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Definitions

Let X = (X1, . . . ,Xn) be a random vector in Rn with full
dimensional support. We say that the distribution of X is

logaritmically concave, if X has density of the form e−h(x)

with h : Rn → (−∞,∞] convex;
unconditional, if (η1X1, . . . , ηnXn) has the same distribution
as X for any choice of signs η1, . . . , ηn;
isotropic, if EXi = 0 and EXiXj = δi ,j .

If E|X |2 <∞ then there exists an affine transformation T such
that TX is isotropic.

If X is unconditional and E|X |2 <∞ then there exists a diagonal
transformation D such that DX is unconditional and isotropic.

Logarithmically concave vectors have finite all moments.
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Examples

During this talk we will assume that X = (X1, . . . ,Xn) is
logconcave, isotropic and unconditional.

Basic examples:

standard normal vector X = (g1, . . . , gn), where gi are i.i.d.
N (0, 1);
Xi independent symmetric with (one dimensional)
logarithmically concave distribution normalized in such a way
that EX 2

i = 1;
Uniform distributions on unconditional convex bodies
normalized to satisfy EX 2

i = 1 (for example uniform
distributions on αr ,nBn

r , αr ,n ∼ n1/r ).
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Moments and tails

For a random variable S (or more general a random vector with
values in a normed space) and p > 0, we put ‖S‖p := (E|S|p)1/p

(resp. ‖S‖p := (E‖S‖p)1/p).

Moments and tails are strictly related. Chebyshev’s inequality gives

P(‖S‖ ≥ e‖S‖p) ≤ e−p.

Moreover if ‖S‖2p ≤ α‖S‖p then by the Paley-Zygmund inequality

P
(
‖S‖ ≥ 1

C(α)
‖S‖p

)
≥ e−max{C(α),p}.

For scalar or vector valued combinations of coordinates of
logconcave vectors and p ≥ 2 we have ‖S‖2p ≤ C‖S‖p (C = 2 in
the scalar case).
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Notation

(gi ) – a sequence of independent normal standard random
variables N (0, 1);
(εi ) – a Bernoulli sequence (i.e. a sequence of i.i.d. symmetric
±1 r.v.’s) independent of other random variables;
(Ei ) – a sequence of i.i.d. symmetric exponential r.v.’s with
variance 1 (i.e. the density 1√

2 exp(−
√
2|x |)).

C - universal constants (that may take different values at each
occurence).
For two functions f and g we write f ∼ g if 1

C f ≤ g ≤ Cf .

Our goal is to find a "reasonable" function f = fX ,p such that for
any scalars ai , ‖

∑
i aiXi‖p ∼ f (a1, . . . , an) or more general for any

vectors vi , ‖
∑

i viXi‖p ∼ f (v1, . . . , vn).
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Gaussian Case

For any scalars ai and p ≥ 1,

∥∥∥ n∑
i=1

aigi
∥∥∥

p
= γp‖a‖2 ∼

√p‖a‖2,

where
γp = ‖gi‖p =

√
2
[ 1√

π
Γ(

p + 1
2 )

]1/p
.

Gaussian concentration implies that for any vectors vi in (F , ‖ ‖),

∥∥∥ n∑
i=1

vigi
∥∥∥

p
∼
∥∥∥ n∑

i=1
vigi

∥∥∥
1

+ sup
‖ϕ‖∗≤1

√p‖(ϕ(vi ))‖2.
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Lower estimate of moments - scalar case

For any scalars ai and p ≥ 1,

∥∥∥ n∑
i=1

aiXi
∥∥∥

p
=
∥∥∥ n∑

i=1
aiεi |Xi |

∥∥∥
p
≥
∥∥∥ n∑

i=1
aiεiE|Xi |

∥∥∥
p
≥ 1

C

∥∥∥ n∑
i=1

aiεi
∥∥∥

p
.

Montgomery-Smith’90 and Hitczenko’93

∥∥∥ n∑
i=1

aiεi
∥∥∥

p
∼
∑
i≤p

a∗i +
√p
(∑

i>p
(a∗i )2

)1/2
,

where (a∗i ) denotes the noincreasing rearrangement of (ai ).
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Upper estimate of moments - scalar case

Less trivial upper bound follows by Bobkov-Nazarov’03 result

∥∥∥ n∑
i=1

aiXi
∥∥∥

p
≤ C

∥∥∥ n∑
i=1

aiEi
∥∥∥

p
p ≥ 2.

Gluskin and Kwapień’95 showed that

∥∥∥ n∑
i=1

aiEi
∥∥∥

p
∼ p‖a‖∞ +

√p‖a‖2.
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Two-sided estimate - independent scalar case

Theorem (Gluskin-Kwapień’95)
Let Yi be independent symmetric r.v’s with logconcave tails such
that EY 2

i = 1. We put Ni (t) = − lnP(|Yi | ≥ t) for t > 1 and
Ni (t) = t2 for t ∈ [0, 1]. Then for any p ≥ 2,

∥∥∥ n∑
i=1

aiYi
∥∥∥

p
∼ sup

{ n∑
i=1

aibi :
∑

i
Ni (|bi |) ≤ p

}
.

It is not hard to notice that

sup
{ n∑

i=1
aibi :

∑
i

Ni (|bi |) ≤ p
}

∼ √p
(∑

i /∈Ip

a2
i

)1/2
+ sup

{∑
i∈Ip

aibi :
∑
i∈Ip

Ni (|bi |) ≤ p
}
,

where (|ai |)i∈Ip are min{p, n} largest values of |ai |.
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More precise estimate - scalar independent case

In fact one can get

Theorem
Let Yi , Ni and Ip be as before. Then for any p ≥ 2,

max
{
γp
( ∑

i /∈Ip/2

a2
i

)1/2
,
1
C sup

{ ∑
i∈Ip/2

aibi :
∑

i∈Ip/2

Ni (|bi |) ≤ p
}}

≤
∥∥∥ n∑

i=1
aiYi

∥∥∥
p

≤ γp
( ∑

i /∈Ip/2

a2
i

)1/2
+ C sup

{ ∑
i∈Ip/2

aibi :
∑

i∈Ip/2

Ni (|bi |) ≤ p
}

and ∣∣∣∥∥∥ n∑
i=1

aiYi
∥∥∥

p
− γp‖a‖2

∣∣∣ ≤ p‖a‖∞.
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Two-sided estimate - general scalar case

Theorem
There exists a constant C such that for any p ≥ 2,

∥∥∥ n∑
i=1

aiXi
∥∥∥

p

∼ inf
#I=min{bpc,n}

sup
{∑

i∈I
aixi +

√p(
∑
i /∈I

a2
i )1/2 : gI(x) ≥ e−Cp

}
∼ sup

{∑
i∈Ip

aixi +
√p(

∑
i /∈Ip

a2
i )1/2 : gIp (x) ≥ e−Cp

}
,

where gI is a density of (Xi )i∈I and (|ai |)i∈Ip are min{p, n} largest
values of |ai |.



Uniform distribution on Bn
r

If X has a uniform distribution on αr ,nBn
r then for p ≥ 2

∥∥∥ n∑
i=1

aiXi
∥∥∥

p
∼ min{p, n}1/r

(∑
i≤p
|a∗i |r

′)1/r ′
+
√p
(∑

i>p
|a∗i |2

)1/2
,

where 1
r + 1

r ′ = 1 (Barthe,Guedon,Mendelson,Naor’05).

In particular

∥∥∥ n∑
i=1

aiXi
∥∥∥

p
∼
∥∥∥ n∑

i=1
aiX ∗i

∥∥∥
p

for 2 ≤ p ≤ n, (1)

where X ∗1 , . . . ,X ∗n are independent such that Xi has the same
distribution as Xi .
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Uniform distribution on Orlicz balls

The result of Pilipczuk and Wojtaszczyk’08 implies that

∥∥∥ n∑
i=1

aiXi
∥∥∥

p
≤ C

∥∥∥ n∑
i=1

aiX ∗i
∥∥∥

p
for p ≥ 2 (2)

if X is uniformly distributed on Orlicz ball.

It is natural to ask if (1) or (2) holds for more general class of
logconcave vectors X (for example unconditional and permutation
invariant)
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Moments - vector case

Theorem
For any vectors vi in a normed space

1
C

∥∥∥ n∑
i=1

viεi
∥∥∥

p
≤
∥∥∥ n∑

i=1
viXi

∥∥∥
p
≤ C

∥∥∥ n∑
i=1

viEi
∥∥∥

p
.

Lower estimate may be shown as in the scalar case. Upper follows
from Bobkov-Nazarov’s result and Talagrand’s estimation of
suprema of linear combinations of exponential random variables
(generic chaining technique).

Corollary
For any t > 0

1
C P

(∥∥∥ n∑
i=1

viεi
∥∥∥ ≥ Ct

)
≤ P

(∥∥∥ n∑
i=1

viXi
∥∥∥ ≥ t

)
≤ CP

(∥∥∥ n∑
i=1

viEi
∥∥∥ ≥ t

C
)
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Weak and strong moments

Using Talagrand’s two level concentration for the product
exponential distribution one can prove that

Theorem
If Xi are independent, symmetric, logconcave then for p ≥ 1,

∥∥∥ n∑
i=1

viXi
∥∥∥

p
∼
∥∥∥ n∑

i=1
viXi

∥∥∥
1

+ sup
‖ϕ‖∗≤1

∥∥∥ n∑
i=1

ϕ(vi )Xi
∥∥∥

p
. (3)

Conjecture
Estimate (3) holds for any (unconditional) logconcave random
vector X.

Theorem (L.,Wojtaszczyk’08)
(3) holds for uniform distributions on Bn

r .
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Connection with concentration

Comparison of weak and strong moments is related to the
following concentration problem for symmetric (unconditional)
logconcave measures µ:

Is it true that

1− µ(A + Zµ(p)) ≤ e−p/C if µ(A) ≥ 1/2,

where
Mµ(p) :=

{
t ∈ Rn :

∫
|〈t, x〉|pdµ(x) ≤ 1

}
and

Zµ(p) := (Mµ(p))◦

= {y ∈ Rn : |〈t, y〉|p ≤
∫
|〈t, x〉|pdµ(x) for all t ∈ Rn}?
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Is it true that
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2 + tBn

1 ) ≥ min
{1
2 , e

t/Cµ(A)
}

?

Resent results of Klartag and E. Milman implies that

µ(A + t log nBn
2 ) ≤ min

{1
2 , e

t/Cµ(A)
}
.
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Concentration far away from the origin

Proposition (L.,Wojtaszczyk)
Let µ be an isotropic unconditional, permutation invariant
logconcave measures and t ≥ 1. Then either

µ((A + tBn
1 ) ∩ C

√
nBn

2 ) ≥ 1
2µ(A)

or
µ(A + tBn

1 ) ≥ et/Cµ(A).



Sudakov minoration

How to estimate E supt∈T 〈t,X 〉 for T ⊂ Rn?

Suppose that #T ≤ ep and t0 is any vector then

E sup
t∈T
〈t,X 〉 = E sup

t∈T
〈t − t0,X 〉 ≤ E sup

t∈T
|〈t − t0,X 〉|

≤ (E sup
t∈T
|〈t − t0,X 〉|p)1/p ≤ (E

∑
t∈T
|〈t − t0,X 〉|p)1/p

≤ e sup
t∈T
‖〈t − t0,X 〉‖p.

May one in some way reverse this statement?

Conjecture (Sudakov-type minoration)
Suppose that T ⊂ Rn, #T ≥ ep, p ≥ 2 and for any s, t ∈ A,
s 6= t one has ‖〈t − s,X 〉‖p ≥ A. Then E supt∈T 〈t,X 〉 ≥ 1

C A.
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Examples

If G = (g1, . . . , gn) is standard normal vector then
〈t,G〉 ∼ N (0, ‖t‖22) and ‖〈t − s,G〉‖p ∼

√p‖t − s‖2. Hence the
conjectured estimate in this situation is equivalent to
E supt∈T 〈t,G〉 ≥ 1

C a
√
logN(T , aBn

2 ), that is Sudakov minoration
for Gaussian processes.

More general if Xi are symmetric independent logconcave then
Sudakov minoration holds (Talagrand’94, L’97).

Minoration conjecture holds if X has uniform distribution on Bn
r

ball.
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Two observations

Suppose that T ⊂ Rn, #T ≥ ep, p ≥ 2 and for any s, t ∈ A,
s 6= t one has ‖〈t − s,X 〉‖p ≥ A.

Let E = (E1, . . . , En), then ‖〈t − s, E〉‖p ≥ 1
C A and by Talagrand’s

result E supt∈T 〈t, E〉 ≥ 1
C A. But

E sup
t∈T
〈t,X 〉 ≥ 1

C E sup
t∈T

n∑
i=1

tiεi ≥
1

C log nE sup
t∈T
〈t, E〉 ≥ 1

C log nA,

thus minoration conjecture holds up to logarithmic factor.

More delicate argument shows that

E sup
t∈T
〈t,X 〉 ≥ 1

C max{1, log n
p}

A,

in particular minoration conjecture holds for p ≥ n.
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Thank you for your attention.


