Moments of unconditional logarithmically concave vectors

Rafał Latała
University of Warsaw and Polish Academy of Sciences

Toronto, September 172010

Definitions

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector in \mathbb{R}^{n} with full dimensional support. We say that the distribution of X is

- logaritmically concave, if X has density of the form $e^{-h(x)}$ with $h: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ convex;
- unconditional, if $\left(\eta_{1} X_{1}, \ldots, \eta_{n} X_{n}\right)$ has the same distribution as X for any choice of signs $\eta_{1}, \ldots, \eta_{n}$;
- isotropic, if $\mathbb{E} X_{i}=0$ and $\mathbb{E} X_{i} X_{j}=\delta_{i, j}$.

If $\mathbb{E}|X|^{2}<\infty$ then there exists an affine transformation T such that $T X$ is isotropic.

If X is unconditional and $\mathbb{E}|X|^{2}<\infty$ then there exists a diagonal transformation D such that $D X$ is unconditional and isotropic.

Logarithmically concave vectors have finite all moments.

Definitions

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector in \mathbb{R}^{n} with full dimensional support. We say that the distribution of X is

- logaritmically concave, if X has density of the form $e^{-h(x)}$ with $h: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ convex;
- unconditional, if $\left(\eta_{1} X_{1}, \ldots, \eta_{n} X_{n}\right)$ has the same distribution as X for any choice of signs $\eta_{1}, \ldots, \eta_{n}$;
- isotropic, if $\mathbb{E} X_{i}=0$ and $\mathbb{E} X_{i} X_{j}=\delta_{i, j}$.

If $\mathbb{E}|X|^{2}<\infty$ then there exists an affine transformation T such that $T X$ is isotropic.

If X is unconditional and $\mathbb{E}|X|^{2}<\infty$ then there exists a diagonal transformation D such that $D X$ is unconditional and isotropic.

Iogarithmically concave vectors have finite all moments.

Definitions

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector in \mathbb{R}^{n} with full dimensional support. We say that the distribution of X is

- logaritmically concave, if X has density of the form $e^{-h(x)}$ with $h: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ convex;
- unconditional, if $\left(\eta_{1} X_{1}, \ldots, \eta_{n} X_{n}\right)$ has the same distribution as X for any choice of signs $\eta_{1}, \ldots, \eta_{n}$;
- isotropic, if $\mathbb{E} X_{i}=0$ and $\mathbb{E} X_{i} X_{j}=\delta_{i, j}$.

If $\mathbb{E}|X|^{2}<\infty$ then there exists an affine transformation T such that $T X$ is isotropic.
If X is unconditional and $\mathbb{E}|X|^{2}<\infty$ then there exists a diagonal transformation D such that $D X$ is unconditional and isotropic.

Logarithmically concave vectors have finite all moments.

Definitions

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be a random vector in \mathbb{R}^{n} with full dimensional support. We say that the distribution of X is

- logaritmically concave, if X has density of the form $e^{-h(x)}$ with $h: \mathbb{R}^{n} \rightarrow(-\infty, \infty]$ convex;
- unconditional, if $\left(\eta_{1} X_{1}, \ldots, \eta_{n} X_{n}\right)$ has the same distribution as X for any choice of signs $\eta_{1}, \ldots, \eta_{n}$;
- isotropic, if $\mathbb{E} X_{i}=0$ and $\mathbb{E} X_{i} X_{j}=\delta_{i, j}$.

If $\mathbb{E}|X|^{2}<\infty$ then there exists an affine transformation T such that $T X$ is isotropic.
If X is unconditional and $\mathbb{E}|X|^{2}<\infty$ then there exists a diagonal transformation D such that $D X$ is unconditional and isotropic.

Logarithmically concave vectors have finite all moments.

Examples

During this talk we will assume that $X=\left(X_{1}, \ldots, X_{n}\right)$ is logconcave, isotropic and unconditional.

Basic examples:

- standard normal vector $X=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} are i.i.d. $\mathcal{N}(0,1)$;
- X_{i} independent symmetric with (one dimensional) logarithmically concave distribution normalized in such a way that $\mathbb{E} X_{i}^{2}=1$;
- Uniform distributions on unconditional convex bodies normalized to satisfy $\mathbb{E} X_{i}^{2}=1$ (for example uniform distributions on $\alpha_{r, n} B_{r}^{n}, \alpha_{r, n} \sim n^{1 / r}$).

Examples

During this talk we will assume that $X=\left(X_{1}, \ldots, X_{n}\right)$ is logconcave, isotropic and unconditional.

Basic examples:

- standard normal vector $X=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} are i.i.d. $\mathcal{N}(0,1)$;
- X_{i} independent symmetric with (one dimensional) logarithmically concave distribution normalized in such a way that $\mathbb{E} X_{i}^{2}=1$;
- Uniform distributions on unconditional convex bodies normalized to satisfy $\mathbb{E} X_{i}^{2}=1$ (for example uniform distributions on $\alpha_{r, n} B_{r}^{n}, \alpha_{r, n} \sim n^{1 / r}$).

Examples

During this talk we will assume that $X=\left(X_{1}, \ldots, X_{n}\right)$ is logconcave, isotropic and unconditional.

Basic examples:

- standard normal vector $X=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} are i.i.d. $\mathcal{N}(0,1)$;
- X_{i} independent symmetric with (one dimensional)
logarithmically concave distribution normalized in such a way that $\mathbb{E} X_{i}^{2}=1$;
- Uniform distributions on unconditional convex bodies normalized to satisfy $\mathbb{E} X_{i}^{2}=1$ (for example uniform distributions on $\left.\alpha_{r, n} B_{r}^{n}, \alpha_{r, n} \sim n^{1 / r}\right)$.

Examples

During this talk we will assume that $X=\left(X_{1}, \ldots, X_{n}\right)$ is logconcave, isotropic and unconditional.

Basic examples:

- standard normal vector $X=\left(g_{1}, \ldots, g_{n}\right)$, where g_{i} are i.i.d. $\mathcal{N}(0,1)$;
- X_{i} independent symmetric with (one dimensional)
logarithmically concave distribution normalized in such a way that $\mathbb{E} X_{i}^{2}=1$;
- Uniform distributions on unconditional convex bodies normalized to satisfy $\mathbb{E} X_{i}^{2}=1$ (for example uniform distributions on $\left.\alpha_{r, n} B_{r}^{n}, \alpha_{r, n} \sim n^{1 / r}\right)$.

Moments and tails

For a random variable S (or more general a random vector with values in a normed space) and $p>0$, we put $\|S\|_{p}:=\left(\mathbb{E}|S|^{p}\right)^{1 / p}$ (resp. $\left.\|S\|_{p}:=\left(\mathbb{E}\|S\|^{p}\right)^{1 / p}\right)$.

Moments and tails are strictly related. Chebyshev's inequality gives

$$
\mathbb{P}\left(\|S\| \geq e\|S\|_{p}\right) \leq e^{-p}
$$

Moreover if $\|S\|_{2 p} \leq \alpha\|S\|_{p}$ then by the Paley-Zygmund inequality

For scalar or vector valued combinations of coordinates of logconcave vectors and $p \geq 2$ we have $\|S\|_{2 p} \leq C\|S\|_{p}(C=2$ in the scalar case).

Moments and tails

For a random variable S (or more general a random vector with values in a normed space) and $p>0$, we put $\|S\|_{p}:=\left(\mathbb{E}|S|^{p}\right)^{1 / p}$ (resp. $\|S\|_{p}:=\left(\mathbb{E}\|S\|^{p}\right)^{1 / p}$).
Moments and tails are strictly related. Chebyshev's inequality gives

$$
\mathbb{P}\left(\|S\| \geq e\|S\|_{p}\right) \leq e^{-p}
$$

Moreover if $\|S\|_{2 p} \leq \alpha\|S\|_{p}$ then by the Paley-Zygmund inequality

For scalar or vector valued combinations of coordinates of logconcave vectors and $p \geq 2$ we have $\|S\|_{2 p} \leq C\|S\|_{p}(C=2$ in the scalar case)

Moments and tails

For a random variable S (or more general a random vector with values in a normed space) and $p>0$, we put $\|S\|_{p}:=\left(\mathbb{E}|S|^{p}\right)^{1 / p}$ (resp. $\|S\|_{p}:=\left(\mathbb{E}\|S\|^{p}\right)^{1 / p}$).
Moments and tails are strictly related. Chebyshev's inequality gives

$$
\mathbb{P}\left(\|S\| \geq e\|S\|_{p}\right) \leq e^{-p}
$$

Moreover if $\|S\|_{2 p} \leq \alpha\|S\|_{p}$ then by the Paley-Zygmund inequality

$$
\mathbb{P}\left(\|S\| \geq \frac{1}{C(\alpha)}\|S\|_{p}\right) \geq e^{-\max \{C(\alpha), p\}}
$$

For scalar or vector valued combinations of coordinates of logconcave vectors and $p \geq 2$ we have $\|S\|_{2 p} \leq C\|S\|_{p}(C=2$ in the scalar case)

Moments and tails

For a random variable S (or more general a random vector with values in a normed space) and $p>0$, we put $\|S\|_{p}:=\left(\mathbb{E}|S|^{p}\right)^{1 / p}$ (resp. $\|S\|_{p}:=\left(\mathbb{E}\|S\|^{p}\right)^{1 / p}$).
Moments and tails are strictly related. Chebyshev's inequality gives

$$
\mathbb{P}\left(\|S\| \geq e\|S\|_{p}\right) \leq e^{-p}
$$

Moreover if $\|S\|_{2 p} \leq \alpha\|S\|_{p}$ then by the Paley-Zygmund inequality

$$
\mathbb{P}\left(\|S\| \geq \frac{1}{C(\alpha)}\|S\|_{p}\right) \geq e^{-\max \{C(\alpha), p\}}
$$

For scalar or vector valued combinations of coordinates of logconcave vectors and $p \geq 2$ we have $\|S\|_{2 p} \leq C\|S\|_{p}(C=2$ in the scalar case).

Notation

- $\left(g_{i}\right)$ - a sequence of independent normal standard random variables $\mathcal{N}(0,1)$;
- $\left(\varepsilon_{i}\right)$ - a Bernoulli sequence (i.e. a sequence of i.i.d. symmetric ± 1 r.v.s) independent of other random variables;
- $\left(\mathcal{E}_{i}\right)$ - a sequence of i.i.d. symmetric exponential r.v.'s with variance 1 (i.e. the density $\left.\frac{1}{\sqrt{2}} \exp (-\sqrt{2}|x|)\right)$.

Notation

- $\left(g_{i}\right)$ - a sequence of independent normal standard random variables $\mathcal{N}(0,1)$;
- $\left(\varepsilon_{i}\right)$ - a Bernoulli sequence (i.e. a sequence of i.i.d. symmetric ± 1 r.v.s) independent of other random variables;
- $\left(\mathcal{E}_{i}\right)$ - a sequence of i.i.d. symmetric exponential r.v.'s with variance 1 (i.e. the density $\left.\frac{1}{\sqrt{2}} \exp (-\sqrt{2}|x|)\right)$.
- C - universal constants (that may take different values at each occurence).

Notation

- $\left(g_{i}\right)$ - a sequence of independent normal standard random variables $\mathcal{N}(0,1)$;
- $\left(\varepsilon_{i}\right)$ - a Bernoulli sequence (i.e. a sequence of i.i.d. symmetric ± 1 r.v.s) independent of other random variables;
- $\left(\mathcal{E}_{i}\right)$ - a sequence of i.i.d. symmetric exponential r.v.'s with variance 1 (i.e. the density $\left.\frac{1}{\sqrt{2}} \exp (-\sqrt{2}|x|)\right)$.
- C - universal constants (that may take different values at each occurence).
- For two functions f and g we write $f \sim g$ if $\frac{1}{C} f \leq g \leq C f$.

- $\left(g_{i}\right)$ - a sequence of independent normal standard random variables $\mathcal{N}(0,1)$;
- $\left(\varepsilon_{i}\right)$ - a Bernoulli sequence (i.e. a sequence of i.i.d. symmetric ± 1 r.v.'s) independent of other random variables;
- $\left(\mathcal{E}_{i}\right)$ - a sequence of i.i.d. symmetric exponential r.v.'s with variance 1 (i.e. the density $\left.\frac{1}{\sqrt{2}} \exp (-\sqrt{2}|x|)\right)$.
- C - universal constants (that may take different values at each occurence).
- For two functions f and g we write $f \sim g$ if $\frac{1}{C} f \leq g \leq C f$.

Our goal is to find a "reasonable" function $f=f_{X, p}$ such that for any scalars $a_{i},\left\|\sum_{i} a_{i} X_{i}\right\|_{p} \sim f\left(a_{1}, \ldots, a_{n}\right)$ or more general for any vectors $v_{i},\left\|\sum_{i} v_{i} X_{i}\right\|_{p} \sim f\left(v_{1}, \ldots, v_{n}\right)$.

Gaussian Case

For any scalars a_{i} and $p \geq 1$,

$$
\left\|\sum_{i=1}^{n} a_{i} g_{i}\right\|_{p}=\gamma_{p}\|a\|_{2} \sim \sqrt{p}\|a\|_{2}
$$

where

$$
\gamma_{p}=\left\|g_{i}\right\|_{p}=\sqrt{2}\left[\frac{1}{\sqrt{\pi}} \Gamma\left(\frac{p+1}{2}\right)\right]^{1 / p} .
$$

Gaussian concentration implies that for any vectors v_{i} in $(F,\| \|)$,

Gaussian Case

For any scalars a_{i} and $p \geq 1$,

$$
\left\|\sum_{i=1}^{n} a_{i} g_{i}\right\|_{p}=\gamma_{p}\|a\|_{2} \sim \sqrt{p}\|a\|_{2}
$$

where

$$
\gamma_{p}=\left\|g_{i}\right\|_{p}=\sqrt{2}\left[\frac{1}{\sqrt{\pi}} \Gamma\left(\frac{p+1}{2}\right)\right]^{1 / p}
$$

Gaussian concentration implies that for any vectors v_{i} in $(F,\| \|)$,

$$
\left\|\sum_{i=1}^{n} v_{i} g_{i}\right\|_{p} \sim\left\|\sum_{i=1}^{n} v_{i} g_{i}\right\|_{1}+\sup _{\|\varphi\|_{*} \leq 1} \sqrt{p}\left\|\left(\varphi\left(v_{i}\right)\right)\right\|_{2}
$$

For any scalars a_{i} and $p \geq 1$,
$\left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|_{p}=\left\|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\left|X_{i}\right|\right\|_{p} \geq\left\|\sum_{i=1}^{n} a_{i} \varepsilon_{i} \mathbb{E}\left|X_{i}\right|\right\|_{p} \geq \frac{1}{C}\left\|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right\|_{p}$.
Montgomery-Smith'90 and Hitczenko'93

where $\left(a_{i}^{*}\right)$ denotes the noincreasing rearrangement of $\left(a_{i}\right)$.

For any scalars a_{i} and $p \geq 1$,

$$
\left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|_{p}=\left\|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\left|X_{i}\right|\right\|_{p} \geq\left\|\sum_{i=1}^{n} a_{i} \varepsilon_{i} \mathbb{E}\left|X_{i}\right|\right\|_{p} \geq \frac{1}{C}\left\|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right\|_{p} .
$$

Montgomery-Smith'90 and Hitczenko'93

$$
\left\|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right\|_{p} \sim \sum_{i \leq p} a_{i}^{*}+\sqrt{p}\left(\sum_{i>p}\left(a_{i}^{*}\right)^{2}\right)^{1 / 2}
$$

where $\left(a_{i}^{*}\right)$ denotes the noincreasing rearrangement of $\left(a_{i}\right)$.

Upper estimate of moments - scalar case

Less trivial upper bound follows by Bobkov-Nazarov'03 result

$$
\left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|_{p} \leq C\left\|\sum_{i=1}^{n} a_{i} \mathcal{E}_{i}\right\|_{p} \quad p \geq 2
$$

Gluskin and Kwapień'95 showed that

Upper estimate of moments - scalar case

Less trivial upper bound follows by Bobkov-Nazarov'03 result

$$
\left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|_{p} \leq C\left\|\sum_{i=1}^{n} a_{i} \mathcal{E}_{i}\right\|_{p} \quad p \geq 2
$$

Gluskin and Kwapień'95 showed that

$$
\left\|\sum_{i=1}^{n} a_{i} \mathcal{E}_{i}\right\|_{p} \sim p\|a\|_{\infty}+\sqrt{p}\|a\|_{2}
$$

Two-sided estimate - independent scalar case

Theorem (Gluskin-Kwapien'95)

Let Y_{i} be independent symmetric r.v's with logconcave tails such that $\mathbb{E} Y_{i}^{2}=1$. We put $N_{i}(t)=-\ln \mathbb{P}\left(\left|Y_{i}\right| \geq t\right)$ for $t>1$ and $N_{i}(t)=t^{2}$ for $t \in[0,1]$. Then for any $p \geq 2$,

$$
\left\|\sum_{i=1}^{n} a_{i} Y_{i}\right\|_{p} \sim \sup \left\{\sum_{i=1}^{n} a_{i} b_{i}: \quad \sum_{i} N_{i}\left(\left|b_{i}\right|\right) \leq p\right\} .
$$

It is not hard to notice that

Theorem (Gluskin-Kwapien'95)

Let Y_{i} be independent symmetric r.v's with logconcave tails such that $\mathbb{E} Y_{i}^{2}=1$. We put $N_{i}(t)=-\ln \mathbb{P}\left(\left|Y_{i}\right| \geq t\right)$ for $t>1$ and $N_{i}(t)=t^{2}$ for $t \in[0,1]$. Then for any $p \geq 2$,

$$
\left\|\sum_{i=1}^{n} a_{i} Y_{i}\right\|_{p} \sim \sup \left\{\sum_{i=1}^{n} a_{i} b_{i}: \quad \sum_{i} N_{i}\left(\left|b_{i}\right|\right) \leq p\right\} .
$$

It is not hard to notice that

$$
\begin{aligned}
\sup \left\{\sum_{i=1}^{n} a_{i} b_{i}:\right. & \left.\sum_{i} N_{i}\left(\left|b_{i}\right|\right) \leq p\right\} \\
& \sim \sqrt{p}\left(\sum_{i \neq I_{p}} a_{i}^{2}\right)^{1 / 2}+\sup \left\{\sum_{i \in I_{p}} a_{i} b_{i}: \sum_{i \in I_{p}} N_{i}\left(\left|b_{i}\right|\right) \leq p\right\},
\end{aligned}
$$

where $\left(\left|a_{i}\right|\right)_{i \in I_{p}}$ are $\min \{p, n\}$ largest values of $\left|a_{i}\right|$.

More precise estimate - scalar independent case

In fact one can get

Theorem

Let Y_{i}, N_{i} and I_{p} be as before. Then for any $p \geq 2$,

$$
\begin{aligned}
& \max \left\{\gamma_{p}\left(\sum_{i \neq I_{p / 2}} a_{i}^{2}\right)^{1 / 2}, \frac{1}{C} \sup \left\{\sum_{i \in I_{p / 2}} a_{i} b_{i}: \sum_{i \in I_{p / 2}} N_{i}\left(\left|b_{i}\right|\right) \leq p\right\}\right\} \\
& \leq\left\|\sum_{i=1}^{n} a_{i} Y_{i}\right\|_{p} \\
& \quad \leq \gamma_{p}\left(\sum_{i \notin I_{p / 2}} a_{i}^{2}\right)^{1 / 2}+C \sup \left\{\sum_{i \in I_{p / 2}} a_{i} b_{i}: \sum_{i \in I_{p / 2}} N_{i}\left(\left|b_{i}\right|\right) \leq p\right\}
\end{aligned}
$$

More precise estimate - scalar independent case

In fact one can get

Theorem

Let Y_{i}, N_{i} and I_{p} be as before. Then for any $p \geq 2$,

$$
\begin{aligned}
& \max \left\{\gamma_{p}\left(\sum_{i \neq I_{p / 2}} a_{i}^{2}\right)^{1 / 2}, \frac{1}{C} \sup \left\{\sum_{i \in I_{p / 2}} a_{i} b_{i}: \sum_{i \in I_{p / 2}} N_{i}\left(\left|b_{i}\right|\right) \leq p\right\}\right\} \\
& \leq\left\|\sum_{i=1}^{n} a_{i} Y_{i}\right\|_{p} \\
& \quad \leq \gamma_{p}\left(\sum_{i \notin I_{p / 2}} a_{i}^{2}\right)^{1 / 2}+C \sup \left\{\sum_{i \in I_{p / 2}} a_{i} b_{i}: \sum_{i \in I_{p / 2}} N_{i}\left(\left|b_{i}\right|\right) \leq p\right\}
\end{aligned}
$$

and

$$
\left|\left\|\sum_{i=1}^{n} a_{i} Y_{i}\right\|_{p}-\gamma_{p}\|a\|_{2}\right| \leq p\|a\|_{\infty}
$$

Theorem

There exists a constant C such that for any $p \geq 2$,

$$
\begin{aligned}
& \left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|_{p} \\
& \quad \sim \inf _{\# I=\min \{\lfloor p\rfloor, n\}} \sup \left\{\sum_{i \in I} a_{i} x_{i}+\sqrt{p}\left(\sum_{i \neq I} a_{i}^{2}\right)^{1 / 2}: g_{l}(x) \geq e^{-C p}\right\} \\
& \quad \sim \sup \left\{\sum_{i \in I_{p}} a_{i} x_{i}+\sqrt{p}\left(\sum_{i \notin I_{p}} a_{i}^{2}\right)^{1 / 2}: g_{l_{p}}(x) \geq e^{-C p}\right\},
\end{aligned}
$$

where g_{I} is a density of $\left(X_{i}\right)_{i \in I}$ and $\left(\left|a_{i}\right|\right)_{i \in I_{p}}$ are $\min \{p, n\}$ largest values of $\left|a_{i}\right|$.

Uniform distribution on B_{r}^{n}

If X has a uniform distribution on $\alpha_{r, n} B_{r}^{n}$ then for $p \geq 2$

$$
\left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|_{p} \sim \min \{p, n\}^{1 / r}\left(\sum_{i \leq p}\left|a_{i}^{*}\right|^{\prime}\right)^{1 / r^{\prime}}+\sqrt{p}\left(\sum_{i>p}\left|a_{i}^{*}\right|^{2}\right)^{1 / 2}
$$

where $\frac{1}{r}+\frac{1}{r^{\prime}}=1$ (Barthe,Guedon, Mendelson, Naor'05).
In particular

where $X_{1}^{*}, \ldots, X_{n}^{*}$ are independent such that X_{i} has the same distribution as X_{i}.

Uniform distribution on B_{r}^{n}

If X has a uniform distribution on $\alpha_{r, n} B_{r}^{n}$ then for $p \geq 2$

$$
\left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|_{p} \sim \min \{p, n\}^{1 / r}\left(\sum_{i \leq p}\left|a_{i}^{*}\right|^{\prime}\right)^{1 / r^{\prime}}+\sqrt{p}\left(\sum_{i>p}\left|a_{i}^{*}\right|^{2}\right)^{1 / 2},
$$

where $\frac{1}{r}+\frac{1}{r^{\prime}}=1$ (Barthe,Guedon, Mendelson, Naor'05).
In particular

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|_{p} \sim\left\|\sum_{i=1}^{n} a_{i} X_{i}^{*}\right\|_{p} \quad \text { for } 2 \leq p \leq n \tag{1}
\end{equation*}
$$

where $X_{1}^{*}, \ldots, X_{n}^{*}$ are independent such that X_{i} has the same distribution as X_{i}.

Uniform distribution on Orlicz balls

The result of Pilipczuk and Wojtaszczyk'08 implies that

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|_{p} \leq C\left\|\sum_{i=1}^{n} a_{i} X_{i}^{*}\right\|_{p} \text { for } p \geq 2 \tag{2}
\end{equation*}
$$

if X is uniformly distributed on Orlicz ball.
\square
logconcave vectors X (for example unconditional and permutation invariant)

Uniform distribution on Orlicz balls

The result of Pilipczuk and Wojtaszczyk'08 implies that

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} a_{i} X_{i}\right\|_{p} \leq C\left\|\sum_{i=1}^{n} a_{i} X_{i}^{*}\right\|_{p} \text { for } p \geq 2 \tag{2}
\end{equation*}
$$

if X is uniformly distributed on Orlicz ball.
It is natural to ask if (1) or (2) holds for more general class of logconcave vectors X (for example unconditional and permutation invariant)

Moments - vector case

Theorem

For any vectors v_{i} in a normed space

$$
\frac{1}{C}\left\|\sum_{i=1}^{n} v_{i} \varepsilon_{i}\right\|_{p} \leq\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{p} \leq C\left\|\sum_{i=1}^{n} v_{i} \mathcal{E}_{i}\right\|_{p}
$$

Lower estimate may be shown as in the scalar case. Upper follows from Bobkov-Nazarov's result and Talagrand's estimation of suprema of linear combinations of exponential random variables (generic chaining technique)

Corollary

For any $t>0$

Moments - vector case

Theorem

For any vectors v_{i} in a normed space

$$
\frac{1}{C}\left\|\sum_{i=1}^{n} v_{i} \varepsilon_{i}\right\|_{p} \leq\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{p} \leq C\left\|\sum_{i=1}^{n} v_{i} \mathcal{E}_{i}\right\|_{p}
$$

Lower estimate may be shown as in the scalar case. Upper follows from Bobkov-Nazarov's result and Talagrand's estimation of suprema of linear combinations of exponential random variables (generic chaining technique).

Moments - vector case

Theorem

For any vectors v_{i} in a normed space

$$
\frac{1}{C}\left\|\sum_{i=1}^{n} v_{i} \varepsilon_{i}\right\|_{p} \leq\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{p} \leq C\left\|\sum_{i=1}^{n} v_{i} \mathcal{E}_{i}\right\|_{p}
$$

Lower estimate may be shown as in the scalar case. Upper follows from Bobkov-Nazarov's result and Talagrand's estimation of suprema of linear combinations of exponential random variables (generic chaining technique).

Corollary

For any $t>0$

$$
\frac{1}{C} \mathbb{P}\left(\left\|\sum_{i=1}^{n} v_{i} \varepsilon_{i}\right\| \geq C t\right) \leq \mathbb{P}\left(\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\| \geq t\right) \leq C \mathbb{P}\left(\left\|\sum_{i=1}^{n} v_{i} \mathcal{E}_{i}\right\| \geq \frac{t}{C}\right)
$$

Weak and strong moments

Using Talagrand's two level concentration for the product exponential distribution one can prove that

Theorem

If X_{i} are independent, symmetric, logconcave then for $p \geq 1$,

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{p} \sim\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{1}+\sup _{\|\varphi\|_{*} \leq 1}\left\|\sum_{i=1}^{n} \varphi\left(v_{i}\right) X_{i}\right\|_{p} \tag{3}
\end{equation*}
$$

Conjecture

Estimate (3) holds for any (unconditional) logconcave random vector X

Theorem (L.,Wojtaszczyk' 08)
(3) holds for uniform distributions on B_{r}^{n}

Weak and strong moments

Using Talagrand's two level concentration for the product exponential distribution one can prove that

Theorem

If X_{i} are independent, symmetric, logconcave then for $p \geq 1$,

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{p} \sim\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{1}+\sup _{\|\varphi\|_{*} \leq 1}\left\|\sum_{i=1}^{n} \varphi\left(v_{i}\right) X_{i}\right\|_{p} \tag{3}
\end{equation*}
$$

Conjecture

Estimate (3) holds for any (unconditional) logconcave random vector X.

Theorem (L., Wojtaszczyk' 08)
(3) holds for uniform distributions on B_{r}^{n}.

Weak and strong moments

Using Talagrand's two level concentration for the product exponential distribution one can prove that

Theorem

If X_{i} are independent, symmetric, logconcave then for $p \geq 1$,

$$
\begin{equation*}
\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{p} \sim\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{1}+\sup _{\|\varphi\|_{*} \leq 1}\left\|\sum_{i=1}^{n} \varphi\left(v_{i}\right) X_{i}\right\|_{p} \tag{3}
\end{equation*}
$$

Conjecture

Estimate (3) holds for any (unconditional) logconcave random vector X.

Theorem (L.,Wojtaszczyk'08)

(3) holds for uniform distributions on B_{r}^{n}.

Connection with concentration

Comparison of weak and strong moments is related to the following concentration problem for symmetric (unconditional) logconcave measures μ :
Is it true that

$$
1-\mu\left(A+\mathcal{Z}_{\mu}(p)\right) \leq e^{-p / C} \quad \text { if } \mu(A) \geq 1 / 2
$$

where

$$
\mathcal{M}_{\mu}(p):=\left\{t \in \mathbb{R}^{n}: \int|\langle t, x\rangle|^{p} d \mu(x) \leq 1\right\}
$$

and

$$
\begin{aligned}
\mathcal{Z}_{\mu}(p) & :=\left(\mathcal{M}_{\mu}(p)\right)^{\circ} \\
& =\left\{y \in \mathbb{R}^{n}:|\langle t, y\rangle|^{p} \leq \int|\langle t, x\rangle|^{p} d \mu(x) \text { for all } t \in \mathbb{R}^{n}\right\} ?
\end{aligned}
$$

Weaker question

Is it true that

$$
\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{p} \leq C\left(\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{1}+\sup _{\|\varphi\|_{*} \leq 1}\left\|\sum_{i=1}^{n} \varphi\left(v_{i}\right) \mathcal{E}_{i}\right\|_{p}\right)
$$

or equivalently that
$\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{p} \leq C\left(\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{1}+\sup _{\|\varphi\|_{*} \leq 1} p\left\|\varphi\left(v_{i}\right)\right\|_{\infty}+\sqrt{p}\left\|\varphi\left(v_{i}\right)\right\|_{2}\right) ?$
This is related to the following question for isotropic 1-symmetric logconcave measures:
Is it true that

$$
\mu\left(A+\sqrt{t} B_{2}^{n}+t B_{1}^{n}\right) \geq \min \left\{\frac{1}{2}, e^{t / C} \mu(A)\right\} ?
$$

Resent results of Klartag and E. Milman implies that

$$
\mu\left(A+t \log n B_{2}^{n}\right) \leq \min \left\{\frac{1}{2}, e^{t / C} \mu(A)\right\}
$$

Weaker question

Is it true that

$$
\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{p} \leq C\left(\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{1}+\sup _{\|\varphi\|_{*} \leq 1}\left\|\sum_{i=1}^{n} \varphi\left(v_{i}\right) \mathcal{E}_{i}\right\|_{p}\right)
$$

or equivalently that
$\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{p} \leq C\left(\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{1}+\sup _{\|\varphi\|_{*} \leq 1} p\left\|\varphi\left(v_{i}\right)\right\|_{\infty}+\sqrt{p}\left\|\varphi\left(v_{i}\right)\right\|_{2}\right) ?$
This is related to the following question for isotropic 1-symmetric logconcave measures:
Is it true that

$$
\mu\left(A+\sqrt{t} B_{2}^{n}+t B_{1}^{n}\right) \geq \min \left\{\frac{1}{2}, e^{t / C} \mu(A)\right\} ?
$$

Resent results of Klartag and E. Milman implies that

Weaker question

Is it true that

$$
\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{p} \leq C\left(\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{1}+\sup _{\|\varphi\|_{*} \leq 1}\left\|\sum_{i=1}^{n} \varphi\left(v_{i}\right) \mathcal{E}_{i}\right\|_{p}\right)
$$

or equivalently that
$\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{p} \leq C\left(\left\|\sum_{i=1}^{n} v_{i} X_{i}\right\|_{1}+\sup _{\|\varphi\|_{*} \leq 1} p\left\|\varphi\left(v_{i}\right)\right\|_{\infty}+\sqrt{p}\left\|\varphi\left(v_{i}\right)\right\|_{2}\right) ?$
This is related to the following question for isotropic 1-symmetric logconcave measures:
Is it true that

$$
\mu\left(A+\sqrt{t} B_{2}^{n}+t B_{1}^{n}\right) \geq \min \left\{\frac{1}{2}, e^{t / C} \mu(A)\right\} ?
$$

Resent results of Klartag and E. Milman implies that

$$
\mu\left(A+t \log n B_{2}^{n}\right) \leq \min \left\{\frac{1}{2}, e^{t / C} \mu(A)\right\}
$$

Concentration far away from the origin

Proposition (L.,Wojtaszczyk)

Let μ be an isotropic unconditional, permutation invariant logconcave measures and $t \geq 1$. Then either

$$
\mu\left(\left(A+t B_{1}^{n}\right) \cap C \sqrt{n} B_{2}^{n}\right) \geq \frac{1}{2} \mu(A)
$$

or

$$
\mu\left(A+t B_{1}^{n}\right) \geq e^{t / C} \mu(A) .
$$

Sudakov minoration

How to estimate $\mathbb{E} \sup _{t \in T}\langle t, X\rangle$ for $T \subset \mathbb{R}^{n}$?
Suppose that $\# T \leq e^{P}$ and t_{0} is any vector then
$\mathbb{E} \sup _{t \in T}\langle t, X\rangle=\mathbb{E} \sup _{t \in T}\left\langle t-t_{0}, X\right\rangle \leq \mathbb{E} \sup _{t \in T}\left|\left\langle t-t_{0}, X\right\rangle\right|$
$\leq\left(\mathbb{E} \sup _{t \in T}\left|\left\langle t-t_{0} . X\right\rangle\right|^{p}\right)^{1 / p} \leq\left(\mathbb{E} \sum_{t \in T}\left|\left\langle t-t_{0}, X\right\rangle\right|^{p}\right)^{1 / p}$
$\leq e \sup _{t \in T}\left\|\left\langle t-t_{0}, X\right\rangle\right\|_{p}$.
May one in some way reverse this statement?

Conjecture (Sudakov-type minoration)

Suppose that $T \subset \mathbb{R}^{n}, \# T>e^{p}, p>2$ and for any $s, t \in A$,
$s \neq t$ one has $\|\langle t-s, X\rangle\|_{p} \geq A$. Then $\mathbb{E} \sup _{t \in T}\langle t, X\rangle \geq \frac{1}{C} A$.

Sudakov minoration

How to estimate $\mathbb{E} \sup _{t \in T}\langle t, X\rangle$ for $T \subset \mathbb{R}^{n}$?
Suppose that $\# T \leq e^{p}$ and t_{0} is any vector then

$$
\begin{aligned}
\mathbb{E} \sup _{t \in T}\langle t, X\rangle & =\mathbb{E} \sup _{t \in T}\left\langle t-t_{0}, X\right\rangle \leq \mathbb{E} \sup _{t \in T}\left|\left\langle t-t_{0}, X\right\rangle\right| \\
& \leq\left(\mathbb{E} \sup _{t \in T}\left|\left\langle t-t_{0}, X\right\rangle\right|^{p}\right)^{1 / p} \leq\left(\mathbb{E} \sum_{t \in T}\left|\left\langle t-t_{0}, X\right\rangle\right|^{p}\right)^{1 / p} \\
& \leq e \sup _{t \in T}\left\|\left\langle t-t_{0}, X\right\rangle\right\|_{p} .
\end{aligned}
$$

May one in some way reverse this statement?

Conjecture (Sudakov-type minoration)

Suppose that $T \subset \mathbb{R}^{n}, \# T>e^{p}, p>2$ and for any $s, t \in A$, $s \neq t$ one has $\|\langle t-s, X\rangle\|_{p} \geq A$. Then $\mathbb{E} \sup _{t \in T}\langle t, X\rangle \geq \frac{1}{C} A$.

How to estimate $\mathbb{E} \sup _{t \in T}\langle t, X\rangle$ for $T \subset \mathbb{R}^{n}$?
Suppose that $\# T \leq e^{p}$ and t_{0} is any vector then

$$
\begin{aligned}
\mathbb{E} \sup _{t \in T}\langle t, X\rangle & =\mathbb{E} \sup _{t \in T}\left\langle t-t_{0}, X\right\rangle \leq \mathbb{E} \sup _{t \in T}\left|\left\langle t-t_{0}, X\right\rangle\right| \\
& \leq\left(\mathbb{E} \sup _{t \in T}\left|\left\langle t-t_{0}, X\right\rangle\right|^{p}\right)^{1 / p} \leq\left(\mathbb{E} \sum_{t \in T}\left|\left\langle t-t_{0}, X\right\rangle\right|^{p}\right)^{1 / p} \\
& \leq e \sup _{t \in T}\left\|\left\langle t-t_{0}, X\right\rangle\right\|_{p} .
\end{aligned}
$$

May one in some way reverse this statement?

Conjecture (Sudakov-type minoration)

Suppose that $T \subset \mathbb{R}^{n}, \# T \geq e^{p}, p \geq 2$ and for any $s, t \in A$, $s \neq t$ one has $\|\langle t-s, X\rangle\|_{p} \geq A$. Then $\mathbb{E} \sup _{t \in T}\langle t, X\rangle \geq \frac{1}{C} A$.

Examples

If $G=\left(g_{1}, \ldots, g_{n}\right)$ is standard normal vector then
$\langle t, G\rangle \sim \mathcal{N}\left(0,\|t\|_{2}^{2}\right)$ and $\|\langle t-s, G\rangle\|_{p} \sim \sqrt{p}\|t-s\|_{2}$. Hence the conjectured estimate in this situation is equivalent to
$\mathbb{E} \sup _{t \in T}\langle t, G\rangle \geq \frac{1}{C} a \sqrt{\log N\left(T, a B_{2}^{n}\right)}$, that is Sudakov minoration for Gaussian processes.

More general if X_{i} are symmetric independent logconcave then Sudakov minoration holds (Talagrand'94, L'97).

Minoration conjecture holds if X has uniform distribution on B_{r}^{n} ball.

Examples

If $G=\left(g_{1}, \ldots, g_{n}\right)$ is standard normal vector then
$\langle t, G\rangle \sim \mathcal{N}\left(0,\|t\|_{2}^{2}\right)$ and $\|\langle t-s, G\rangle\|_{p} \sim \sqrt{p}\|t-s\|_{2}$. Hence the conjectured estimate in this situation is equivalent to
$\mathbb{E} \sup _{t \in T}\langle t, G\rangle \geq \frac{1}{C} a \sqrt{\log N\left(T, a B_{2}^{n}\right)}$, that is Sudakov minoration for Gaussian processes.

More general if X_{i} are symmetric independent logconcave then Sudakov minoration holds (Talagrand'94, L'97).

Minoration conjecture holds if X has uniform distribution on B_{r}^{n} ball.

Examples

If $G=\left(g_{1}, \ldots, g_{n}\right)$ is standard normal vector then
$\langle t, G\rangle \sim \mathcal{N}\left(0,\|t\|_{2}^{2}\right)$ and $\|\langle t-s, G\rangle\|_{p} \sim \sqrt{p}\|t-s\|_{2}$. Hence the conjectured estimate in this situation is equivalent to $\mathbb{E} \sup _{t \in T}\langle t, G\rangle \geq \frac{1}{C} a \sqrt{\log N\left(T, a B_{2}^{n}\right)}$, that is Sudakov minoration for Gaussian processes.

More general if X_{i} are symmetric independent logconcave then Sudakov minoration holds (Talagrand'94, L'97).

Minoration conjecture holds if X has uniform distribution on B_{r}^{n} ball.

Two observations

Suppose that $T \subset \mathbb{R}^{n}, \# T \geq e^{p}, p \geq 2$ and for any $s, t \in A$, $s \neq t$ one has $\|\langle t-s, X\rangle\|_{p} \geq A$.

Let $\mathcal{E}=\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right)$, then $\|\langle t-s, \mathcal{E}\rangle\|_{p} \geq \frac{1}{C} A$ and by Talagrand's result $\mathbb{E} \sup _{t \in T}\langle t, \mathcal{E}\rangle \geq \frac{1}{C} A$. But

thus minoration conjecture holds up to logarithmic factor.
More delicate argument shows that

in particular minoration conjecture holds for $p \geq n$.

Suppose that $T \subset \mathbb{R}^{n}, \# T \geq e^{p}, p \geq 2$ and for any $s, t \in A$, $s \neq t$ one has $\|\langle t-s, X\rangle\|_{p} \geq A$.

Let $\mathcal{E}=\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right)$, then $\|\langle t-s, \mathcal{E}\rangle\|_{p} \geq \frac{1}{C} A$ and by Talagrand's result $\mathbb{E} \sup _{t \in T}\langle t, \mathcal{E}\rangle \geq \frac{1}{C} A$. But

$$
\mathbb{E} \sup _{t \in T}\langle t, X\rangle \geq \frac{1}{C} \mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} t_{i} \varepsilon_{i} \geq \frac{1}{C \log n} \mathbb{E} \sup _{t \in T}\langle t, \mathcal{E}\rangle \geq \frac{1}{C \log n} A
$$

thus minoration conjecture holds up to logarithmic factor.
More delicate argument shows that

in particular minoration conjecture holds for $p \geq n$.

Suppose that $T \subset \mathbb{R}^{n}, \# T \geq e^{p}, p \geq 2$ and for any $s, t \in A$, $s \neq t$ one has $\|\langle t-s, X\rangle\|_{p} \geq A$.

Let $\mathcal{E}=\left(\mathcal{E}_{1}, \ldots, \mathcal{E}_{n}\right)$, then $\|\langle t-s, \mathcal{E}\rangle\|_{p} \geq \frac{1}{C} A$ and by Talagrand's result $\mathbb{E} \sup _{t \in T}\langle t, \mathcal{E}\rangle \geq \frac{1}{C} A$. But

$$
\mathbb{E} \sup _{t \in T}\langle t, X\rangle \geq \frac{1}{C} \mathbb{E} \sup _{t \in T} \sum_{i=1}^{n} t_{i} \varepsilon_{i} \geq \frac{1}{C \log n} \mathbb{E} \sup _{t \in T}\langle t, \mathcal{E}\rangle \geq \frac{1}{C \log n} A
$$

thus minoration conjecture holds up to logarithmic factor.
More delicate argument shows that

$$
\mathbb{E} \sup _{t \in T}\langle t, X\rangle \geq \frac{1}{C \max \left\{1, \log \frac{n}{p}\right\}} A
$$

in particular minoration conjecture holds for $p \geq n$.

Thank you for your attention.

