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Let X = (Xi,...,X,) be a random vector in R"” with full
dimensional support. We say that the distribution of X is

logaritmically concave, if X has density of the form e~h(x)
with h: R" — (—o0, 00| convex;

unconditional, if (11 X1, ...,n,X,) has the same distribution
as X for any choice of signs n1,...,7n;

isotropic, if EX; = 0 and EX,)(l = (S;J.
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Logarithmically concave vectors have finite all moments.
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During this talk we will assume that X = (Xy,...,X,) is
logconcave, isotropic and unconditional.

Basic examples:

e standard normal vector X = (g1, ...,8&n), Where g; are i.i.d.
N(0,1);

@ X; independent symmetric with (one dimensional)
logarithmically concave distribution normalized in such a way
that EX? = 1;

@ Uniform distributions on unconditional convex bodies

normalized to satisfy EX? = 1 (for example uniform
distributions on o, ,B", ., ~ n*/").
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Moments and tails

For a random variable S (or more general a random vector with
values in a normed space) and p > 0, we put ||S||, := (E|S|P)}/P
(resp. [[S]lp == (E[|S]P)M/P).

Moments and tails are strictly related. Chebyshev's inequality gives
P([S] = el S]lp) < e
Moreover if ||S||2p < a||S||, then by the Paley-Zygmund inequality

1
P(IISI > ——1IS||.,) > e~ max{C(a).p}
(ISl > z7a5151ls) =
For scalar or vector valued combinations of coordinates of
logconcave vectors and p > 2 we have [|S]|2, < C||S|, (C=2in
the scalar case).
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@ (gi) — a sequence of independent normal standard random
variables N(0,1);

@ (gj) — a Bernoulli sequence (i.e. a sequence of i.i.d. symmetric
+1 r.v's) independent of other random variables;

e (&) — a sequence of i.i.d. symmetric exponential r.v.'s with
variance 1 (i.e. the density % exp(—v/2|x])).

e C - universal constants (that may take different values at each
occurence).

e For two functions f and g we write f ~ g if %f < g < Cf.
Our goal is to find a "reasonable" function f = fx , such that for

any scalars a;, || > aiXillp ~ f(a1,...,an) or more general for any
vectors vj, || >0 viXillp ~ f(vi,. .., Vn).
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Gaussian Case

For any scalars a; and p > 1,

n
H Z ai8i
i=1

= llalle ~ VB,

where
1 _p+1

=)

Gaussian concentration implies that for any vectors v; in (F,| ||),

n n
szigi ~ HZVigi
i=1 P i=1

% = laillo = V2| I

1+ sup \/5\|(<P(Vl))||2
lloll«<1



Lower estimate of moments - scalar case

For any scalars a; and p > 1,
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Lower estimate of moments - scalar case

For any scalars a; and p > 1,

n n
[$a], - e
i=1 P i=1

Montgomery-Smith'90 and Hitczenko'93

n
H Z ai&j
i=1

n 1<
2 [ vl 2 220w,

EORE ve(XEn)”.

i>p

where (af) denotes the noincreasing rearrangement of (a;).



Upper estimate of moments - scalar case

Less trivial upper bound follows by Bobkov-Nazarov'03 result
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Upper estimate of moments - scalar case

Less trivial upper bound follows by Bobkov-Nazarov'03 result

<o
i=1 i=1

Gluskin and Kwapien'95 showed that

n
H Z a;i&;
i—1

p>2.
P

L~ Pllallo + vlall



Two-sided estimate - independent scalar case

Theorem (Gluskin-Kwapien'95)

Let Y; be independent symmetric r.v's with logconcave tails such
that EY? = 1. We put N;(t) = —InP(|Y;| > t) for t > 1 and
N;(t) = t? for t € [0,1]. Then for any p > 2,
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It is not hard to notice that
sup { > aibi Y Ni(|bi]) < p}
i=1 i
1/2
Nﬁ(Za?> +sup{Za,’b;: ZN,‘(]biDSP},

i¢l, icly ich

where (|aj|)ie;, are min{p, n} largest values of |a;|.



More precise estimate - scalar independent case

In fact one can get

Let Y;, N; and I, be as before. Then for any p > 2,

max {p( 3 ) goup{ X b Y miIbi) < o))

i, i€l i€l
< 35ar,
§7p( Z 3,2)1/2+C5UP{ Z aib;: Z N;i(|bi]) SP}
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More precise estimate - scalar independent case

In fact one can get

Let Y;, N; and I, be as before. Then for any p > 2,

12 1

max{7p( D af) ", Zsup{ D abi: Y Ni(|bi]) < p}}
i, i€l i€l
dE ],
i=1

gyp( > a,?)lﬁ—{—Csup{ > abi > Ni(lbil) SP}

igh, i€ly/ i€l

and

L= wellalla] < pllallc.

1500




Two-sided estimate - general scalar case

There exists a constant C such that for any p > 2,

H gaixi )
N o sup { Z ajx; + \fp(z al?)l/2: gi(x) > e—Cp}

#I=min{|p],n} icl i¢l
~ sup { Z ajx; + \/,B(Z 31?)1/2 : glp(X) = e_cp}’
i€ly i¢lp

where g is a density of (Xi)ie; and (|ai|)ic, are min{p, n} largest
values of |aj|.




Uniform distribution on B

If X has a uniform distribution on «, ,B; then for p > 2

H zn:a,-x,-’ ,~ min{p, ”}1/'(2 |a;<|n>1/r’ + fp(z \a?‘|2>1/2,
i=1 isp

i>p

where 1 + L =1 (Barthe,Guedon,Mendelson,Naor'05).

r



Uniform distribution on B

If X has a uniform distribution on «, ,B; then for p > 2

I35x)

i N min{p, n}l/r(z |a;<|r/>1/r' n \/E(Z ‘a?|2>1/27
i<p

i>p
where 1 + L =1 (Barthe,Guedon,Mendelson,Naor'05).

In particular

n n
[Sso], - S
i=1 P i=1

where X', ..., X are independent such that X; has the same
distribution as X;.

for 2 < p < n, (1)

p



Uniform distribution on Orlicz balls

The result of Pilipczuk and Wojtaszczyk'08 implies that
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The result of Pilipczuk and Wojtaszczyk'08 implies that

n
I35
i=1

if X is uniformly distributed on Orlicz ball.

p§ CHZn;a,-X,* ’p for p>2 (2)

It is natural to ask if (1) or (2) holds for more general class of
logconcave vectors X (for example unconditional and permutation
invariant)



Moments - vector case

For any vectors v; in a normed space

1 n n
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Moments - vector case

For any vectors v; in a normed space

1 n n
*HZW&' < HZWXI‘
a3 P i=1

p

<clSuel

Lower estimate may be shown as in the scalar case. Upper follows
from Bobkov-Nazarov's result and Talagrand's estimation of
suprema of linear combinations of exponential random variables

(generic chaining technique).

For any t >0
Lp(| S vier] 2 c) < (| S wxe] 2 ¢) < cp(| o vie| = £
¢ Vi i=1 p C




Weak and strong moments

Using Talagrand'’s two level concentration for the product
exponential distribution one can prove that

If X; are independent, symmetric, logconcave then for p > 1,

n n
H;WX, pNH;v’.Xi 1+S”up<1HZ<p vi) X
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Theorem

If X; are independent, symmetric, logconcave then for p > 1,

3w, ~ | |3 et

L lellst

Conjecture

T
>

T

T
X

Estimate (3) holds for any (unconditional) logconcave random
vector X.

A\

Theorem (L.,Wojtaszczyk'08)

(3) holds for uniform distributions on B].




Connection with concentration

Comparison of weak and strong moments is related to the
following concentration problem for symmetric (unconditional)
logconcave measures

Is it true that
1— A+ Z,(p)) < e P/Cif u(A) > 1/2,

where
M, (p) = {t eR™ /](t,xﬂpdu(x) < 1}

and

Z,(p) == (Myu(p))°
— [y eR": [(t, )P < / (£, ) [Pdp(x) for all £ € R"}?



Weaker question

Is it true that

[ wxl, = e wxd, + s |3 et )

llell<1

or equivalently that

HvaH <c(szxH + sup_pl(u)lle + vPIp(4)]2)?

L lel



Weaker question

Is it true that

n
132w <
i=1 p

or equivalently that

H Z wxi| < (| Z aXi|, = s pllen)le + VBIe()lz)?
1%

This is related to the following question for isotropic 1-symmetric

logconcave measures:

Is it true that

(I35
i=1

“,)

Lo Jell.<t

1
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Weaker question

Is it true that

IS, = (|5
i=1 P i=1

or equivalently that

H Z wixil < (] Z aXi|, = s pllen)le + VBIe()lz)?
1%

This is related to the following question for isotropic 1-symmetric

logconcave measures:

Is it true that

I35 st

)

Lo Jell.<t

1
(A + VEBY + tBY) > min {5, e/ u(A)}?
Resent results of Klartag and E. Milman implies that

1
(A + tlognBy) < min {5, et/C,u(A)}.



Concentration far away from the origin

Proposition (L.,Wojtaszczyk)

Let v be an isotropic unconditional, permutation invariant
logconcave measures and t > 1. Then either

(A + tB) 1 C\/mB]) > 2 u(A)

or
(A + tB7) > e/ p(A).
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Sudakov minoration

How to estimate Esup,c(t, X) for T C R"?

Suppose that # T < eP and ty is any vector then

E sup(t, X) = E sup(t — t0, X) < Esup|(t — to, X)|
teT teT teT

(Esup [(t — to, X)|P)/P < (E D |(t — to, X)|P)*/P
te’l teT

IN

< esup [[(t — to, X) |-
teT

May one in some way reverse this statement?

Conjecture (Sudakov-type minoration)

Suppose that T C R", #T > eP, p > 2 and for any s,t € A,
s # t one has ||(t — s, X)||, > A. Then Esup,cr(t, X) > %A.
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for Gaussian processes.
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If G=(gi1,...,8&n) is standard normal vector then
(t, G) ~ N(0, ||t]|3) and ||(t — s, G)||, ~ \/P||t — s||2. Hence the
conjectured estimate in this situation is equivalent to

Esup.c7(t, G) > &a,/log N(T,aBy), that is Sudakov minoration

for Gaussian processes.

More general if X; are symmetric independent logconcave then
Sudakov minoration holds (Talagrand'94, L'97).

Minoration conjecture holds if X has uniform distribution on B/
ball.
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Two observations

Suppose that T C R"”, #T > eP, p > 2 and for any s, t € A,
s # t one has ||(t — s, X)|, > A.

Let & = (&1,...,&n), then [[(t —s,E)||, > LA and by Talagrand’s
result Esup,c1(t,&) > %A. But

1 n
Esup(t,X) > —Esup tie; > Esup(t,&) > ———
t€T< ) tET; ! Clogn t€T< ) Clogn

I

thus minoration conjecture holds up to logarithmic factor.

More delicate argument shows that

1
E t. X) > A
f§?< X)) 2 Cmax{l,logﬁ} ’

in particular minoration conjecture holds for p > n.



Thank you for your attention.



