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Fundamental operations in analysis and geometry like the Fourier
transform, Legendre transform or polarity are often (almost) characterized
by simple functional equations or monotonicity properties (in a
non-degenerate setting), the Fourier transform e.g. by

F(f-g)=Ff«Fg

if acting bijectively on S and S’ (Alesker, Artstein-Avidan, Faifman,
Milman).
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Fundamental operations in analysis and geometry like the Fourier
transform, Legendre transform or polarity are often (almost) characterized
by simple functional equations or monotonicity properties (in a
non-degenerate setting), the Fourier transform e.g. by

F(f-g)=Ff«Fg

if acting bijectively on S and S’ (Alesker, Artstein-Avidan, Faifman,
Milman).
We show that the derivative is (almost) characterized by the chain rule

D(fog)=Dfog-Dg.
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Assume an operation T : C1(R) — C(R) satisfies the chain rule

T(fog)=Tfog-Tg; f,gECl(R). (1)

We do not assume that T is linear or continuous. What solutions does (1)
have?

S. Artstein-Avidan, H. Kénig, V. Milman The Chain Rule as a Functional Equationli g2 L BT X8 1 1 0] 3/22



Assume an operation T : C1(R) — C(R) satisfies the chain rule

T(fog)=Tfog -Tg; f,gcC'(R). (1)

We do not assume that T is linear or continuous. What solutions does (1)
have?

(a) He C(R), H>0. Tf := Ho f/H satisfies (1).
, I
(b) TF ::{ [0 ] Dijective }satisﬁes (1).

(c) p>0. Tf :=|f'|P and Tf :=|f'|Psgn (f') satisfy (1).
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____uleeh libooa netend) ity
Assume an operation T : C1(R) — C(R) satisfies the chain rule
T(fog)=Tfog-Tg;
have?

f.g € C'(R).
We do not assume that T is linear or continuous. What solutions does (1)
(a) He C(R), H>0. Tf := Ho f/H satisfies (1).
(b) Tf := {

f' f bijective
0

(1)
1

else } satisfies (1).

() p>0. Tf :=|f'|P and

Tf = |f'|P sgn (f')
CH(R) = {F € C'(R) |

satisfy (1).

f bounded from below or above}

T : CY(R) — C(R) is non-degenerate if T‘Cl(R) # 0.
b
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Assume T : C1(R) — C(R) satisfies the chain rule functional equation

T(fog)=Tfog-Tg; f,geC(R). (1)

and is non-degenerate. Then there exists p > 0 and H € C(R) with H > 0
such that

Hof

TF = P
ey
or, with p > 0, (2)
TF = —H:If|f']psgn(f').
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Assume T : C1(R) — C(R) satisfies the chain rule functional equation

T(fog)=Tfog -Tg; f,gcC'(R). (1)

and is non-degenerate. Then there exists p > 0 and H € C(R) with H > 0
such that

Hof
TF = P
ey
or, with p > 0, (2)
TF = —H:If|f'|psgn(f').

Assume additionally that the image of T contains functions with negative
values. If then T(21d)(0) =2, Tf = Hof/H - f'; if stronger T(21d) =2
holds, Tf = f' is the only solution of (1).
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____uleeh libooa netend) ity
Remarks.
(i) For p > 0, let G € C!(R) be such that G’ = H'/P. Then
d(Gof)
TF = |———
o

o

d(Gof)

dG

)}



Remarks.
(i) For p > 0, let G € C!(R) be such that G’ = H'/P. Then

o (57))

(ii) The function H is determined completely by T(2 Id):

d(G o f)

Tf =
%

letting  @(x) = T(21d)(x)/T(21d)(0), we have

H) = aen @ (3) ix €R.
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Cohomological interpretation
G = (C'(R),0), M=(C(R),-), GxM—M, (F,H) — Hof
M module over G, F'(G,M) ={¢: G" — M}
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Cohomological interpretation
G = (C'(R),0), M=(C(R),-), GxM—M, (F,H) — Hof
M module over G, F'(G,M) ={¢: G" — M}

d" : F'(G,M)— F™1(G, M) coboundary operators
Ker(d!) = { Solutions of the chain rule}  cocycles
Im(d®) = {f— Hof/H|Hc M} coboundaries
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Cohomological interpretation
G = (C'(R),0), M=(C(R),-), GxM—M, (F,H) — Hof
M module over G, F'(G,M) ={¢: G" — M}

d" : F'(G,M)— F™1(G, M) coboundary operators
Ker(d!) = { Solutions of the chain rule}  cocycles
Im(d®) = {f— Hof/H|Hc M} coboundaries

HY(G, M) = Ker(d!)/Im(d®) represented by powers of D (up to sign)
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- The Chain Rule as a Functional Equation |
If T acts on smoother functions, we have:
Take k, ¢ € No with k > ¢ and assume that T : CK(R) — C*(R) satisfies
the chain rule
T(fog)=Tfog-Tg;

f.g € CK(R) .
and is non-degenerate on CX(R). Then T has the form

(1)
Hof
Tlf'lp{ sgn (')}
p > £ holds.

where p >0 (p > 0) and H € C*(R) is positive. In fact, p € {0,..., £} or

(2)
The result is also true for T : C*°(R) — C*°(R) (k ={ = ).
o & = = 2Q
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On C(R) there are no non degenerate examples:

Assume T : C(R) — C(R) satisfies
T(fog)=(Tf)og-Tg;

f,g € C(R)
and that the image of T contains functions having zeros. Then

T |Cb(R) =0

= & E DA
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conclusion:

A weaker form of the chain rule equation admits almost the same

____uleeh libooa netend) ity
Assume T,A: CL(R) — C(R) are operators such that
T(fog)=(Tf)og-Ag;

A have the form

f.g € CH(R)
holds. Under a somewhat stronger non-degeneracy condition on T, T and

Tf =Gyof- % | F|P {sgn ()}
1
Hof

Af =Tf/Gyof = T|f’|p {sgn (')}
where p > 0, G, Go € C(R) are positive, H = G/ G,.

= & E DA
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Steps in the Proof of Theorems 1 and 2 |. Localization (on intervals)

Steps in the Proof of Theorems 1 and 2

I. Localization (on intervals)

a) T non-degenerate = For open intervals J C R, y € J, x € R find
g € CY(R) with g(x) =y, Im(g) C J and (Tg)(x) # 0.
(Shifts, scaling)
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Steps in the Proof of Theorems 1 and 2 |. Localization (on intervals)

Steps in the Proof of Theorems 1 and 2

I. Localization (on intervals)

a) T non-degenerate = For open intervals J C R, y € J, x € R find
g € CY(R) with g(x) =y, Im(g) C J and (Tg)(x) # 0.
(Shifts, scaling)

b) For open intervals J C R, f|; = Id implies (Tf)|, = 1.
(y e J,Im(g) C J, g(x) =y, (Tg)(x) # 0. Then f|; = 1d yields
fog=g 0#(Tg)(x)=T(f og)lx)=(Tf)(y)(Tg)(x)
Therefore (Tf)(y) =1; (Tf)|; =1)

c) hly=hly= (Th)l, = (Th)|s.
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. Localization (pointwise), T : C}(R) — C(R)

1l. Localization (pointwise), T : C*(R) — C(R)

There is F : R® — R such that (Tf)(x) = F(x, f(x),f'(x)) ,
x€R, f e CYR).

(3)

= & E DA
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1l. Localization (pointwise), T : C*(R) — C(R)

. Localization (pointwise), T : C}(R) — C(R)

There is F : R® — R such that (Tf)(x) = F(x, f(x), f'(x)) , (3)
x€R, f e CYR).

Take xo € R, f € Cl(R) Let J; = (Xo,OO), b= (—OO,Xo).
Let g(x) = f(xo) + f'(x0)(x — xo) be the tangent line and

[ glx) xeh
M”—{f@)xez.}
Since h|J1 :g|J1 ) h|J2 = f|J2 , by C) .
(Tg)l5; = (Th)l5;,  (Th)|5 = (Tf)z. Since xo € 1 N Ja, (Tg)(x0) = (TF)(x0)-
But g only depends on xg, f(x0) and f'(xo);

(Tf)(X()) = F(X(), f(X()), fl(Xo)) .
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Steps in the Proof of Theorems 1 and 2 [IINES] SIS STEI R0 N Al (LN D))

I11l. Structural form of F (in (3))
There are H: R — Ryp and K : R — R with

K(uv) = K(w)K(v), Ku)=0<u=0
such that

(TF)(x) = H(f(x))/H(x) K(f'(x)); feCYR), xcR. (4)
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I1l. Structural form of F (in (3))

For xo,y0 € R, f,g € CHR) with f(y0) = x0, g(x0) = yo
T(fog)(x) = (T)(»)(Tg)(x0) = (T&)(x0)(TF)(y0) = T(gof)(¥) (5)
means  F(xo, %0, '(y0)g'(x0)) = F(¥0. y0.8"(x0)f"(y0)) -

Hence  F(xg,xo0,u) = F(yo,y0,u) =: K(u) for all u € R,
independently of xp, o € R.
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I1l. Structural form of F (in (3))

For xo,y0 € R, f,g € CHR) with f(y0) = x0, g(x0) = yo

T(fog)(x) = (T)(»)(Tg)(x0) = (T&)(x0)(TF)(y0) = T(gof)(¥) (5)
means  F(xp, Xo, f’(yo)g’(XO)) = F(yo,yo,g'(x())f'(yo)) .
Hence  F(xg,xo0,u) = F(yo,y0,u) =: K(u) for all u € R,

independently of xp, yo € R.
X0 = yp yields K(uv) = K(u)K(v). By (5) also

K(f'(»)g'(x)) = F(x0,0,8'(x0))F (0, %0, '(y0)) ,

K(uv K(u
F(XanOa U) = F(yo(,xo?v) = F(yofxgvl) ’
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I1l. Structural form of F (in (3))

For xo,y0 € R, f,g € CHR) with f(y0) = x0, g(x0) = yo
T(fog)(x) = (T)(»)(Tg)(x0) = (T&)(x0)(TF)(y0) = T(gof)(¥) (5)

means  F(xo, x0, f'(¥0)g'(x0)) = F(¥0. 0,8 (x0)f'(v0)) -
Hence  F(xg,xo0,u) = F(yo,y0,u) =: K(u) for all u € R,
independently of xp, yo € R.

X0 = yp yields K(uv) = K(u)K(v). By (5) also

K(f'(y0)g'(x0)) = F(x0.y0.8'(x0))F (y0, %0, (0)) ;

K(uv K(u
F(XanOa U) = F(J/()(7X0?V) = F(yofxgvl) ’

Let G(x0,y0) = 1/F(y0,x0,1) and H(y) := G(0,y). Then
G(x,y) = G(x,0)G(0,y) = H(y)/H(x). In fact,

H(Xo) = G(O,Xo) = F(O,Xo, 1) = T(Id +Xo)(0) .

Toronto, September 2010 13 /_22



Steps in the Proof of Theorems 1 and 2 IV. Smoothness of K and H

IV. Smoothness of K and H

Sierpinski, Banach: Assume K : R — R is measurable, Z 0,
K(uv) = K(u)K(v).

Then K(u) = |u|P{sgn(u)} for a suitable p.
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Steps in the Proof of Theorems 1 and 2 IV. Smoothness of K and H

IV. Smoothness of K and H

Sierpinski, Banach: Assume K : R — R is measurable, Z 0,
K(uv) = K(u)K(v).

Then K(u) = |u|P{sgn(u)} for a suitable p.

We use this in

o(x) = l-’l_l((z)j;) = K(2)7! T(21d)(x) is continuous on R |
H(b) _ H () <so<§-))
i G o))
b
Continuity of T impli i m MG
ntinuity of T(b Id) implies the existence of kll_)moo (1) =1,
ok
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Steps in the Proof of Theorems 1 and 2 IV. Smoothness of K and H

IV. Smoothness of K and H

Sierpinski, Banach: Assume K : R — R is measurable, Z 0,
K(uv) = K(u)K(v).

Then K(u) = |u|P{sgn(u)} for a suitable p.

We use this in

o(x) = ) K(2)™! T(21d)(x) is continuous on R |

H(L
Continuity of T(b Id) implies the existence of lim (21k)

H is pointwise limit of continuous functions, hence measurable. Take
f(x) = x2/2. Then K(x) = H(x)/H(x?/2)(Tf)(x) is measurable and thus
K(u) = ulP{sgn(u)}.
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Steps in the Proof of Theorems 1 and 2 IV. Smoothness of K and H

Continuity of H follows from the one of
Ho f(x)/H(x) = (TF)(x)/K('(x))

for f € C1(R) with f/(x) # 0: If H would be discontinuous somewhere, it
would be “uniformly discontinuous everywhere”,

Tim H(y)/H(c) and lim H(x)/H(c)

y—cC X—=c

would be independent of ¢ (f = translation from one ¢ to another).
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Steps in the Proof of Theorems 1 and 2 IV. Smoothness of K and H

Continuity of H follows from the one of
Ho f(x)/H(x) = (TF)(x)/K('(x))

for f € C1(R) with f/(x) # 0: If H would be discontinuous somewhere, it
would be “uniformly discontinuous everywhere”,

Tim H(y)/H(c) and lim H(x)/H(c)

y—cC X—=c

would be independent of ¢ (f = translation from one ¢ to another).
Yields a contradiction for a sequence x, — 0 with suitably defined
function f , f(xp) =ya—0 , H(yn)/H(xn) 4 1.
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Steps in the Proof of Theorems 1 and 2 V. C*'-Localization for T : C
V. Ck-Localization for T : CK(R) — C/(R)
Replace f on x > xo by a Taylor polynomial g of f of degree k to get a
Ck(R)-function. Localization on intervals then gives

(TF)(x) = F(x,f(x),...fO(x)); xeR, fe CKR).
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Steps in the Proof of Theorems 1 and 2 [EAVANGRE R [FETITYIIE -1y SER ol 1:3 IS o (1:3)
V. Ck-Localization for T : CK(R) — C/(R)
Replace f on x > xo by a Taylor polynomial g of f of degree k to get a
Ck(R)-function. Localization on intervals then gives

(TF)(x) = F(x,f(x),...fO(x)); xeR, fe CKR).
Taking f,g € C*(R) with f(y0) = x0, &(x0) = yo,
T(f o g)(x) = (TF)(y0)(T8)(x0) = (Tg)(x0)(TF)(y0) = T(g © f)(y0)
gives with K := F(xo,x0,...) and g (x)=1t, ) (y) = s,

K($1t1,51t2 + t1252, ) = K($1t1,512t2 + t150, ) .
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Steps in the Proof of Theorems 1 and 2 [EAVANGRE R [FETITYIIE -1y SER ol 1:3 IS o (1:3)
V. Ck-Localization for T : CK(R) — C/(R)
Replace f on x > xo by a Taylor polynomial g of f of degree k to get a
Ck(R)-function. Localization on intervals then gives

(TF)(x) = F(x,f(x),...fO(x)); xeR, fe CKR).
Taking f,g € C*(R) with f(y0) = x0, &(x0) = yo,
T(f og)(x0) = (TF)(y0)(Tg)(x0) = (Tg)(x0)(TF)(x0) = T(g o f)(x)
gives with K := F(xg,x0,...) and gl (x) =t , F(y) = s,

K($1t1,51t2 + t1252, ) = K($1t1,512t2 + t150, ) .

K is independent of the second and further variables: for arbitrary ay, by
and given values sy, t; (first derivatives) solve

s1b + t1252 =a, 5121.'2 +tis = b
for (t2,s2): possible if sit; & {0,1,—1}. Get as before

(T)(x) = F(x, f(x), '(x))
= H(f(x))/H(x) K(f'(x)) -
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Take

f=21Id

VI. Higher Smoothness of H (ImT c C*(R))
then

VI. Higher Smoothness of H (ImT C C“(R))

H(2x)/H(x) = K(2)1(Tf)(x)
Show H € C*(R). Take logarithm and apply the
For0<a<1,
Then L € CL(R).

is in C*(R).

L€ C(R) s. th. i(x) := L(x) — aL(x/2) is in C}(R).

= = = = E 9DAC¢
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Take

f=21Id

VI. Higher Smoothness of H (ImT c C*(R))
then

VI. Higher Smoothness of H (ImT C C“(R))

H(2x)/H(x) = K(2)1(Tf)(x)
Show H € C*(R). Take logarithm and apply the
For0<a<1,
Then L € CL(R).

is in C*(R).
L€ C(R) s. th. i(x) := L(x) — aL(x/2) is in C}(R).

Iteration technique for proof:

n—1
> (y)
j=0

L(x) - a"L ( x

)

= = = = E 9DAC¢
Toronto, September 2010 17 / 22



Take

f=21Id

VI. Higher Smoothness of H (ImT c C*(R))
then

VI. Higher Smoothness of H (ImT C C“(R))

H(2x)/H(x) = K(2)1(Tf)(x)
Show H € C*(R). Take logarithm and apply the
For0<a<1,
Then L € CL(R).

is in C*(R).
L€ C(R) s. th. i(x) := L(x) — aL(x/2) is in C}(R).

Iteration technique for proof:

n—1
> (y)=
j=0

(X
L(x) - a"L (2)
. . X
yields with a"L (2—n) — 0 for a<1and — L(0) for a =1 that

lim

L(x)—L(0) _ ¢'(0)
x—0 X 1-— 8/2 '
=] = = = = 1PN G4




Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

An n-dimensional analogue

CLR"R"):={f:R" = R"|fc C', Im f C H, HC R" open half-space}
A map T : CY{R",R") — C(R", L(R",R")) is non-degenerate if

Ix €R", f e CHR™R") det (Tf)(x)#0.
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Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

An n-dimensional analogue

CLR"R"):={f:R" = R"|fc C', Im f C H, HC R" open half-space}
A map T : CY{R",R") — C(R", L(R",R")) is non-degenerate if

Ix €R", f e CHR™R") det (Tf)(x)#0.

It is locally surjective if

Ix € R {(TF)(x2) | f € CHR",R"), f(x2) = xa, det f'(x2) £ 0} D GL(n).
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Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

An n-dimensional analogue

CLR"R"):={f:R" = R"|fc C', Im f C H, HC R" open half-space}
A map T : CY{R",R") — C(R", L(R",R")) is non-degenerate if

Ix €R", f e CHR™R") det (Tf)(x)#0.

It is locally surjective if

Ix € R {(TF)(x2) | f € CHR",R"), f(x2) = xa, det f'(x2) £ 0} D GL(n).

B GL(n) n odd
We denote  GL(n)y = { {u € GL(n)| detu >0} neven } '
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An n-dimensional analogue

Assume that T : C}(R",R") — C(R", L(R",R")) is non-degenerate and
locally surjective and satisfies the chain rule equation

T(fog)(x)=((Tf)og)(x)o Tg(x); f,g € CHR",R"), x e R".

= & E DA
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Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

Theorem 7
Assume that T : C}(R",R") — C(R", L(R",R")) is non-degenerate and
locally surjective and satisfies the chain rule equation

T(fog)(x)=((Tf)og)(x)o Tg(x); f,g € CHR",R"), x e R".

Then there is p > 0 and H € C(R", GL(n)) and — for n € N even — a
diagonal matrix J with diagonal entries +1  such that for all
f € CH(R",R") with det '(x) # 0 (Tf)(x) is given by either

{sgn(det f'(x))}| det £'(x)|P (H o f)(x) o f'(x) o H(x) ™!
or

{ {sgn(det f'(x))}| det £ (x)|P (H o f)(x) o H(x)~? if £/(x) € GL(n), }
{sgn(det f/(x))}| det £/ (x)[P (H o f)(x) o Jo H(x)"Y, if f'(x) & GL(n)

The term {sgn(det f'(x))} might be missing.
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(TF)(x) is given by either

{sgn(det f'(x))}| det f'(x)|P (H o f)(x) o f'(x) o H(x)™!
or

{ {sgn(det f'(x))}| det f'(x)|P (H o f)(x) o H(x)™?! if f'(x) € GL(n)+ }
{sgn(det f'(x))}| det f'(x)|P (Ho f)(x)oJo H(x)"L, if f/(x) & GL(n)4

The term {sgn(det f'(x))} might be missing.

o F = = E 9DAC¢
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An n-dimensional analogue

(TF)(x) is given by either

{sgn(det f'(x))}| det f'(x)|P (H o f)(x) o f'(x) o H(x)™!
or

{ {sgn(det f'(x))}| det f'(x)|P (H o f)(x) o H(x)™?! if f'(x) € GL(n)+ }
{sgn(det f'(x))}| det f'(x)|P (Ho f)(x)oJo H(x)"L, if f/(x) & GL(n)4

The term {sgn(det f'(x))} might be missing.

Conversely, any such operator — with p > 0 if {sgn(det f'(x))} is present —
satisfies the chain rule.

If additionally T(21Id) =21d is constant, H=1and p=0o0r p=1/nso
that Tf = £f.

o F = = E 9DAC¢
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Steps in the Proof of Theorems 1 and 2
Localization Step: (Tf)(x0) = F(x0,(x0), f'(x0))
For f € CY(R",R") and k€ {0,...,n} define

p
of

hi(x) = f(X01, s X0k Xk+15 ---aXn)+Z(Xj*XOj)$(X017 oy X0k Xk415 -5 Xn) 5
j=1 !

f=nho, h=nh,; h(x)="~(x0)+ Df(x0)(x — xp). Then
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Steps in the Proof of Theorems 1 and 2
Localization Step: (Tf)(x0) = F(x0,(x0), f'(x0))
For f € CY(R",R") and k€ {0,...,n} define

k
of
hi(x) = f(X01, s X0k Xk+15 '~-7Xn)+Z;(XjXOj)an(X017 oy X0k Xk415 -5 Xn) 5
J:
f=nho, h=nh,; h(x)="~(x0)+ Df(x0)(x — xp). Then

_ hea(x) Xk < xok
&k(x) = { hi(x) Xk = Xok }

isin C! and

(T)(x0) = (Tho)(x0) = (Th1)(x0) = ... = (Thn)(x0) = (Th)(x0) -
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Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

The chain rule means for F

F(x0,20,uov) = F(yo,z0,u) o F(xo,yo,V) .

Let Ky(u):= F(x0,x0,u) .For wu=XId, K(AId) = K,(AId) is
independent of xg and measurable in A. Further

Ky (uv) = Kyy (1) 0 Ky (v) , Kxo (Id) = Id
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Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

The chain rule means for F
F(X07207 uo V) — F(}’07207 U) o F(X07YO7 V) .

Let Ky(u):= F(x0,x0,u) .For wu=XId, K(AId) = K,(AId) is
independent of xg and measurable in A. Further

Ky (uv) = Kyy (1) 0 Ky (v) , Kxo (Id) = Id
Local surjectivity of T implies surjectivity of
Ky, : GL(n) — GL(n) .

If Ky | sin) s trivial, get second form of T in Theorem 7.
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Steps in the Proof of Theorems 1 and 2 An n-dimensional analogue

The chain rule means for F
F(X07207 uo V) — F(}’07207 U) o F(X07YO7 V) .

Let Ky(u):= F(x0,x0,u) .For wu=XId, K(AId) = K,(AId) is
independent of xg and measurable in A. Further

Ky (uv) = Kyy (1) 0 Ky (v) , Kxo (Id) = Id
Local surjectivity of T implies surjectivity of
Ky, : GL(n) — GL(n) .

If Ky | sin) s trivial, get second form of T in Theorem 7.
Else K, is an automorphism of GL(n), and of the form

Ko (1) = x(u) H(xo)ouoH(x)™ ",
where  x : GL(n) — R is a character independent of xp.
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