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Let K, L be subsets of R™. The covering num-
ber N(K,L) of K by L is the minimal number
N such that there are vectors xz1, ..., xx in R”

satisfying

N
Kc | (z+ L)
1=1

We use notation N(K, L) if additionally z; € K.



General idea: to extend theorems from op-
erator theory or volume inequalities to the
covering number setting.

Note,
IT © (R%,K)—» (R*L)|<a
means
TK Cal,
equivalently

N(TK,aL) < 1.

Usually, in operator theory we have condition

norm of an operator is bounded by, say, one,

in other words we control the diameter of a
body. Is it possible to say something similar
when we control the covering number?

Examples. 1. Duality conjecture.
[T = ||T*||, de |T||<1 implies ||[T7] < 1.

Corresponding result (conjecture) for covering
numbers would be: there exists absolute posi-
tive constants a,b such that

N(K,L) < N°(L°, aK9).



2. Extension Property of /.

If |[T: KNE — £x|| <1 then there is an extension:

IT:K = 4| <1 and Tip=T.

A week version of entropy extension (LPT):
LetO<a<r<Aandl<k<n. LetK,L CR"
be symmetric convex bodies, and K C AL. Let
codimEl =k and KNE CaL. Then

3A )k

r—a

N(K,2rL) < (

(If we control the diameter of a body in a
subspace then we control the entropy in the
entire space.)

Remark. The above result was used in LPT
to investigate the phenomena “deterministic
implies random” (in context of Gelfand num-
bers) and later, in LMPT, to investigate sharp-
ness in Sudakov inequality.

Question. Can we provide a similar statement
with the control of the entropy in the subspace
instead of diameter?



A strong version (LMPT):

Let O < a<r < A. Let K, L be symmetric
convex bodies in R™ such that K C AL. Let FE
be k-codimensional subspace of R"™. Then

3A

r—a

N(K,rL) < ' N(KNE,ZL).
) ;

“Dual” version (entropy lifting):

Let O < a < r < A. Let K be a symmetric
convex body in R". Let P : R"*" — R" be a
projection of corank k.

N(K,rL) < (ﬂ)k N(PK, gPL).



3. Rogers-Shephard inequality. Let K, L be
a convex body in R"™ and E be a k-dimensional
subspace of R™. Then

mn
K| < |PrK| max|(K —z) N EL| < K].
K| <|PpK| max|(K —2) n B4 < () K]

Theorem 1 (entropy decomposition).

Let K, L1, and L, be subsets of R". Let E
be a subspace of R"® and P : R"* — R"™ be a
projection with ker P = E. Then

N(K7L1 + LQ)

< N (PK,PLy) max N (K —-L1—2)NE,L>)
zZE

< N(PK,PL)) N((K—-K—-L{)NE,L>).

Remark. In fact this theorem implies “entropy
extension” and “entropy lifting" .



Proofs
Extension and lifting properties of entropy.

Having N (K, L1+ Lp)
<N(PK,PL1) N((K—-K—-L1)NE,Lp), (%)
want to prove

3A
r—a

forO<a<r< Aand K C AL.

N(K,rL) < ' N(KNE,ZL).
) ;

Let € :=r — a. First, by the convexity of L,
N(K,rL) < N(K, %K + al).

Using (%) with L1 = (¢/A)K and Ly = al,

N(K,rL) < N (PK, %PK) N ((2 1 %) KNE, aL> |

Now, the first factor is bounded by (34/¢)*
(standard volume argument), the second fac-
tor is bounded by N(3K N E,al).



Now using N (K,L1+ Lo)
<N(PK,PL1) N((K—-K—L1)NE, L), (%)
want to prove

6A

T —a

N(K,rL) < ' N(PK,2PL).
) :

for a < r < A and projection P on E-+.

Using (%) with Ly = alL and L, = L we get

N(K,rL) < N(PK,aPL) N (2K + aL) N E,eL).

<N (PK, %PL) N (((2A4 a)L) N E,eL)

6A
=

r—a

k a
) N(PK, ZPL).



Proof of Theorem 1. Set N; := N(PK, PLy).
Then there are z; € PK, + < N7, such that

Ny
PK C |J (4 PL1).
1=1

For every z € K fix i(z), y € PL1 such that

Pr = z;(z) T Yz

For «: < Np pick z; € K such that Pz, = z;, for
every y € PLy pick y € L1 such that Py = y.

Now for every z € K define
’U(CB) — Ei(w) + Yz € 57;(;,;) + L1,
wlzx) =z —v(z) =x — Zi(z) — Ya-
Denote
T, =K —L1— 2z, for 1 < Nj.
Then w(x) € Tz(x) and
Pw(x) = Pz — Pv(x) = Px — Zi(z) — Yz = 0.
Thus w(z) € T;,) N E and, hence,
x=w(x) +v(x) € Tix) N E + 25 + L1
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This implies

Ny
Kc | (inE+Z, +L1).
1=1

Since for every 1 < Ny,
N(T;NE,Ly) <maxN (K —-Ly—2)NE,L>y),
z

cK
we obtain

N(K,L1+ L) < Ny maxN (K — L1 —2)NE, L2).
zE
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Lower bound.

Recall, N(K,Ll—I-LQ)

S N(PKale) N((K_K_Ll)mEaL2)7 (*)
Theorem 2. Lette (0,1), K1, Ko be subsets
of R™ and Ly, Lo, be symmetric convex bodies

in R*. Let P : R — R be a projection and
E = ker P. Then

N (K1 + (1= ), (11) 0 (1 = DL2) )

> N(PKl, 2PL1) N(K2 N E, 2L N E)

In particular taking K1 = Ko we have
N(K (L) N (1 - L))
> N(PK, 2PL1) N(K N E,2L5N E)
and taking L1 = ((1 —t)/t) Lo,

N(K,L) > NtPK,2PL) N((1—-t)KNE,2LNE).
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We will need the notion of packing numbers.
For K and L in R™ the packing number P(K, L)
of K by L is the maximal number M such that
there exist vectors z; € K, 1 < M satisfying

(z;+L)N(z;+L) =10 for every i 7~ .

In other words, x; —xz; € Lo := L — L. Such set
of points we also call Lg-separated set. It is
well known that if L is symmetric convex body
then

N(K,2L) < P(K,L) < N(K, L).
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Proof of Theorem 2. Define N1 and N> by
Ny = P(PKl,PLl) > N(PKl,QPLl).

Then there are zy,...,zny; € PKp such that
zi —z; ¢ 2PL1 whenever ¢ 7 j. For 1 <i: < N;
pick z; € K1 such that Pz, = z;.

No :=P(K>NE,LobNE) > N(K>NE,2L>NE).

Then there exist wq,...,wyn, IN Ko N E such

2
that Wi — Wy Z 2Ly if k# 4.

For every : < N1 and k£ < N» denote
r; ) ‘=tz + (1 — t)wy and consider the set

A= CtK1+ (1 —t)K>.

x.
{ Z>k}i§N1, k<No

We show that A is well separated, namely

v i & (2ALDNRA-)L) If (i, k) # (4, 0).

If i #j then P(x; ), — ;) = t(z —25) € 2tPL,
SO zjp —xj¢ & 2tLy. If ¢ = j then k = £ and
rip—Tj¢= (1 —t)(wp—wy) €2(1—-t)Lr. Thus

P(tK1 4+ (1 —t)Ka2, (tL1) N ((1 — ) L2))
> Ny{N> > N(PK{,2PL1)N(K>NE,2L>N E).
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Application to Euclidean metric entropy.
sharpness of Sudakov inequality.

Recall, given a convex body K C R with the
origin in its interior,

Mg =MK) = [ ok dv
and
n
U(K)=E|)_ giei| <+nMg.
1=1 K

Sudakov inequality:

N(K,tB%) < exp (5 <€(KO) /t)2> .

When it is sharp? In other words, when the
covering number is big?

Recall, if we control diameter of a section then
we control the covering number. Thus, if the
covering number is big then every subspaces
has a big diameter. We can quantify it as
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Proposition. Let R > 1, n> 0, and K C RL
be symmetric convex bodies in R"™ such that

N(K,L) > exp (nn).

Then for every k-codimensional subspace E of
R"™ with

k= |—1"
~ |In(12R)
one has

KNE¢ ;L.

Thus, if Sudakov inequality is almost sharp,
i.e., if

N(K,B) = exp (e(Mj)?n) ,
for some £ > 0, then for

e (M*)?n ]

= ko = 1 aR(K)

every k-codimensional section of K has diam-
eter at least 1/4.
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Usually, to improve covering of K by Euclidean
balls we use truncations Kg = K N gB5. The
ideas above leads to the following intuition:

Let e >0, 8> 1, and
N(K,BB) = exp (e(Mj)?n) ,

then we have two distinct possibilities:

I. Either the covering number N(K, Bf) can
be significantly decreased by cutting K on
the level 8, (which means that “most” of
the entropy of K comes from parts far from
BY);

II. or every k'-codimensional section of K has
large diameter, for an appropriate choice
of k' > kg depending on 8.

Below we discuss the first case.
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Theorem 3. Let K C R be a symmetric con-
vex body. Let p >0 and B > 4p. Then

€<K0> 5 35
N(Kg,4pBS) <exp |2 (pp) |n7

Remark. Note that / (KS) can be much smaller
than /¢ (Kg) given by Sudakov inequality.

Idea of proof. To choose

k~ (6(KJ)/p)?

and to apply so-called “low M*-estimate” say-
ing that there exists k-codimensional subspace
E such that

KNE C pB5.

Then to apply entropy extension theorem.
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Now we consider coverings without truncations.
Define F' = F by
0(K9)

o\
£(Kp)
This function can be used to measure a possi-
ble gain in Sudakov estimates. Rewriting Su-

dakov inequality we get
2
) F(p)? |,

which should be compared with the following:

F(p) =

(K,
N(K,8pB%) <exp|5 5
P

Theorem 4. Let K be a symmetric convex
body and p > 0. Then

£(K7)
N(K,8pBE) <exp |2
)

2
) In (6 F(p))
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Proof:

N(K,8 p BY)
< N(K, (2K) 1 28B3) N(2K, 8 p B)

Applying Sudakov inequality to the first factor
and Theorem 3 to the second one, we observe

N(K,8p B%)

2 0\\ 2
<exp|b (E(K%) + 2 (E <Kp)) In%
20 p p

Optimizing in 8, we obtain the result.
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