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The Chain Rule as a Functional Equation

Fundamental operations in analysis and geometry like the Fourier

transform, Legendre transform or polarity are often (almost) characterized

by simple functional equations or monotonicity properties (in a

non-degenerate setting), the Fourier transform e.g. by

F(f · g) = F f ∗ Fg

if acting bijectively on S and S ′ (Alesker, Artstein-Avidan, Faifman,

Milman).

We show that the derivative is (almost) characterized by the chain rule

D(f ◦ g) = Df ◦ g · Dg .
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The Chain Rule as a Functional Equation

Assume an operation T : C 1(R)→ C (R) satis�es the chain rule

T (f ◦ g) = Tf ◦ g · Tg ; f , g ∈ C 1(R) . (1)

We do not assume that T is linear or continuous. What solutions does (1)

have?

(a) H ∈ C (R), H > 0. Tf := H ◦ f /H satis�es (1).

(b) Tf :=

{
f ′ f bijective

0 else

}
satis�es (1).

(c) p > 0. Tf := |f ′|p and Tf := |f ′|p sgn (f ′) satisfy (1).

De�nition

C 1

b (R) := {f ∈ C 1(R) | f bounded from below or above}
T : C 1(R)→ C (R) is non-degenerate if T

∣∣
C1
b

(R)
6= 0.
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The Chain Rule as a Functional Equation

Theorem 1

Assume T : C 1(R)→ C (R) satis�es the chain rule functional equation

T (f ◦ g) = Tf ◦ g · Tg ; f , g ∈ C 1(R) . (1)

and is non-degenerate. Then there exists p ≥ 0 and H ∈ C (R) with H > 0

such that

Tf =
H ◦ f
H
|f ′|p

or, with p > 0,

Tf =
H ◦ f
H
|f ′|psgn(f ′) .

 (2)

Assume additionally that the image of T contains functions with negative

values. If then T (2 Id)(0) = 2, Tf = H ◦ f /H · f ′ ; if stronger T (2 Id) = 2

holds, Tf = f ′ is the only solution of (1).
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The Chain Rule as a Functional Equation

Remarks.
(i) For p > 0, let G ∈ C 1(R) be such that G ′ = H1/p. Then

Tf =

∣∣∣∣d(G ◦ f )dG

∣∣∣∣p {sgn(d(G ◦ f )
dG

)}
.

(ii) The function H is determined completely by T (2 Id):

letting ϕ(x) = T (2 Id)(x)/T (2 Id)(0), we have

H(x) =
∏

n∈N ϕ
(
x
2n

)
; x ∈ R .
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The Chain Rule as a Functional Equation

Cohomological interpretation

G = (C 1(R), ◦) , M = (C (R), ·) , G ×M → M , (f ,H) 7→ H ◦ f
M module over G , F n(G ,M) = {ϕ : Gn → M}

dn : F n(G ,M)→ F n+1(G ,M) coboundary operators

Ker(d1) = { Solutions of the chain rule} cocycles

Im(d0) = {f 7→ H ◦ f /H | H ∈ M} coboundaries

H1(G ,M) = Ker(d1)/Im(d0) represented by powers of D (up to sign)
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The Chain Rule as a Functional Equation

If T acts on smoother functions, we have:

Theorem 2

Take k, ` ∈ N0 with k > ` and assume that T : C k(R)→ C `(R) satis�es
the chain rule

T (f ◦ g) = Tf ◦ g · Tg ; f , g ∈ C k(R) . (1)

and is non-degenerate on C k(R). Then T has the form

H ◦ f
H
|f ′|p{ sgn (f ′)} (2)

where p > 0 (p ≥ 0) and H ∈ C `(R) is positive. In fact, p ∈ {0, ..., `} or
p > ` holds.
The result is also true for T : C∞(R)→ C∞(R) (k = ` =∞).
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The Chain Rule as a Functional Equation

On C (R) there are no non degenerate examples:

Proposition 3

Assume T : C (R)→ C (R) satis�es

T (f ◦ g) = (Tf ) ◦ g · Tg ; f , g ∈ C (R)

and that the image of T contains functions having zeros. Then

T
∣∣
Cb(R)

= 0 .
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The Chain Rule as a Functional Equation

A weaker form of the chain rule equation admits almost the same

conclusion:

Theorem 4

Assume T ,A : C 1(R)→ C (R) are operators such that

T (f ◦ g) = (Tf ) ◦ g · Ag ; f , g ∈ C 1(R)

holds. Under a somewhat stronger non-degeneracy condition on T , T and

A have the form

Tf = G1 ◦ f ·
G2

G1

· |f ′|p {sgn (f ′)}

Af = Tf /G2 ◦ f =
H ◦ f
H
|f ′|p {sgn (f ′)}

where p > 0, G1,G2 ∈ C (R) are positive, H = G1/G2.
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Steps in the Proof of Theorems 1 and 2 I. Localization (on intervals)

Steps in the Proof of Theorems 1 and 2

I. Localization (on intervals)

a) T non-degenerate ⇒ For open intervals J ⊂ R, y ∈ J, x ∈ R �nd

g ∈ C 1(R) with g(x) = y , Im(g) ⊂ J and (Tg)(x) 6= 0.

(Shifts, scaling)

b) For open intervals J ⊂ R, f |J = Id implies (Tf )|J = 1.

(y ∈ J, Im(g) ⊂ J, g(x) = y , (Tg)(x) 6= 0. Then f |J = Id yields

f ◦ g = g , 0 6= (Tg)(x) = T (f ◦ g)(x) = (Tf )(y)(Tg)(x).
Therefore (Tf )(y) = 1; (Tf )|J̄ = 1)

c) f1|J = f2|J ⇒ (Tf1)|J = (Tf2)|J .
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Steps in the Proof of Theorems 1 and 2 II. Localization (pointwise), T : C1(R)→ C(R)

II. Localization (pointwise), T : C 1(R)→ C (R)

Proposition 5

There is F : R3 → R such that (Tf )(x) = F (x , f (x), f ′(x)) , (3)

x ∈ R, f ∈ C 1(R).

Proof.

Take x0 ∈ R, f ∈ C 1(R). Let J1 = (x0,∞), J2 = (−∞, x0).
Let g(x) = f (x0) + f ′(x0)(x − x0) be the tangent line and

h(x) =

{
g(x) x ∈ J1
f (x) x ∈ J2 .

}
Since h|J1 = g |J1 , h|J2 = f |J2 , by c)
(Tg)|

J1
= (Th)|

J1
, (Th)|

J2
= (Tf )

J2
. Since x0 ∈ J1 ∩ J2, (Tg)(x0) = (Tf )(x0).

But g only depends on x0, f (x0) and f ′(x0);

(Tf )(x0) = F (x0, f (x0), f
′(x0)) .
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Steps in the Proof of Theorems 1 and 2 III. Structural form of F (in (3))

III. Structural form of F (in (3))

There are H : R→ R>0 and K : R→ R with

K (uv) = K (u)K (v) , K (u) = 0⇔ u = 0

such that

(Tf )(x) = H(f (x))/H(x) K (f ′(x)) ; f ∈ C 1(R), x ∈ R . (4)
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Steps in the Proof of Theorems 1 and 2 III. Structural form of F (in (3))

Proof.

For x0, y0 ∈ R , f , g ∈ C 1(R) with f (y0) = x0, g(x0) = y0

T (f ◦ g)(x0) = (Tf )(y0)(Tg)(x0) = (Tg)(x0)(Tf )(y0) = T (g ◦ f )(y0) (5)

means F (x0, x0, f
′(y0)g

′(x0)) = F (y0, y0, g
′(x0)f

′(y0)) .
Hence F (x0, x0, u) = F (y0, y0, u) =: K (u) for all u ∈ R,
independently of x0, y0 ∈ R.

x0 = y0 yields K (uv) = K (u)K (v) . By (5) also

K (f ′(y0)g
′(x0)) = F (x0, y0, g

′(x0))F (y0, x0, f
′(y0)) ,

F (x0, y0, u) = K(uv)
F (y0,x0,v) = K(u)

F (y0,x0,1) .

Let G (x0, y0) = 1/F (y0, x0, 1) and H(y) := G (0, y). Then
G (x , y) = G (x , 0)G (0, y) = H(y)/H(x). In fact,

H(x0) = G (0, x0) = F (0, x0, 1) = T (Id+ x0)(0) .
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Steps in the Proof of Theorems 1 and 2 IV. Smoothness of K and H

IV. Smoothness of K and H

Sierpinski, Banach: Assume K : R→ R is measurable, 6≡ 0,

K (uv) = K (u)K (v).
Then K (u) = |u|p{sgn(u)} for a suitable p.

We use this in

(Tf )(x) = H(f (x))/H(x) K (f ′(x)) (4)

ϕ(x) :=
H(2x)

H(x)
= K (2)−1 T (2 Id)(x) is continuous on R ,

H(b)

H(1)
=

H
(
b
2k

)
H
(
1

2k

) k∏
i=1

(
ϕ
(
b
2i

)
ϕ
(
1

2i

)) .

Continuity of T (b Id) implies the existence of lim
k→∞

H
(
b
2k

)
H
(
1

2k

) = 1,

H is pointwise limit of continuous functions, hence measurable. Take

f (x) = x2/2. Then K (x) = H(x)/H(x2/2)(Tf )(x) is measurable and thus

K (u) = |u|p{sgn(u)}.
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Steps in the Proof of Theorems 1 and 2 IV. Smoothness of K and H

Continuity of H follows from the one of

H ◦ f (x)/H(x) = (Tf )(x)/K (f ′(x))

for f ∈ C 1(R) with f ′(x) 6= 0: If H would be discontinuous somewhere, it

would be �uniformly discontinuous everywhere�,

lim
y→c

H(y)/H(c) and lim
x→c

H(x)/H(c)

would be independent of c (f = translation from one c to another).

Yields a contradiction for a sequence xn → 0 with suitably de�ned

function f , f (xn) = yn → 0 , H(yn)/H(xn) 6→ 1.
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Steps in the Proof of Theorems 1 and 2 V. C1-Localization for T : Ck (R)→ C
`(R)

V. C k-Localization for T : C k(R)→ C `(R)
Replace f on x > x0 by a Taylor polynomial g of f of degree k to get a

C k(R)-function. Localization on intervals then gives

(Tf )(x) = F (x , f (x), ..., f (k)(x)) ; x ∈ R, f ∈ C k(R) .

Taking f , g ∈ C k(R) with f (y0) = x0, g(x0) = y0,

T (f ◦ g)(x0) = (Tf )(y0)(Tg)(x0) = (Tg)(x0)(Tf )(y0) = T (g ◦ f )(y0)

gives with K := F (x0, x0, ...) and g (k)(x0) = tk , f (k)(y0) = sk

K (s1t1, s1t2 + t21 s2, ...) = K (s1t1, s
2

1 t2 + t1s2, ...) .

K is independent of the second and further variables: for arbitrary a2, b2
and given values s1, t1 (�rst derivatives) solve

s1t2 + t2
1
s2 = a2 , s2

1
t2 + t1s2 = b2

for (t2, s2): possible if s1t1 6∈ {0, 1,−1}. Get as before

(Tf )(x) = F̃ (x , f (x), f ′(x))
= H(f (x))/H(x) K (f ′(x)) .
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Steps in the Proof of Theorems 1 and 2 VI. Higher Smoothness of H (ImT ⊂ C
`(R))

VI. Higher Smoothness of H (ImT ⊂ C `(R))
Take f = 2 Id then H(2x)/H(x) = K (2)−1(Tf )(x) is in C `(R).
Show H ∈ C `(R). Take logarithm and apply the

Lemma 6

For 0 < a ≤ 1 , L ∈ C (R) s. th. ψ(x) := L(x)− aL(x/2) is in C 1(R).
Then L ∈ C 1(R).

Iteration technique for proof:

n−1∑
j=0

ajψ
( x

2j

)
= L(x)− anL

( x

2n

)

yields with anL
( x

2n

)
→ 0 for a < 1 and → L(0) for a = 1 that

lim
x→0

L(x)− L(0)

x
=

ψ′(0)

1− a/2
.
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Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

An n-dimensional analogue

C 1

b (R
n,Rn) := {f : Rn → Rn | f ∈ C 1, Im f ⊆ H, H ⊆ Rn open half-space}

A map T : C 1(Rn,Rn)→ C (Rn, L(Rn,Rn)) is non-degenerate if

∃ x1 ∈ Rn , f ∈ C 1

b (R
n,Rn) det (Tf )(x1) 6= 0 .

It is locally surjective if

∃ x2 ∈ Rn {(Tf )(x2) | f ∈ C 1(Rn,Rn), f (x2) = x2, det f
′(x2) 6= 0} ⊇ GL(n).

We denote GL(n)+ =

{
GL(n) n odd

{u ∈ GL(n) | det u > 0} n even

}
.
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Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

Theorem 7

Assume that T : C 1(Rn,Rn)→ C (Rn, L(Rn,Rn)) is non-degenerate and

locally surjective and satis�es the chain rule equation

T (f ◦ g)(x) = ((Tf ) ◦ g)(x) ◦ Tg(x) ; f , g ∈ C 1(Rn,Rn), x ∈ Rn .

Then there is p ≥ 0 and H ∈ C (Rn,GL(n)) and � for n ∈ N even � a

diagonal matrix J with diagonal entries ±1 such that for all

f ∈ C 1(Rn,Rn) with det f ′(x) 6= 0 (Tf )(x) is given by either

{sgn(det f ′(x))}| det f ′(x)|p (H ◦ f )(x) ◦ f ′(x) ◦ H(x)−1

or{ {sgn(det f ′(x))}| det f ′(x)|p (H ◦ f )(x) ◦ H(x)−1 if f ′(x) ∈ GL(n)+

{sgn(det f ′(x))}| det f ′(x)|p (H ◦ f )(x) ◦ J ◦ H(x)−1, if f ′(x) 6∈ GL(n)+

}

The term {sgn(det f ′(x))} might be missing.
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Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

Theorem 7

(Tf )(x) is given by either

{sgn(det f ′(x))}| det f ′(x)|p (H ◦ f )(x) ◦ f ′(x) ◦ H(x)−1

or{ {sgn(det f ′(x))}| det f ′(x)|p (H ◦ f )(x) ◦ H(x)−1 if f ′(x) ∈ GL(n)+

{sgn(det f ′(x))}| det f ′(x)|p (H ◦ f )(x) ◦ J ◦ H(x)−1, if f ′(x) 6∈ GL(n)+

}

The term {sgn(det f ′(x))} might be missing.

Conversely, any such operator � with p > 0 if {sgn(det f ′(x))} is present �
satis�es the chain rule.

If additionally T (2 Id) = 2 Id is constant, H = 1 and p = 0 or p = 1/n so

that Tf = ±f ′.
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Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

Localization Step: (Tf )(x0) = F (x0, f (x0), f
′(x0))

For f ∈ C 1(Rn,Rn) and k ∈ {0, ..., n} de�ne

hk(x) = f (x01, ..., x0k , xk+1, ..., xn)+
k∑

j=1

(xj−x0j)
∂f

∂xj
(x01, ..., x0k , xk+1, ..., xn) ,

f = h0, h = hn ; h(x) = f (x0) + Df (x0)(x − x0). Then

gk(x) =

{
hk−1(x) xk < x0k
hk(x) xk ≥ x0k

}
is in C 1 and

(Tf )(x0) = (Th0)(x0) = (Th1)(x0) = . . . = (Thn)(x0) = (Th)(x0) .
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Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

The chain rule means for F

F (x0, z0, u ◦ v) = F (y0, z0, u) ◦ F (x0, y0, v) .

Let Kx0(u) := F (x0, x0, u) . For u = λ Id, K (λ Id) = Kx0(λ Id) is
independent of x0 and measurable in λ. Further

Kx0(uv) = Kx0(u) ◦ Kx0(v) ,Kx0(Id) = Id

Local surjectivity of T implies surjectivity of

Kx0 : GL(n)→ GL(n) .

If Kx0 | SL(n) is trivial, get second form of T in Theorem 7.

Else Kx0 is an automorphism of GL(n), and of the form

Kx0(u) = χ(u) H(x0) ◦ u ◦ H(x0)
−1 ,

where χ : GL(n)→ R is a character independent of x0.

S. Artstein-Avidan, H. König, V. Milman ()The Chain Rule as a Functional Equation Toronto, September 2010 22 / 22



Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

The chain rule means for F

F (x0, z0, u ◦ v) = F (y0, z0, u) ◦ F (x0, y0, v) .

Let Kx0(u) := F (x0, x0, u) . For u = λ Id, K (λ Id) = Kx0(λ Id) is
independent of x0 and measurable in λ. Further

Kx0(uv) = Kx0(u) ◦ Kx0(v) ,Kx0(Id) = Id

Local surjectivity of T implies surjectivity of

Kx0 : GL(n)→ GL(n) .

If Kx0 | SL(n) is trivial, get second form of T in Theorem 7.

Else Kx0 is an automorphism of GL(n), and of the form

Kx0(u) = χ(u) H(x0) ◦ u ◦ H(x0)
−1 ,

where χ : GL(n)→ R is a character independent of x0.

S. Artstein-Avidan, H. König, V. Milman ()The Chain Rule as a Functional Equation Toronto, September 2010 22 / 22



Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

The chain rule means for F

F (x0, z0, u ◦ v) = F (y0, z0, u) ◦ F (x0, y0, v) .

Let Kx0(u) := F (x0, x0, u) . For u = λ Id, K (λ Id) = Kx0(λ Id) is
independent of x0 and measurable in λ. Further

Kx0(uv) = Kx0(u) ◦ Kx0(v) ,Kx0(Id) = Id

Local surjectivity of T implies surjectivity of

Kx0 : GL(n)→ GL(n) .

If Kx0 | SL(n) is trivial, get second form of T in Theorem 7.

Else Kx0 is an automorphism of GL(n), and of the form

Kx0(u) = χ(u) H(x0) ◦ u ◦ H(x0)
−1 ,

where χ : GL(n)→ R is a character independent of x0.

S. Artstein-Avidan, H. König, V. Milman ()The Chain Rule as a Functional Equation Toronto, September 2010 22 / 22


	The Chain Rule as a Functional Equation
	Steps in the Proof of Theorems 1 and 2
	I. Localization (on intervals)
	II. Localization (pointwise), T:C1(R)C(R)
	III. Structural form of F (in (3))
	IV. Smoothness of K and H
	V. C1-Localization for T:Ck(R)C(R)
	VI. Higher Smoothness of H (ImTC(R))
	An n-dimensional analogue


