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An observation about submatrices by Chatterjee and
Ledoux

Let M be an n × n Hermitian matrix, and let 1� k ≤ n. Then
the empirical spectral distributions of most k × k principal
submatrices of M are about the same.
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More formally:

Theorem (Chatterjee-Ledoux)
For M given, let A be chosen uniformly at random from all k × k
principal submatrices. Let FA denote the empirical distribution
function of A; that is,

FA(x) =
1
k
∣∣{j : λj(A) ≤ x}

∣∣.
Let F (x) := EFA(x). Then for r > 0,

P[‖FA − F‖∞ ≥ k−1/2 + r ] ≤ 12
√

ke−r
√

k/8

and

E‖FA − F‖∞ ≤
13 +

√
8 log(k)√
k

.
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Outline of the proof

1. Functions of finite state space Markov chains are
concentrated at their means with respect to the stationary
distribution of the chain, with bounds in terms of the
spectral gap of the chain.

2. The transposition random walk on Sn has uniform measure
as stationary distribution.

3. Good bounds (due to Diaconis and Shahshahani) on the
spectral gap of the transposition random walk are
available.

4. It’s not too hard to get from concentration of FA(x) near
F (x) to concentration of ‖FA − F‖∞.
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Away from matrices: the coordinate-free viewpoint

Let T be a self-adjoint operator on an n-dimensional Hilbert
space H. Let E be a subspace of H, and let πE : H → E
denote orthogonal projection.

The compression of T to E is the operator

TE := πET |E = πETπ∗E .

The spectral distribution of TE is defined to be the measure

µE :=
1
k

k∑
j=1

δλj (TA),

where λ1(TA) ≥ · · · ≥ λk (TA) are the eigenvalues of TA.
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Our observation

For T a given self-adjoint operator on an n-dimensional Hilbert
space H and 1 ≤ k ≤ n, most compressions of T to
k -dimensional subspaces have spectral distributions which are
about the same.
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More formally:

Theorem (E. M. -M. M.)
If E is a k-dimensional random subspace of H distributed
according to the rotation-invariant probability measure on the
Grassmannian, µE is the spectral measure of TE and µ := EµE ,
then

Ed1(µE , µ) ≤ A
σk (T )4/7ρ(T )3/7

(kn)2/7 ,

and

P

[
d1(µE , µ) ≥ A

σk (T )4/7ρ(T )3/7

(kn)2/7 + t

]
≤ B exp

[
−C

knt2

σ2
k (T )

]
.

Here,

ρ(T ) :=
1
2

[λ1(T )− λn(T )] σk (T ) := inf
λ

√√√√ k∑
i=1

s2
i (T − λI).
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A note on distance

We use the Kantorovich-Rubenstein distance

d1(µ, ν) = inf
π

∫
R×R
|x − y |dπ(x , y)

= sup
f

∣∣∣∣∫ fdµ−
∫

fdν
∣∣∣∣

= ‖Fµ − Fν‖L1(R),

where π varies over probability measures on R× R with
margins µ and ν, and f varies over functions on R with
‖f ′‖∞ ≤ 1.

This distance is not directly comparable to the Kolmogorov
distance ‖Fµ − Fν‖∞ in general, although some comparison
can be made here due to the finite support of the measures in
question.
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Outline of Proof

We also use measure concentration as a key ingredient, but the
measure in question is the rotation-invariant probability
measure on the Grassmannian Gk (H) of k -dimensional
subspaces of H.

Recall that one can define a metric d(E ,F ) on Gk (H) by

d(E ,F ) := inf

√√√√ k∑
i=1

‖ei − fi‖2,

where the infimum is over orthonormal bases {ei}ki=1 and
{fi}ki=1 of E and F , respectively.

One has concentration about a fixed value for functions on
Gk (H) which are Lipschitz with respect to the distance d(·, ·).



Outline of Proof

We also use measure concentration as a key ingredient, but the
measure in question is the rotation-invariant probability
measure on the Grassmannian Gk (H) of k -dimensional
subspaces of H.

Recall that one can define a metric d(E ,F ) on Gk (H) by

d(E ,F ) := inf

√√√√ k∑
i=1

‖ei − fi‖2,

where the infimum is over orthonormal bases {ei}ki=1 and
{fi}ki=1 of E and F , respectively.

One has concentration about a fixed value for functions on
Gk (H) which are Lipschitz with respect to the distance d(·, ·).



Outline of Proof

We also use measure concentration as a key ingredient, but the
measure in question is the rotation-invariant probability
measure on the Grassmannian Gk (H) of k -dimensional
subspaces of H.

Recall that one can define a metric d(E ,F ) on Gk (H) by

d(E ,F ) := inf

√√√√ k∑
i=1

‖ei − fi‖2,

where the infimum is over orthonormal bases {ei}ki=1 and
{fi}ki=1 of E and F , respectively.

One has concentration about a fixed value for functions on
Gk (H) which are Lipschitz with respect to the distance d(·, ·).



Outline of Proof

We also use measure concentration as a key ingredient, but the
measure in question is the rotation-invariant probability
measure on the Grassmannian Gk (H) of k -dimensional
subspaces of H.

Recall that one can define a metric d(E ,F ) on Gk (H) by

d(E ,F ) := inf

√√√√ k∑
i=1

‖ei − fi‖2,

where the infimum is over orthonormal bases {ei}ki=1 and
{fi}ki=1 of E and F , respectively.

One has concentration about a fixed value for functions on
Gk (H) which are Lipschitz with respect to the distance d(·, ·).



Specifically:

Theorem (Gromov-Milman)
Let f : Gk (H)→ R be 1-Lipschitz with respect to d(·, ·), and let
E be distributed according to the rotation-invariant probability
measure on Gk (H). Then there is are absolute constants C, c
such that

P
[∣∣f (E)− Ef (E)

∣∣ ≥ t
]
≤ Ce−cnt2

.

We want to apply this theorem to the function f (E) := d1(µE , µ),
where d1 is the Kantorovich-Rubenstein distance, µE is the
spectral distribution of the compression of T to E , and µ = EµE .
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The Lipschitz constant of f (E) = d1(µE , µ) can be bounded
using the coupling π = 1

k
∑k

i=1 δ(λi (TE ),λi (TF )).

A little matrix analysis shows that

d1(µE , µF ) ≤ 2σk√
k

d(E ,F ).

Together with the Gromov-Milman measure concentration
result, this yields

P
[∣∣d1(µE , µ)− Ed1(µE , µ)

∣∣ > t
]
≤ C exp

[
−c

nkt2

σ2
k

]
.
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challenge is to bound that mean.

Recall that d1(µE , µ) = supf
∣∣∫ fdµE −

∫
fdµ
∣∣; we need to

bound the expected maximum of a stochastic process indexed
by {f : ‖f ′‖∞ ≤ 1}.
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Dudley’s entropy bound

Theorem (Dudley)
Let {Xt}t∈T be a stochastic process indexed by a metric space
T with distance d. Suppose that there is a constant c such that
Xt satisfies the increment condition

∀u, P [|Xt − Xs| ≥ u] ≤ c exp
(
− u2

2d(s, t)2

)
.

Then there is a constant C such that

E sup
t∈T

Xt ≤ C
∫ ∞

0

√
log N(T ,d , ε)dε,

where N(T ,d , ε) is the ε-covering number of T with respect to
the distance d.
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The process Xf :=
∫

fdµE −
∫

fdµ.

I As a function of E , Xf is Lipschitz with Lipschitz constant
2σk√

k
whenever f 1-Lipschitz.

I Concentration of measure on Gk (H) thus gives that

P[|Xf − Xg | > u] ≤ P[|Xf−g | ≥ u] ≤ C exp

[
−c

nku2

σ2
k |f − g|L

]
,

where |f − g| is the Lipschitz constant of f − g.

=⇒ The process satisfies the sub-Gaussian increment
condition with respect to ‖ · ‖′ := σk√

kn
‖ · ‖C1 .

Bad News: The covering number of {f : ‖f ′‖∞ ≤ 1} with
respect to ‖ · ‖′ is infinite. In fact, it suffices to consider
{f : ‖f‖c1 ≤ 1 + 2ρ}, but that still has infinite covering number.



The process Xf :=
∫

fdµE −
∫

fdµ.

I As a function of E , Xf is Lipschitz with Lipschitz constant
2σk√

k
whenever f 1-Lipschitz.

I Concentration of measure on Gk (H) thus gives that

P[|Xf − Xg | > u] ≤ P[|Xf−g | ≥ u] ≤ C exp

[
−c

nku2

σ2
k |f − g|L

]
,

where |f − g| is the Lipschitz constant of f − g.

=⇒ The process satisfies the sub-Gaussian increment
condition with respect to ‖ · ‖′ := σk√

kn
‖ · ‖C1 .

Bad News: The covering number of {f : ‖f ′‖∞ ≤ 1} with
respect to ‖ · ‖′ is infinite. In fact, it suffices to consider
{f : ‖f‖c1 ≤ 1 + 2ρ}, but that still has infinite covering number.



The process Xf :=
∫

fdµE −
∫

fdµ.

I As a function of E , Xf is Lipschitz with Lipschitz constant
2σk√

k
whenever f 1-Lipschitz.

I Concentration of measure on Gk (H) thus gives that

P[|Xf − Xg | > u] ≤ P[|Xf−g | ≥ u] ≤ C exp

[
−c

nku2

σ2
k |f − g|L

]
,

where |f − g| is the Lipschitz constant of f − g.

=⇒ The process satisfies the sub-Gaussian increment
condition with respect to ‖ · ‖′ := σk√

kn
‖ · ‖C1 .

Bad News: The covering number of {f : ‖f ′‖∞ ≤ 1} with
respect to ‖ · ‖′ is infinite. In fact, it suffices to consider
{f : ‖f‖c1 ≤ 1 + 2ρ}, but that still has infinite covering number.



The process Xf :=
∫

fdµE −
∫

fdµ.

I As a function of E , Xf is Lipschitz with Lipschitz constant
2σk√

k
whenever f 1-Lipschitz.

I Concentration of measure on Gk (H) thus gives that

P[|Xf − Xg | > u] ≤ P[|Xf−g | ≥ u] ≤ C exp

[
−c

nku2

σ2
k |f − g|L

]
,

where |f − g| is the Lipschitz constant of f − g.

=⇒ The process satisfies the sub-Gaussian increment
condition with respect to ‖ · ‖′ := σk√

kn
‖ · ‖C1 .

Bad News: The covering number of {f : ‖f ′‖∞ ≤ 1} with
respect to ‖ · ‖′ is infinite. In fact, it suffices to consider
{f : ‖f‖c1 ≤ 1 + 2ρ}, but that still has infinite covering number.



The process Xf :=
∫

fdµE −
∫

fdµ.

I As a function of E , Xf is Lipschitz with Lipschitz constant
2σk√

k
whenever f 1-Lipschitz.

I Concentration of measure on Gk (H) thus gives that

P[|Xf − Xg | > u] ≤ P[|Xf−g | ≥ u] ≤ C exp

[
−c

nku2

σ2
k |f − g|L

]
,

where |f − g| is the Lipschitz constant of f − g.

=⇒ The process satisfies the sub-Gaussian increment
condition with respect to ‖ · ‖′ := σk√

kn
‖ · ‖C1 .

Bad News: The covering number of {f : ‖f ′‖∞ ≤ 1} with
respect to ‖ · ‖′ is infinite. In fact, it suffices to consider
{f : ‖f‖c1 ≤ 1 + 2ρ}, but that still has infinite covering number.



Getting around it: Approximation

The index set {f : ‖f‖C2 ≤ 1} has finite covering number with
respect to ‖ · ‖′, and estimates for it are available.

Those estimates yield:

E sup{Xf : ‖f‖C2 ≤ 1} .
σk
√
ρ+ 1√
kn

.

Smoothing functions in {f : ‖f‖C1 ≤ 1 + 2ρ} and optimizing over
the various parameters yields

Ed1(µE , µ) .
σ

4/7
k ρ3/7

(kn)2/7 .
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Comparisons with Chatterjee-Ledoux

I The random subspace onto which the operator is projected
is distributed differently: in C-L, E is uniformly chosen from
the coordinate-subspaces of dimension k , whereas for us,
E is uniformly chosen from all subspaces of dimension k .
As such, quantitative comparison is necessarily rough.

I The C-L result is only interesting for k � 1, whereas our
result has content for any k as long as n� 1.

I Our result is sensitive, via the appearance of σk (T ) and
ρ(T ), to the proximity of T to the space of scalar matrices
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Thank you.


