"On the metric entropy"

Based on joint works with

V. Milman, A. Pajor, and N. Tomczak-Jaegermann

papers available at my webpage:
http://www.math.ualberta.ca/~alexandr/papers

Let K, L be subsets of \mathbb{R}^n . The covering number N(K, L) of K by L is the minimal number N such that there are vectors x_1, \ldots, x_N in \mathbb{R}^n satisfying

$$K \subset \bigcup_{i=1}^{N} (x_i + L).$$

We use notation $\overline{N}(K,L)$ if additionally $x_i \in K$.

General idea: to extend theorems from operator theory or volume inequalities to the covering number setting.

Note,

$$||T : (\mathbb{R}^n, K) \rightarrow (\mathbb{R}^n, L)|| \le a$$

means

$$TK \subset aL$$
,

equivalently

$$N(TK, aL) \leq 1.$$

Usually, in operator theory we have condition

norm of an operator is bounded by, say, one,

in other words we control the diameter of a body. Is it possible to say something similar when we control the covering number?

Examples. 1. Duality conjecture.

 $||T|| = ||T^*||, \quad i.e. \quad ||T|| \le 1$ implies $||T^*|| \le 1.$ Corresponding result (conjecture) for covering numbers would be: *there exists absolute positive constants* a, b *such that*

$$N(K,L) \le N^b(L^0, aK^0).$$

2. Extension Property of $\ell_\infty.$

If $||T: K \cap E \to \ell_{\infty}|| \le 1$ then there is an extension:

$$\|\bar{T}: K \to \ell_{\infty}\| \leq 1$$
 and $\bar{T}_{|E} = T$.

A week version of entropy extension (LPT): Let 0 < a < r < A and $1 \le k < n$. Let $K, L \subset \mathbb{R}^n$ be symmetric convex bodies, and $K \subset AL$. Let codimE = k and $K \cap E \subset aL$. Then

$$N(K, 2rL) \leq \left(\frac{3A}{r-a}\right)^k$$

(If we control the diameter of a body in a subspace then we control the entropy in the entire space.)

Remark. The above result was used in **LPT** to investigate the phenomena "deterministic implies random" (in context of Gelfand numbers) and later, in **LMPT**, to investigate sharpness in Sudakov inequality.

Question. Can we provide a similar statement with the control of the entropy in the subspace instead of diameter?

A strong version (LMPT):

Let 0 < a < r < A. Let K, L be symmetric convex bodies in \mathbb{R}^n such that $K \subset AL$. Let Ebe k-codimensional subspace of \mathbb{R}^n . Then

$$N(K, rL) \leq \left(\frac{3A}{r-a}\right)^k N(K \cap E, \frac{a}{3}L).$$

"Dual" version (entropy lifting):

Let 0 < a < r < A. Let K be a symmetric convex body in \mathbb{R}^n . Let $P : \mathbb{R}^n \to \mathbb{R}^n$ be a projection of corank k.

$$N(K, rL) \leq \left(\frac{6A}{r-a}\right)^k N(PK, \frac{a}{2}PL).$$

3. Rogers-Shephard inequality. Let K, L be a convex body in \mathbb{R}^n and E be a k-dimensional subspace of \mathbb{R}^n . Then

 $|K| \le |P_E K| \max_{x \in K} |(K - x) \cap E^{\perp}| \le {n \choose k} |K|.$

Theorem 1 (entropy decomposition).

Let K, L_1 , and L_2 be subsets of \mathbb{R}^n . Let Ebe a subspace of \mathbb{R}^n and $P : \mathbb{R}^n \to \mathbb{R}^n$ be a projection with ker P = E. Then

 $N(K, L_1 + L_2)$

 $\leq \overline{N} (PK, PL_1) \max_{z \in K} N ((K - L_1 - z) \cap E, L_2)$ $\leq \overline{N} (PK, PL_1) N ((K - K - L_1) \cap E, L_2).$

Remark. In fact this theorem implies "entropy extension" and "entropy lifting".

Proofs

Extension and lifting properties of entropy.

Having $N(K, L_1 + L_2)$ $\leq \overline{N}(PK, PL_1) N((K - K - L_1) \cap E, L_2), \quad (*)$ want to prove

$$N(K, rL) \leq \left(\frac{3A}{r-a}\right)^k N(K \cap E, \frac{a}{3}L).$$

for 0 < a < r < A and $K \subset AL$.

Let $\varepsilon := r - a$. First, by the convexity of L,

$$N(K, rL) \leq N(K, \frac{\varepsilon}{A}K + aL).$$

Using (*) with $L_1 = (\varepsilon/A)K$ and $L_2 = aL$,

$$N(K, rL) \leq \overline{N}\left(PK, \frac{\varepsilon}{A}PK\right)N\left(\left(2 + \frac{\varepsilon}{A}\right)K \cap E, aL\right)$$

Now, the first factor is bounded by $(3A/\varepsilon)^k$ (standard volume argument), the second factor is bounded by $N(3K \cap E, aL)$.

7

Now using $N(K, L_1 + L_2)$ $\leq \overline{N}(PK, PL_1) N((K - K - L_1) \cap E, L_2), (*)$ want to prove

$$N(K, rL) \leq \left(\frac{6A}{r-a}\right)^k N(PK, \frac{a}{2}PL).$$

for a < r < A and projection P on E^{\perp} .

Using (*) with $L_1 = aL$ and $L_2 = \varepsilon L$ we get $N(K, rL) \leq \overline{N} (PK, aPL) N ((2K + aL) \cap E, \varepsilon L)$. $\leq N \left(PK, \frac{a}{2}PL \right) N (((2A + a)L) \cap E, \varepsilon L)$ $\leq \left(\frac{6A}{r-a} \right)^k N(PK, \frac{a}{2}PL).$ **Proof of Theorem 1.** Set $N_1 := \overline{N}(PK, PL_1)$. Then there are $z_i \in PK$, $i \leq N_1$, such that

$$PK \subset \bigcup_{i=1}^{N_1} (z_i + PL_1).$$

For every $x \in K$ fix i(x), $y_x \in PL_1$ such that

$$Px = z_{i(x)} + y_x$$

For $i \leq N_1$ pick $\tilde{z}_i \in K$ such that $P\tilde{z}_i = z_i$, for every $y \in PL_1$ pick $\tilde{y} \in L_1$ such that $P\tilde{y} = y$.

Now for every $x \in K$ define

$$v(x) = \tilde{z}_{i(x)} + \tilde{y}_x \in \tilde{z}_{i(x)} + L_1,$$
$$w(x) = x - v(x) = x - \tilde{z}_{i(x)} - \tilde{y}_x.$$

Denote

$$T_i := K - L_1 - \tilde{z}_i, \quad \text{for} \quad i \le N_1.$$

Then $w(x) \in T_{i(x)}$ and

 $Pw(x) = Px - Pv(x) = Px - z_{i(x)} - y_x = 0.$ Thus $w(x) \in T_{i(x)} \cap E$ and, hence,

$$x = w(x) + v(x) \in T_{i(x)} \cap E + \tilde{z}_{i(x)} + L_1.$$

This implies

$$K \subset \bigcup_{i=1}^{N_1} \left(T_i \cap E + \tilde{z}_{i(x)} + L_1 \right).$$

Since for every $i \leq N_1$, $N(T_i \cap E, L_2) \leq \max_{z \in K} N((K - L_1 - z) \cap E, L_2)$, we obtain

 $N(K, L_1 + L_2) \leq N_1 \max_{z \in K} N((K - L_1 - z) \cap E, L_2).$

Lower bound.

Recall,
$$N(K, L_1 + L_2)$$

 $\leq \overline{N}(PK, PL_1) N((K - K - L_1) \cap E, L_2), (*)$

Theorem 2. Let $t \in (0, 1)$, K_1 , K_2 be subsets of \mathbb{R}^n and L_1 , L_2 be symmetric convex bodies in \mathbb{R}^n . Let $P : \mathbb{R} \to \mathbb{R}$ be a projection and $E = \ker P$. Then

$$N\Big(tK_{1} + (1-t)K_{2}, (tL_{1}) \cap ((1-t)L_{2})\Big)$$
$$\geq \bar{N}\Big(PK_{1}, 2PL_{1}\Big) \bar{N}\Big(K_{2} \cap E, 2L_{2} \cap E\Big).$$

In particular taking $K_1 = K_2$ we have

$$N\Big(K,(tL_1)\cap((1-t)L_2)\Big)$$
$$\geq \bar{N}\Big(PK,2PL_1\Big)\,\bar{N}\Big(K\cap E,2L_2\cap E\Big).$$

and taking $L_1 = ((1-t)/t)L_2$, $N(K,L) \ge \overline{N}(tPK, 2PL) \overline{N}((1-t)K \cap E, 2L \cap E).$ We will need the notion of packing numbers. For K and L in \mathbb{R}^n the packing number P(K, L)of K by L is the maximal number M such that there exist vectors $x_i \in K$, $i \leq M$ satisfying

 $(x_i+L)\cap(x_j+L)=\emptyset$ for every $i\neq j$. In other words, $x_i-x_j\notin L_0:=L-L$. Such set of points we also call L_0 -separated set. It is well known that if L is symmetric convex body then

$$\overline{N}(K, 2L) \leq P(K, L) \leq N(K, L).$$

Proof of Theorem 2. Define N_1 and N_2 by $N_1 := P(PK_1, PL_1) \ge \overline{N}(PK_1, 2PL_1).$

Then there are $z_1, \ldots, z_{N_1} \in PK_1$ such that $z_i - z_j \notin 2PL_1$ whenever $i \neq j$. For $1 \leq i \leq N_1$ pick $\tilde{z}_i \in K_1$ such that $P\tilde{z}_i = z_i$.

 $N_2 := P(K_2 \cap E, L_2 \cap E) \ge \overline{N}(K_2 \cap E, 2L_2 \cap E).$ Then there exist w_1, \ldots, w_{N_2} in $K_2 \cap E$ such that $w_k - w_\ell \not\in 2L_2$ if $k \ne \ell$.

For every $i \le N_1$ and $k \le N_2$ denote $x_{i,k} := t\tilde{z_i} + (1-t)w_k$ and consider the set

$$\mathcal{A} = \left\{ x_{i,k} \right\}_{i \le N_1, \ k \le N_2} \subset tK_1 + (1-t)K_2.$$

We show that \mathcal{A} is well separated, namely $x_{i,k}-x_{j,\ell} \notin (2tL_1) \cap (2(1-t)L_2)$ if $(i,k) \neq (j,\ell)$.

If $i \neq j$ then $P(x_{i,k} - x_{j,\ell}) = t(z_i - z_j) \notin 2tPL_1$, so $x_{i,k} - x_{j,\ell} \notin 2tL_1$. If i = j then $k \neq \ell$ and $x_{i,k} - x_{j,\ell} = (1-t)(w_k - w_\ell) \notin 2(1-t)L_2$. Thus $P(tK_1 + (1-t)K_2, (tL_1) \cap ((1-t)L_2))$ $\geq N_1N_2 \geq \bar{N}(PK_1, 2PL_1)\bar{N}(K_2 \cap E, 2L_2 \cap E).$

Application to Euclidean metric entropy: sharpness of Sudakov inequality.

Recall, given a convex body $K \subset \mathbb{R}$ with the origin in its interior,

$$M_K = M(K) = \int_{S^{n-1}} \|x\|_K d\nu$$

and

$$\ell(K) = \mathbb{E} \left\| \sum_{i=1}^{n} g_i e_i \right\|_K \le \sqrt{n} M_K.$$

Sudakov inequality:

$$N(K, tB_2^n) \le \exp\left(5\left(\ell(K^0)/t\right)^2\right).$$

When it is sharp? In other words, when the covering number is big?

Recall, if we control diameter of a section then we control the covering number. Thus, if the covering number is big then every subspaces has a big diameter. We can quantify it as **Proposition.** Let R > 1, $\eta > 0$, and $K \subset RL$ be symmetric convex bodies in \mathbb{R}^n such that

 $N(K,L) \ge \exp(\eta n)$.

Then for every k-codimensional subspace E of \mathbb{R}^n with

$$k = \left[\frac{\eta \, n}{\ln(12R)}\right]$$

one has

$$K \cap E \not\subset \frac{1}{4}L.$$

Thus, if Sudakov inequality is almost sharp, i.e., if

$$N(K, B_2^n) \ge \exp\left(\varepsilon(M_K^*)^2 n\right),$$

for some $\varepsilon > 0$, then for

$$k = k_0 := \left[\frac{\varepsilon (M^*)^2 n}{\ln(12R(K))}\right]$$

every k-codimensional section of K has diameter at least 1/4. Usually, to improve covering of K by Euclidean balls we use truncations $K_{\beta} = K \cap \beta B_2^n$. The ideas above leads to the following intuition:

Let $\varepsilon > 0$, $\beta > 1$, and

$$N(K, B_2^n) \ge \exp\left(\varepsilon(M_K^*)^2 n\right),$$

then we have two distinct possibilities:

- I. Either the covering number $N(K, B_2^n)$ can be significantly decreased by cutting K on the level β , (which means that "most" of the entropy of K comes from parts far from B_2^n);
- II. or every k'-codimensional section of K has large diameter, for an appropriate choice of $k' > k_0$ depending on β .

Below we discuss the first case.

Theorem 3. Let $K \subset \mathbb{R}$ be a symmetric convex body. Let $\rho > 0$ and $\beta \ge 4\rho$. Then

$$N(K_{\beta}, 4\rho B_{2}^{n}) \leq \exp\left(2\left(\frac{\ell\left(K_{\rho}^{0}\right)}{\rho}\right)^{2} \ln\frac{3\beta}{\rho}\right)$$

Remark. Note that $\ell(K^0_\rho)$ can be much smaller than $\ell(K^0_\beta)$ given by Sudakov inequality.

Idea of proof. To choose

$$k \approx (\ell(K_{\rho}^{0})/\rho)^{2}$$

and to apply so-called "low M^* -estimate" saying that there exists k-codimensional subspace E such that

$$K \cap E \subset \rho B_2^n.$$

Then to apply entropy extension theorem.

Now we consider coverings without truncations. Define $F = F_K$ by

$$F(\rho) = \frac{\ell(K^0)}{\ell\left(K^0_\rho\right)}.$$

This function can be used to measure a possible gain in Sudakov estimates. Rewriting Sudakov inequality we get

$$N(K, 8 \rho B_2^n) \le \exp\left(5\left(\frac{\ell(K_\rho^0)}{8\rho}\right)^2 F(\rho)^2\right),$$

which should be compared with the following:

Theorem 4. Let *K* be a symmetric convex body and $\rho > 0$. Then

$$N(K, 8 \rho B_2^n) \le \exp\left(2\left(\frac{\ell\left(K_{\rho}^0\right)}{\rho}\right)^2 \ln\left(6 F(\rho)\right)\right)$$

Proof:

$N(K, 8 \rho B_2^n) \le N(K, (2K) \cap 2\beta B_2^n) N(2K_\beta, 8 \rho B_2^n) = N(K, 2\beta B_2^n) N(K_\beta, 4 \rho B_2^n).$

Applying Sudakov inequality to the first factor and Theorem 3 to the second one, we observe

 $N(K, 8 \rho B_2^n)$

$$\leq \exp\left(5\left(\frac{\ell(K^0)}{2\beta}\right)^2 + 2\left(\frac{\ell\left(K^0_{\rho}\right)}{\rho}\right)^2\ln\frac{3\beta}{\rho}\right)$$

Optimizing in β , we obtain the result.