}(C)=1 / 2$. Here, however, we will prove only a weaker estimate, namely:

There exists $C>0$ such that $\bar{\kappa}(C)>0$.
The amplifier trick will do the rest.

Amplifier trick

Let $S=Z_{1}+Z_{2}+\ldots+Z_{n}$. Consider i.i.d. copies of S : S_{1}, S_{2}, \ldots Then

$$
\mathbb{P}\left(S_{1}+S_{2}+\ldots+S_{m} \leq C \cdot K\right) \geq \bar{\kappa}(C)
$$

since $S_{1}+S_{2}+\ldots+S_{m}$ is a sum of $m n$ independent mean-zero random variables with values in $[-K, K]$ a.s.

On the other hand, we have

Thus we have proved that, under assumptions of Proposition, $\mathbb{P}\left(S \leq \frac{C}{m} K\right) \geq \bar{\kappa}(C) / m$, so that $\bar{\kappa}(C / m) \geq \bar{\kappa}(C) / m$ for $m \geq 1$

Amplifier trick

Let $S=Z_{1}+Z_{2}+\ldots+Z_{n}$. Consider i.i.d. copies of S : S_{1}, S_{2}, \ldots Then

$$
\mathbb{P}\left(S_{1}+S_{2}+\ldots+S_{m} \leq C \cdot K\right) \geq \bar{\kappa}(C)
$$

since $S_{1}+S_{2}+\ldots+S_{m}$ is a sum of $m n$ independent mean-zero random variables with values in $[-K, K]$ a.s.

On the other hand, we have

$$
\begin{gathered}
\mathbb{P}\left(S_{1}+S_{2}+\ldots+S_{m} \leq C \cdot K\right) \leq \\
\leq \mathbb{P}\left(S_{1} \leq \frac{C}{m} K\right)+\ldots+\mathbb{P}\left(S_{m} \leq \frac{C}{m} K\right)=m \cdot \mathbb{P}\left(S \leq \frac{C}{m} K\right) .
\end{gathered}
$$

Thus we have proved that, under assumptions of Proposition, $\mathbb{P}\left(S \leq \frac{C}{m} K\right) \geq \bar{\kappa}(C) / m$, so that $\bar{\kappa}(C / m) \geq \bar{\kappa}(C) / m$ for $m \geq 1$.

Amplifier trick

Let $S=Z_{1}+Z_{2}+\ldots+Z_{n}$. Consider i.i.d. copies of $S: S_{1}, S_{2}, \ldots$ Then

$$
\mathbb{P}\left(S_{1}+S_{2}+\ldots+S_{m} \leq C \cdot K\right) \geq \bar{\kappa}(C)
$$

since $S_{1}+S_{2}+\ldots+S_{m}$ is a sum of $m n$ independent mean-zero random variables with values in $[-K, K]$ a.s.

On the other hand, we have

$$
\begin{gathered}
\mathbb{P}\left(S_{1}+S_{2}+\ldots+S_{m} \leq C \cdot K\right) \leq \\
\leq \mathbb{P}\left(S_{1} \leq \frac{C}{m} K\right)+\ldots+\mathbb{P}\left(S_{m} \leq \frac{C}{m} K\right)=m \cdot \mathbb{P}\left(S \leq \frac{C}{m} K\right) .
\end{gathered}
$$

Thus we have proved that, under assumptions of Proposition, $\mathbb{P}\left(S \leq \frac{C}{m} K\right) \geq \bar{\kappa}(C) / m$, so that $\bar{\kappa}(C / m) \geq \bar{\kappa}(C) / m$ for $m \geq 1$.

We have observed that it suffices to prove $\bar{\kappa}(C)>0$ for some $C>0$ to have it for all $C>0$, with $\liminf _{C \rightarrow 0^{+}} \bar{\kappa}(C) / C>0$.

Now, let as before $S=Z_{1}+Z_{2}+\ldots+Z_{n}$ and let $\sigma^{2}=\mathbb{E} S^{2}$

Note that

We have observed that it suffices to prove $\bar{\kappa}(C)>0$ for some $C>0$ to have it for all $C>0$, with $\liminf _{C \rightarrow 0^{+}} \bar{\kappa}(C) / C>0$.

Now, let as before $S=Z_{1}+Z_{2}+\ldots+Z_{n}$ and let $\sigma^{2}=\mathbb{E} S^{2}$.

Note that

We have observed that it suffices to prove $\bar{\kappa}(C)>0$ for some $C>0$ to have it for all $C>0$, with $\liminf _{C \rightarrow 0^{+}} \bar{\kappa}(C) / C>0$.

Now, let as before $S=Z_{1}+Z_{2}+\ldots+Z_{n}$ and let $\sigma^{2}=\mathbb{E} S^{2}$.
Note that

We have observed that it suffices to prove $\bar{\kappa}(C)>0$ for some $C>0$ to have it for all $C>0$, with $\liminf _{C \rightarrow 0^{+}} \bar{\kappa}(C) / C>0$.

Now, let as before $S=Z_{1}+Z_{2}+\ldots+Z_{n}$ and let $\sigma^{2}=\mathbb{E} S^{2}$.
Note that

$$
\begin{gathered}
\mathbb{E} S^{4}=\sum_{i=1}^{n} \mathbb{E} Z_{i}^{4}+6 \sum_{1 \leq i<j \leq n} \mathbb{E} Z_{i}^{2} \cdot \mathbb{E} Z_{j}^{2} \leq \\
\leq K^{2} \sum_{i=1}^{n} \mathbb{E} Z_{i}^{2}+3\left(\sum_{i=1}^{n} \mathbb{E} Z_{i}^{2}\right)^{2}=K^{2} \sigma^{2}+3 \sigma^{4} . \\
\mathbb{E} S^{2}=\mathbb{E}\left(|S|^{2 / 3} \cdot|S|^{4 / 3}\right) \leq(\mathbb{E}|S|)^{2 / 3}\left(\mathbb{E} S^{4}\right)^{1 / 3}, \text { so } \\
(\mathbb{E}|S|)^{2} / \mathbb{E} S^{2} \geq \sigma^{4}\left(K^{2} \sigma^{2}+3 \sigma^{4}\right)^{-1}=1 /\left(3+K^{2} \sigma^{-2}\right) .
\end{gathered}
$$

Paley-Zygmund inequality

We have proved that $(\mathbb{E}|S|)^{2} / \mathbb{E} S^{2} \geq 1 /\left(3+K^{2} \sigma^{-2}\right)$.
The classical Paley-Zygmund estimate states that

$$
\mathbb{E}|S| / 2=\mathbb{E}|S| 1_{S<0} \leq\left(\mathbb{E} S^{2}\right)^{1 / 2} \cdot(\mathbb{P}(S<0))^{1 / 2},
$$

so that

Thus $\mathbb{P}(S \leq C \cdot K) \geq 1 / 16$ if only $\sigma \geq K$,
whereas for $\sigma \leq K$ by Chebyshev's inequality we get

so in particular $\mathbb{P}(S \leq 2 K) \geq 1-2^{-2}=3 / 4$.

We have proved that $\bar{\kappa}(2) \geq 1 / 16>0$.

Paley-Zygmund inequality

We have proved that $(\mathbb{E}|S|)^{2} / \mathbb{E} S^{2} \geq 1 /\left(3+K^{2} \sigma^{-2}\right)$.
The classical Paley-Zygmund estimate states that

$$
\mathbb{E}|S| / 2=\mathbb{E}|S| 1_{S<0} \leq\left(\mathbb{E} S^{2}\right)^{1 / 2} \cdot(\mathbb{P}(S<0))^{1 / 2},
$$

so that

$$
\mathbb{P}(S \leq C \cdot K) \geq \mathbb{P}(S<0) \geq \frac{(\mathbb{E}|S|)^{2}}{4 \mathbb{E} S^{2}} \geq \frac{1}{4\left(3+K^{2} \sigma^{-2}\right)} .
$$

Thus $\mathbb{P}(S \leq C \cdot K) \geq 1 / 16$ if only $\sigma \geq K$,
whereas for $\sigma \leq K$ by Chebyshev's inequality we get

Paley-Zygmund inequality

We have proved that $(\mathbb{E}|S|)^{2} / \mathbb{E} S^{2} \geq 1 /\left(3+K^{2} \sigma^{-2}\right)$.
The classical Paley-Zygmund estimate states that

$$
\mathbb{E}|S| / 2=\mathbb{E}|S| 1_{S<0} \leq\left(\mathbb{E} S^{2}\right)^{1 / 2} \cdot(\mathbb{P}(S<0))^{1 / 2},
$$

so that

$$
\mathbb{P}(S \leq C \cdot K) \geq \mathbb{P}(S<0) \geq \frac{(\mathbb{E}|S|)^{2}}{4 \mathbb{E} S^{2}} \geq \frac{1}{4\left(3+K^{2} \sigma^{-2}\right)}
$$

Thus $\mathbb{P}(S \leq C \cdot K) \geq 1 / 16$ if only $\sigma \geq K$,
whereas for $\sigma \leq K$ by Chebyshev's inequality we get
so in particular $\mathbb{P}(S \leq 2 K) \geq 1-2^{-2}=3 / 4$.

Paley-Zygmund inequality

We have proved that $(\mathbb{E}|S|)^{2} / \mathbb{E} S^{2} \geq 1 /\left(3+K^{2} \sigma^{-2}\right)$.
The classical Paley-Zygmund estimate states that

$$
\mathbb{E}|S| / 2=\mathbb{E}|S| 1_{S<0} \leq\left(\mathbb{E} S^{2}\right)^{1 / 2} \cdot(\mathbb{P}(S<0))^{1 / 2}
$$

so that

$$
\mathbb{P}(S \leq C \cdot K) \geq \mathbb{P}(S<0) \geq \frac{(\mathbb{E}|S|)^{2}}{4 \mathbb{E} S^{2}} \geq \frac{1}{4\left(3+K^{2} \sigma^{-2}\right)}
$$

Thus $\mathbb{P}(S \leq C \cdot K) \geq 1 / 16$ if only $\sigma \geq K$, whereas for $\sigma \leq K$ by Chebyshev's inequality we get

$$
\mathbb{P}(S>C \cdot K) \leq \frac{\sigma^{2}}{C^{2} K^{2}} \leq C^{-2}
$$

so in particular $\mathbb{P}(S \leq 2 K) \geq 1-2^{-2}=3 / 4$.

Paley-Zygmund inequality

We have proved that $(\mathbb{E}|S|)^{2} / \mathbb{E} S^{2} \geq 1 /\left(3+K^{2} \sigma^{-2}\right)$.
The classical Paley-Zygmund estimate states that

$$
\mathbb{E}|S| / 2=\mathbb{E}|S| 1_{S<0} \leq\left(\mathbb{E} S^{2}\right)^{1 / 2} \cdot(\mathbb{P}(S<0))^{1 / 2}
$$

so that

$$
\mathbb{P}(S \leq C \cdot K) \geq \mathbb{P}(S<0) \geq \frac{(\mathbb{E}|S|)^{2}}{4 \mathbb{E} S^{2}} \geq \frac{1}{4\left(3+K^{2} \sigma^{-2}\right)}
$$

Thus $\mathbb{P}(S \leq C \cdot K) \geq 1 / 16$ if only $\sigma \geq K$, whereas for $\sigma \leq K$ by Chebyshev's inequality we get

$$
\mathbb{P}(S>C \cdot K) \leq \frac{\sigma^{2}}{C^{2} K^{2}} \leq C^{-2}
$$

so in particular $\mathbb{P}(S \leq 2 K) \geq 1-2^{-2}=3 / 4$.
We have proved that $\bar{\kappa}(2) \geq 1 / 16>0$.

Proof of Feige's inequality

Recall: $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ are independent with $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i}$, $\mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i}, x_{i}>y_{i}>0, p_{i} \in(0,1), s_{i}=x_{i}-y_{i}$ (spread), $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0, m_{i}=\mathbb{E} \xi_{i} \leq 1$, so that $p_{i} \leq 1 / s_{i}$.

We are to prove that

Proof of Theorem: Let k be the least index i such that
$p_{1} s_{1}+\ldots+p_{i} s_{i} \geq s_{i+1} / 2$. So, $p_{1} s_{1}+\ldots+p_{k} s_{k} \geq s_{k+1} / 2$ but
$p_{1} s_{1}+\ldots+p_{k-1} s_{k-1}<s_{k} / 2$ and hence $p_{1}+\ldots+p_{k-1}<1 / 2$.
Case 1: $s_{k} \leq 2$ and thus also $s_{k+1}, \ldots, s_{n} \leq 2$.
Case 2: $s_{k}>2$ and thus $p_{k}<1 / 2$.
He, Zhang and Zhang, Math. Operations Research, 2010

Proof of Feige's inequality

Recall: $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ are independent with $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i}$, $\mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i}, x_{i}>y_{i}>0, p_{i} \in(0,1), s_{i}=x_{i}-y_{i}$ (spread), $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0, m_{i}=\mathbb{E} \xi_{i} \leq 1$, so that $p_{i} \leq 1 / s_{i}$.

We are to prove that

$$
\mathbb{P}\left(\xi_{1}+\xi_{2}+\ldots+\xi_{n} \leq \mathbb{E}\left(\xi_{1}+\xi_{2}+\ldots+\xi_{n}\right)+\delta\right) \geq \varepsilon(\delta)
$$

Proof of Theorem: Let k be the least index i such that
$p_{1} s_{1}+\ldots+p_{i} s_{i} \geq s_{i+1} / 2$. So, $p_{1} s_{1}+\ldots+p_{k} s_{k} \geq s_{k+1} / 2$ but
$p_{1} s_{1}+\ldots+p_{k-1} s_{k-1}<s_{k} / 2$ and hence $p_{1}+\ldots+p_{k-1}<1 / 2$.
Case 1: $s_{k} \leq 2$ and thus also $s_{k+1}, \ldots, s_{n} \leq 2$.
Case 2: $s_{k}>2$ and thus $p_{k}<1 / 2$.
He, Zhang and Zhang, Math. Operations Research, 2010

Proof of Feige's inequality

Recall: $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ are independent with $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i}$, $\mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i}, x_{i}>y_{i}>0, p_{i} \in(0,1), s_{i}=x_{i}-y_{i}$ (spread), $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0, m_{i}=\mathbb{E} \xi_{i} \leq 1$, so that $p_{i} \leq 1 / s_{i}$.

We are to prove that

$$
\mathbb{P}\left(\xi_{1}+\xi_{2}+\ldots+\xi_{n} \leq \mathbb{E}\left(\xi_{1}+\xi_{2}+\ldots+\xi_{n}\right)+\delta\right) \geq \varepsilon(\delta)
$$

Proof of Theorem: Let k be the least index i such that $p_{1} s_{1}+\ldots+p_{i} s_{i} \geq s_{i+1} / 2$. So, $p_{1} s_{1}+\ldots+p_{k} s_{k} \geq s_{k+1} / 2$ but $p_{1} s_{1}+\ldots+p_{k-1} s_{k-1}<s_{k} / 2$ and hence $p_{1}+\ldots+p_{k-1}<1 / 2$.

Case 1: $s_{k} \leq 2$ and thus also $s_{k+1}, \ldots, s_{n} \leq 2$.
Case 2: $s_{k}>2$ and thus $p_{k}<1 / 2$.
He, Zhang and Zhang, Math. Operations Research, 2010

Proof of Feige's inequality

Recall: $\xi_{1}, \xi_{2}, \ldots, \xi_{n}$ are independent with $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i}$,
$\mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i}, x_{i}>y_{i}>0, p_{i} \in(0,1), s_{i}=x_{i}-y_{i}$ (spread),
$s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0, m_{i}=\mathbb{E} \xi_{i} \leq 1$, so that $p_{i} \leq 1 / s_{i}$.
We are to prove that

$$
\mathbb{P}\left(\xi_{1}+\xi_{2}+\ldots+\xi_{n} \leq \mathbb{E}\left(\xi_{1}+\xi_{2}+\ldots+\xi_{n}\right)+\delta\right) \geq \varepsilon(\delta)
$$

Proof of Theorem: Let k be the least index i such that $p_{1} s_{1}+\ldots+p_{i} s_{i} \geq s_{i+1} / 2$. So, $p_{1} s_{1}+\ldots+p_{k} s_{k} \geq s_{k+1} / 2$ but $p_{1} s_{1}+\ldots+p_{k-1} s_{k-1}<s_{k} / 2$ and hence $p_{1}+\ldots+p_{k-1}<1 / 2$.

Case 1: $s_{k} \leq 2$ and thus also $s_{k+1}, \ldots, s_{n} \leq 2$.
Case 2: $s_{k}>2$ and thus $p_{k}<1 / 2$.
He, Zhang and Zhang, Math. Operations Research, 2010

Case 1

Recall: $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i} ; \mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i} ; x_{i}>y_{i}>0 ;$ $p_{i} \in(0,1), s_{i}=x_{i}-y_{i}$ (spread); $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0$; $m_{i}=\mathbb{E} \xi_{i} \leq 1$, so that $p_{i} \leq 1 / s_{i} ; p_{1}+\ldots+p_{k-1}<1 / 2$.

Case 1: $s_{k} \leq 2$ and thus also $s_{k+1}, \ldots, s_{n} \leq 2$, so that $\xi_{k}-m_{k}, \ldots, \xi_{n}-m_{n}$ are independent mean-zero random variables with values in $[-2,2]$.

$$
\mathbb{P}\left(\xi_{1}+\ldots+\xi_{n} \leq m_{1}+\ldots+m_{n}+\delta\right) \geq
$$

Case 1

Recall: $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i} ; \mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i} ; x_{i}>y_{i}>0 ;$ $p_{i} \in(0,1), s_{i}=x_{i}-y_{i}$ (spread); $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0$; $m_{i}=\mathbb{E} \xi_{i} \leq 1$, so that $p_{i} \leq 1 / s_{i} ; p_{1}+\ldots+p_{k-1}<1 / 2$.

Case 1: $s_{k} \leq 2$ and thus also $s_{k+1}, \ldots, s_{n} \leq 2$, so that $\xi_{k}-m_{k}, \ldots, \xi_{n}-m_{n}$ are independent mean-zero random variables with values in $[-2,2]$.

$$
\begin{gathered}
\mathbb{P}\left(\xi_{1}+\ldots+\xi_{n} \leq m_{1}+\ldots+m_{n}+\delta\right) \geq \\
\mathbb{P}\left(\xi_{1}=y_{1}, \ldots, \xi_{k-1}=y_{k-1}, \xi_{k}+\ldots+\xi_{n} \leq m_{k}+\ldots+m_{n}+\delta\right)=
\end{gathered}
$$

Case 1

Recall: $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i} ; \mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i} ; x_{i}>y_{i}>0$; $p_{i} \in(0,1), s_{i}=x_{i}-y_{i}$ (spread); $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0$; $m_{i}=\mathbb{E} \xi_{i} \leq 1$, so that $p_{i} \leq 1 / s_{i} ; p_{1}+\ldots+p_{k-1}<1 / 2$.

Case 1: $s_{k} \leq 2$ and thus also $s_{k+1}, \ldots, s_{n} \leq 2$, so that $\xi_{k}-m_{k}, \ldots, \xi_{n}-m_{n}$ are independent mean-zero random variables with values in $[-2,2]$.

$$
\begin{gathered}
\mathbb{P}\left(\xi_{1}+\ldots+\xi_{n} \leq m_{1}+\ldots+m_{n}+\delta\right) \geq \\
\mathbb{P}\left(\xi_{1}=y_{1}, \ldots, \xi_{k-1}=y_{k-1}, \xi_{k}+\ldots+\xi_{n} \leq m_{k}+\ldots+m_{n}+\delta\right)= \\
\left(1-p_{1}\right) \ldots\left(1-p_{k-1}\right) \mathbb{P}\left(\left(\xi_{k}-m_{k}\right)+\ldots+\left(\xi_{n}-m_{n}\right) \leq \delta\right) \geq
\end{gathered}
$$

Case 1

Recall: $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i} ; \mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i} ; x_{i}>y_{i}>0 ;$ $p_{i} \in(0,1), s_{i}=x_{i}-y_{i}$ (spread); $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0$; $m_{i}=\mathbb{E} \xi_{i} \leq 1$, so that $p_{i} \leq 1 / s_{i} ; p_{1}+\ldots+p_{k-1}<1 / 2$.

Case 1: $s_{k} \leq 2$ and thus also $s_{k+1}, \ldots, s_{n} \leq 2$, so that $\xi_{k}-m_{k}, \ldots, \xi_{n}-m_{n}$ are independent mean-zero random variables with values in $[-2,2]$.

$$
\begin{gathered}
\mathbb{P}\left(\xi_{1}+\ldots+\xi_{n} \leq m_{1}+\ldots+m_{n}+\delta\right) \geq \\
\mathbb{P}\left(\xi_{1}=y_{1}, \ldots, \xi_{k-1}=y_{k-1}, \xi_{k}+\ldots+\xi_{n} \leq m_{k}+\ldots+m_{n}+\delta\right)= \\
\left(1-p_{1}\right) \ldots\left(1-p_{k-1}\right) \mathbb{P}\left(\left(\xi_{k}-m_{k}\right)+\ldots+\left(\xi_{n}-m_{n}\right) \leq \delta\right) \geq \\
\left(1-\left(p_{1}+\ldots+p_{k-1}\right)\right) \kappa(\delta / 2) \geq \frac{1}{2} \kappa(\delta / 2),
\end{gathered}
$$

where we have used Proposition for $C=\delta / 2$ and $K=2$.

Case 2

Recall: $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i} ; \mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i} ; x_{i}>y_{i}>0 ;$ $p_{i} \in(0,1), s_{i}=x_{i}-y_{i}$ (spread); $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0$; $m_{i}=\mathbb{E} \xi_{i} \leq 1$, so that $p_{i} \leq 1 / s_{i} ; p_{1}+\ldots+p_{k-1}<1 / 2$; $p_{1} s_{1}+\ldots+p_{k} s_{k} \geq s_{k+1} / 2$.

Case 2: $s_{k}>2$ and thus $p_{k}<1 / 2$.

$$
\mathbb{P}\left(\xi_{1}+\ldots+\xi_{n} \leq m_{1}+\ldots+m_{n}+\delta\right) \geq
$$

Case 2

Recall: $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i} ; \mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i} ; x_{i}>y_{i}>0 ;$ $p_{i} \in(0,1), s_{i}=x_{i}-y_{i}$ (spread); $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0$; $m_{i}=\mathbb{E} \xi_{i} \leq 1$, so that $p_{i} \leq 1 / s_{i} ; p_{1}+\ldots+p_{k-1}<1 / 2$; $p_{1} s_{1}+\ldots+p_{k} s_{k} \geq s_{k+1} / 2$.

Case 2: $s_{k}>2$ and thus $p_{k}<1 / 2$.

$$
\begin{gathered}
\mathbb{P}\left(\xi_{1}+\ldots+\xi_{n} \leq m_{1}+\ldots+m_{n}+\delta\right) \geq \\
\mathbb{P}\left(\xi_{1}=y_{1}, \ldots, \xi_{k}=y_{k}, \xi_{k+1}+\ldots+\xi_{n} \leq\right. \\
\left.\leq\left(m_{1}-y_{1}\right)+\ldots+\left(m_{k}-y_{k}\right)+m_{k+1}+\ldots+m_{n}\right)=
\end{gathered}
$$

$$
\left(1-p_{1}\right) \ldots\left(1-p_{k-1}\right)\left(1-p_{k}\right) \times
$$

Case 2

Recall: $\mathbb{P}\left(\xi_{i}=x_{i}\right)=p_{i} ; \mathbb{P}\left(\xi_{i}=y_{i}\right)=1-p_{i} ; x_{i}>y_{i}>0 ;$ $p_{i} \in(0,1), s_{i}=x_{i}-y_{i}$ (spread); $s_{1} \geq s_{2} \geq \ldots \geq s_{n}>0$; $m_{i}=\mathbb{E} \xi_{i} \leq 1$, so that $p_{i} \leq 1 / s_{i} ; p_{1}+\ldots+p_{k-1}<1 / 2 ;$ $p_{1} s_{1}+\ldots+p_{k} s_{k} \geq s_{k+1} / 2$.

Case 2: $s_{k}>2$ and thus $p_{k}<1 / 2$.

$$
\begin{gathered}
\mathbb{P}\left(\xi_{1}+\ldots+\xi_{n} \leq m_{1}+\ldots+m_{n}+\delta\right) \geq \\
\mathbb{P}\left(\xi_{1}=y_{1}, \ldots, \xi_{k}=y_{k}, \xi_{k+1}+\ldots+\xi_{n} \leq\right. \\
\left.\leq\left(m_{1}-y_{1}\right)+\ldots+\left(m_{k}-y_{k}\right)+m_{k+1}+\ldots+m_{n}\right)= \\
\left(1-p_{1}\right) \ldots\left(1-p_{k-1}\right)\left(1-p_{k}\right) \times \\
\mathbb{P}\left(\left(\xi_{k+1}-m_{k+1}\right)+\ldots+\left(\xi_{n}-m_{n}\right) \leq p_{1} s_{1}+\ldots+p_{k} s_{k}\right)=
\end{gathered}
$$

Case $2\left(s_{k}>2\right.$, so that $\left.p_{k}<1 / 2\right)$ - the end

$$
\begin{gathered}
\ldots=\left(1-p_{1}\right) \ldots\left(1-p_{k-1}\right)\left(1-p_{k}\right) \times \\
\mathbb{P}\left(\left(\xi_{k+1}-m_{k+1}\right)+\ldots+\left(\xi_{n}-m_{n}\right) \leq p_{1} s_{1}+\ldots+p_{k} s_{k}\right) \geq
\end{gathered}
$$

$$
\frac{1}{2} \cdot \frac{1}{2} \cdot \kappa(1 / 2)=\kappa(1 / 2) / 4,
$$

where we have used Proposition for $C=1 / 2$ and $K=s_{k+1}$.
Putting together both cases we finish the proof of Theorem with $\varepsilon(\delta)=\min (\kappa(\delta / 2) / 2, \kappa(1 / 2) / 4)$.

Case $2\left(s_{k}>2\right.$, so that $\left.p_{k}<1 / 2\right)$ - the end

$$
\begin{gathered}
\ldots=\left(1-p_{1}\right) \ldots\left(1-p_{k-1}\right)\left(1-p_{k}\right) \times \\
\mathbb{P}\left(\left(\xi_{k+1}-m_{k+1}\right)+\ldots+\left(\xi_{n}-m_{n}\right) \leq p_{1} s_{1}+\ldots+p_{k} s_{k}\right) \geq \\
\left(1-\left(p_{1}+\ldots+p_{k-1}\right)\right) \times \frac{1}{2} \times \\
\mathbb{P}\left(\left(\xi_{k+1}-m_{k+1}\right)+\ldots+\left(\xi_{n}-m_{n}\right) \leq s_{k+1} / 2\right) \geq
\end{gathered}
$$

where we have used Proposition for $C=1 / 2$ and $K=s_{k+1}$.

Putting together both cases we finish the proof of Theorem with $\varepsilon(\delta)=\min (\kappa(\delta / 2) / 2, \kappa(1 / 2) / 4)$.

Case $2\left(s_{k}>2\right.$, so that $\left.p_{k}<1 / 2\right)$ - the end

$$
\begin{gathered}
\ldots=\left(1-p_{1}\right) \ldots\left(1-p_{k-1}\right)\left(1-p_{k}\right) \times \\
\mathbb{P}\left(\left(\xi_{k+1}-m_{k+1}\right)+\ldots+\left(\xi_{n}-m_{n}\right) \leq p_{1} s_{1}+\ldots+p_{k} s_{k}\right) \geq \\
\left(1-\left(p_{1}+\ldots+p_{k-1}\right)\right) \times \frac{1}{2} \times \\
\mathbb{P}\left(\left(\xi_{k+1}-m_{k+1}\right)+\ldots+\left(\xi_{n}-m_{n}\right) \leq s_{k+1} / 2\right) \geq \\
\frac{1}{2} \cdot \frac{1}{2} \cdot \kappa(1 / 2)=\kappa(1 / 2) / 4,
\end{gathered}
$$

where we have used Proposition for $C=1 / 2$ and $K=s_{k+1}$.

Putting together both cases we finish the proof of Theorem with $\varepsilon(\delta)=\min (\kappa(\delta / 2) / 2, \kappa(1 / 2) / 4)$.

Case $2\left(s_{k}>2\right.$, so that $\left.p_{k}<1 / 2\right)$ - the end

$$
\begin{gathered}
\ldots=\left(1-p_{1}\right) \ldots\left(1-p_{k-1}\right)\left(1-p_{k}\right) \times \\
\mathbb{P}\left(\left(\xi_{k+1}-m_{k+1}\right)+\ldots+\left(\xi_{n}-m_{n}\right) \leq p_{1} s_{1}+\ldots+p_{k} s_{k}\right) \geq \\
\left(1-\left(p_{1}+\ldots+p_{k-1}\right)\right) \times \frac{1}{2} \times \\
\mathbb{P}\left(\left(\xi_{k+1}-m_{k+1}\right)+\ldots+\left(\xi_{n}-m_{n}\right) \leq s_{k+1} / 2\right) \geq \\
\frac{1}{2} \cdot \frac{1}{2} \cdot \kappa(1 / 2)=\kappa(1 / 2) / 4,
\end{gathered}
$$

where we have used Proposition for $C=1 / 2$ and $K=s_{k+1}$.
Putting together both cases we finish the proof of Theorem with $\varepsilon(\delta)=\min (\kappa(\delta / 2) / 2, \kappa(1 / 2) / 4)$.

Theorem 2: Let $t_{0}, M>0$. Assume that $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables with $\mathbb{E} X_{i}=0$ for $i=1,2, \ldots, n$. Assume also that they satisfy the following condition:

$$
\forall_{t>t_{0}} \mathbb{E} X_{i} 1_{X_{i} \geq t} \geq \mathbb{E}\left|X_{i}\right| 1_{X_{i} \leq-M t}
$$

Then for every $\delta>0$ we have

$$
\mathbb{P}\left(X_{1}+\ldots+X_{n}\right) \geq \varepsilon\left(\delta, t_{0}, M\right)>0
$$

Feige's theorem follows immediately from the case $M=1, t_{0}=1$ (after centering procedure to switch from non-negative setting to mean-zero framework)

The proof goes basically along the same lines.

Theorem 2: Let $t_{0}, M>0$. Assume that $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables with $\mathbb{E} X_{i}=0$ for $i=1,2, \ldots, n$. Assume also that they satisfy the following condition:

$$
\forall_{t>t_{0}} \mathbb{E} X_{i} 1_{X_{i} \geq t} \geq \mathbb{E}\left|X_{i}\right| 1_{X_{i} \leq-M t} .
$$

Then for every $\delta>0$ we have

$$
\mathbb{P}\left(X_{1}+\ldots+X_{n}\right) \geq \varepsilon\left(\delta, t_{0}, M\right)>0
$$

Feige's theorem follows immediately from the case $M=1, t_{0}=1$ (after centering procedure to switch from non-negative setting to mean-zero framework).

The proof goes basically along the same lines.

Theorem 2: Let $t_{0}, M>0$. Assume that $X_{1}, X_{2}, \ldots, X_{n}$ are independent random variables with $\mathbb{E} X_{i}=0$ for $i=1,2, \ldots, n$. Assume also that they satisfy the following condition:

$$
\forall_{t>t_{0}} \mathbb{E} X_{i} 1_{X_{i} \geq t} \geq \mathbb{E}\left|X_{i}\right| 1_{X_{i} \leq-M t} .
$$

Then for every $\delta>0$ we have

$$
\mathbb{P}\left(X_{1}+\ldots+X_{n}\right) \geq \varepsilon\left(\delta, t_{0}, M\right)>0
$$

Feige's theorem follows immediately from the case $M=1, t_{0}=1$ (after centering procedure to switch from non-negative setting to mean-zero framework).

The proof goes basically along the same lines.

