The Chain Rule as a Functional Equation

S. Artstein-Avidan, H. König, V. Milman

Toronto, September 2010

Fundamental operations in analysis and geometry like the Fourier transform, Legendre transform or polarity are often (almost) characterized by simple functional equations or monotonicity properties (in a non-degenerate setting), the Fourier transform e.g. by

$$
\mathcal{F}(f \cdot g)=\mathcal{F} f * \mathcal{F} g
$$

if acting bijectively on \mathcal{S} and \mathcal{S}^{\prime} (Alesker, Artstein-Avidan, Faifman, Milman).

Fundamental operations in analysis and geometry like the Fourier transform, Legendre transform or polarity are often (almost) characterized by simple functional equations or monotonicity properties (in a non-degenerate setting), the Fourier transform e.g. by

$$
\mathcal{F}(f \cdot g)=\mathcal{F} f * \mathcal{F} g
$$

if acting bijectively on \mathcal{S} and \mathcal{S}^{\prime} (Alesker, Artstein-Avidan, Faifman, Milman).
We show that the derivative is (almost) characterized by the chain rule

$$
D(f \circ g)=D f \circ g \cdot D g
$$

Assume an operation $T: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R})$ satisfies the chain rule

$$
\begin{equation*}
T(f \circ g)=T f \circ g \cdot T g ; \quad f, g \in C^{1}(\mathbb{R}) \tag{1}
\end{equation*}
$$

We do not assume that T is linear or continuous. What solutions does (1) have?

Assume an operation $T: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R})$ satisfies the chain rule

$$
\begin{equation*}
T(f \circ g)=T f \circ g \cdot T g ; \quad f, g \in C^{1}(\mathbb{R}) \tag{1}
\end{equation*}
$$

We do not assume that T is linear or continuous. What solutions does (1) have?
(a) $H \in C(\mathbb{R}), H>0$. Tf $:=H \circ f / H$ satisfies (1).
(b) $T f:=\left\{\begin{array}{ll}f^{\prime} & f \text { bijective } \\ 0 & \text { else }\end{array}\right\}$ satisfies (1).
(c) $p>0 . T f:=\left|f^{\prime}\right|^{p} \quad$ and $\quad T f:=\left|f^{\prime}\right|^{p} \operatorname{sgn}\left(f^{\prime}\right) \quad$ satisfy (1).

Assume an operation $T: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R})$ satisfies the chain rule

$$
\begin{equation*}
T(f \circ g)=T f \circ g \cdot T g ; \quad f, g \in C^{1}(\mathbb{R}) \tag{1}
\end{equation*}
$$

We do not assume that T is linear or continuous. What solutions does (1) have?
(a) $H \in C(\mathbb{R}), H>0 . T f:=H \circ f / H$ satisfies (1).
(b) $T f:=\left\{\begin{array}{ll}f^{\prime} & f \text { bijective } \\ 0 & \text { else }\end{array}\right\}$ satisfies (1).
(c) $p>0$. Tf $:=\left|f^{\prime}\right|^{p} \quad$ and $\quad T f:=\left|f^{\prime}\right|^{p} \operatorname{sgn}\left(f^{\prime}\right) \quad$ satisfy (1).

Definition

$C_{b}^{1}(\mathbb{R}):=\left\{f \in C^{1}(\mathbb{R}) \mid \quad f\right.$ bounded from below or above $\}$ $T: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R})$ is non-degenerate if $\left.T\right|_{C_{b}^{1}(\mathbb{R})} \neq 0$.

Theorem 1

Assume $T: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R})$ satisfies the chain rule functional equation

$$
\begin{equation*}
T(f \circ g)=T f \circ g \cdot T g ; \quad f, g \in C^{1}(\mathbb{R}) \tag{1}
\end{equation*}
$$

and is non-degenerate. Then there exists $p \geq 0$ and $H \in C(\mathbb{R})$ with $H>0$ such that
or, with $p>0$,

$$
\left.\begin{array}{rl}
T f & =\frac{H \circ f}{H}\left|f^{\prime}\right|^{p} \\
T f & =\frac{H \circ f}{H}\left|f^{\prime}\right|^{p} \operatorname{sgn}\left(f^{\prime}\right) \tag{2}
\end{array}\right\}
$$

Theorem 1

Assume $T: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R})$ satisfies the chain rule functional equation

$$
\begin{equation*}
T(f \circ g)=T f \circ g \cdot T g ; \quad f, g \in C^{1}(\mathbb{R}) . \tag{1}
\end{equation*}
$$

and is non-degenerate. Then there exists $p \geq 0$ and $H \in C(\mathbb{R})$ with $H>0$ such that

$$
T f=\frac{H \circ f}{H}\left|f^{\prime}\right|^{p}
$$

or, with $p>0$,

$$
\begin{equation*}
T f=\frac{H \circ f}{H}\left|f^{\prime}\right|^{p_{\operatorname{sgn}}}\left(f^{\prime}\right) \tag{2}
\end{equation*}
$$

Assume additionally that the image of T contains functions with negative values. If then $T(2 \mathrm{Id})(0)=2, T f=H \circ f / H \cdot f^{\prime}$; if stronger $T(2 \mathrm{Id})=2$ holds, $T f=f^{\prime}$ is the only solution of (1).

Remarks.

(i) For $p>0$, let $G \in C^{1}(\mathbb{R})$ be such that $G^{\prime}=H^{1 / p}$. Then

$$
T f=\left|\frac{d(G \circ f)}{d G}\right|^{p}\left\{\operatorname{sgn}\left(\frac{d(G \circ f)}{d G}\right)\right\} .
$$

Remarks.
(i) For $p>0$, let $G \in C^{1}(\mathbb{R})$ be such that $G^{\prime}=H^{1 / p}$. Then

$$
T f=\left|\frac{d(G \circ f)}{d G}\right|^{p}\left\{\operatorname{sgn}\left(\frac{d(G \circ f)}{d G}\right)\right\}
$$

(ii) The function H is determined completely by T (2 Id): letting $\varphi(x)=T(2 \operatorname{Id})(x) / T(2 \mathrm{Id})(0)$, we have

$$
H(x)=\prod_{n \in \mathbb{N}} \varphi\left(\frac{x}{2^{n}}\right) ; x \in \mathbb{R}
$$

Cohomological interpretation

$G=\left(C^{1}(\mathbb{R}), \circ\right), M=(C(\mathbb{R}), \cdot), G \times M \rightarrow M,(f, H) \mapsto H \circ f$
M module over $G, F^{n}(G, M)=\left\{\varphi: G^{n} \rightarrow M\right\}$

Cohomological interpretation

$G=\left(C^{1}(\mathbb{R}), \circ\right), M=(C(\mathbb{R}), \cdot), G \times M \rightarrow M,(f, H) \mapsto H \circ f$
M module over $G, F^{n}(G, M)=\left\{\varphi: G^{n} \rightarrow M\right\}$
$d^{n}: F^{n}(G, M) \rightarrow F^{n+1}(G, M)$ coboundary operators
$\operatorname{Ker}\left(d^{1}\right)=\{$ Solutions of the chain rule $\}$ cocycles
$\operatorname{Im}\left(d^{0}\right)=\{f \mapsto H \circ f / H \mid H \in M\} \quad$ coboundaries

Cohomological interpretation

$G=\left(C^{1}(\mathbb{R}), \circ\right), M=(C(\mathbb{R}), \cdot), G \times M \rightarrow M,(f, H) \mapsto H \circ f$
M module over $G, F^{n}(G, M)=\left\{\varphi: G^{n} \rightarrow M\right\}$
$d^{n}: F^{n}(G, M) \rightarrow F^{n+1}(G, M)$ coboundary operators
$\operatorname{Ker}\left(d^{1}\right)=\{$ Solutions of the chain rule $\}$ cocycles
$\operatorname{Im}\left(d^{0}\right)=\{f \mapsto H \circ f / H \mid H \in M\} \quad$ coboundaries
$H^{1}(G, M)=\operatorname{Ker}\left(d^{1}\right) / \operatorname{Im}\left(d^{0}\right)$ represented by powers of D (up to sign)

If T acts on smoother functions, we have:

Theorem 2

Take $k, \ell \in \mathbb{N}_{0}$ with $k>\ell$ and assume that $T: C^{k}(\mathbb{R}) \rightarrow C^{\ell}(\mathbb{R})$ satisfies the chain rule

$$
\begin{equation*}
T(f \circ g)=T f \circ g \cdot T g ; \quad f, g \in C^{k}(\mathbb{R}) \tag{1}
\end{equation*}
$$

and is non-degenerate on $C^{k}(\mathbb{R})$. Then T has the form

$$
\begin{equation*}
\frac{H \circ f}{H}\left|f^{\prime}\right|^{p}\left\{\operatorname{sgn}\left(f^{\prime}\right)\right\} \tag{2}
\end{equation*}
$$

where $p>0(p \geq 0)$ and $H \in C^{\ell}(\mathbb{R})$ is positive. In fact, $p \in\{0, \ldots, \ell\}$ or $p>\ell$ holds.
The result is also true for $T: C^{\infty}(\mathbb{R}) \rightarrow C^{\infty}(\mathbb{R})(k=\ell=\infty)$.

On $C(\mathbb{R})$ there are no non degenerate examples:

Proposition 3

Assume $T: C(\mathbb{R}) \rightarrow C(\mathbb{R})$ satisfies

$$
T(f \circ g)=(T f) \circ g \cdot T g ; \quad f, g \in C(\mathbb{R})
$$

and that the image of T contains functions having zeros. Then

$$
\left.T\right|_{C_{b}(\mathbb{R})}=0
$$

A weaker form of the chain rule equation admits almost the same conclusion:

Theorem 4

Assume $T, A: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R})$ are operators such that

$$
T(f \circ g)=(T f) \circ g \cdot A g ; \quad f, g \in C^{1}(\mathbb{R})
$$

holds. Under a somewhat stronger non-degeneracy condition on T, T and A have the form

$$
\begin{aligned}
T f & =G_{1} \circ f \cdot \frac{G_{2}}{G_{1}} \cdot\left|f^{\prime}\right|^{p}\left\{\operatorname{sgn}\left(f^{\prime}\right)\right\} \\
A f & =T f / G_{2} \circ f=\frac{H \circ f}{H}\left|f^{\prime}\right|^{p}\left\{\operatorname{sgn}\left(f^{\prime}\right)\right\}
\end{aligned}
$$

where $p>0, G_{1}, G_{2} \in C(\mathbb{R})$ are positive, $H=G_{1} / G_{2}$.

Steps in the Proof of Theorems 1 and 2

I. Localization (on intervals)
a) T non-degenerate \Rightarrow For open intervals $J \subset \mathbb{R}, y \in J, x \in \mathbb{R}$ find $g \in C^{1}(\mathbb{R})$ with $g(x)=y, \operatorname{Im}(g) \subset J$ and $(\operatorname{Tg})(x) \neq 0$. (Shifts, scaling)

Steps in the Proof of Theorems 1 and 2

I. Localization (on intervals)
a) T non-degenerate \Rightarrow For open intervals $J \subset \mathbb{R}, y \in J, x \in \mathbb{R}$ find $g \in C^{1}(\mathbb{R})$ with $g(x)=y, \operatorname{Im}(g) \subset J$ and $(\operatorname{Tg})(x) \neq 0$.
(Shifts, scaling)
b) For open intervals $J \subset \mathbb{R},\left.f\right|_{J}=\operatorname{Id}$ implies $\left.(T f)\right|_{J}=1$.
$\left(y \in J, \operatorname{Im}(g) \subset J, g(x)=y,(T g)(x) \neq 0\right.$. Then $\left.f\right|_{J}=\operatorname{Id}$ yields $f \circ g=g, \quad 0 \neq(T g)(x)=T(f \circ g)(x)=(T f)(y)(T g)(x)$.
Therefore $\left.(T f)(y)=1 ;\left.(T f)\right|_{j}=1\right)$
c) $\left.f_{1}\right|_{J}=\left.\left.f_{2}\right|_{J} \Rightarrow\left(T f_{1}\right)\right|_{J}=\left.\left(T f_{2}\right)\right|_{J}$.

II. Localization (pointwise), $T: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R})$

Proposition 5

There is $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $(T f)(x)=F\left(x, f(x), f^{\prime}(x)\right)$, $x \in \mathbb{R}, f \in C^{1}(\mathbb{R})$.

II. Localization (pointwise), $T: C^{1}(\mathbb{R}) \rightarrow C(\mathbb{R})$

Proposition 5

There is $F: \mathbb{R}^{3} \rightarrow \mathbb{R}$ such that $(T f)(x)=F\left(x, f(x), f^{\prime}(x)\right)$,
$x \in \mathbb{R}, f \in C^{1}(\mathbb{R})$.

Proof.

Take $x_{0} \in \mathbb{R}, f \in C^{1}(\mathbb{R})$. Let $J_{1}=\left(x_{0}, \infty\right), J_{2}=\left(-\infty, x_{0}\right)$.
Let $g(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)$ be the tangent line and

$$
h(x)=\left\{\begin{array}{ll}
g(x) & x \in J_{1} \\
f(x) & x \in \overline{J_{2}} .
\end{array}\right\}
$$

Since $h\left|J_{1}=g\right| J_{1}, \quad h\left|J_{2}=f\right| J_{2}$, by c)
$\left.(T g)\right|_{J_{1}}=\left.(T h)\right|_{\bar{J}_{1}},\left.\quad(T h)\right|_{J_{2}}=(T f)_{J_{2}}$. Since $x_{0} \in \overline{J_{1}} \cap \overline{J_{2}},(T g)\left(x_{0}\right)=(T f)\left(x_{0}\right)$.
But g only depends on $x_{0}, f^{\prime}\left(x_{0}\right)$ and $f^{\prime}\left(x_{0}\right)$;

$$
(T f)\left(x_{0}\right)=F\left(x_{0}, f\left(x_{0}\right), f^{\prime}\left(x_{0}\right)\right) .
$$

III. Structural form of $F($ in (3) $)$

There are $H: \mathbb{R} \rightarrow \mathbb{R}_{>0}$ and $K: \mathbb{R} \rightarrow \mathbb{R}$ with

$$
K(u v)=K(u) K(v), \quad K(u)=0 \Leftrightarrow u=0
$$

such that

$$
\begin{equation*}
(T f)(x)=H(f(x)) / H(x) K\left(f^{\prime}(x)\right) ; \quad f \in C^{1}(\mathbb{R}), x \in \mathbb{R} \tag{4}
\end{equation*}
$$

Proof.

For $x_{0}, y_{0} \in \mathbb{R}, \quad f, g \in C^{1}(\mathbb{R})$ with $f\left(y_{0}\right)=x_{0}, g\left(x_{0}\right)=y_{0}$

$$
\begin{equation*}
T(f \circ g)\left(x_{0}\right)=(T f)\left(y_{0}\right)(T g)\left(x_{0}\right)=(T g)\left(x_{0}\right)(T f)\left(y_{0}\right)=T(g \circ f)\left(y_{0}\right) \tag{5}
\end{equation*}
$$

means $\quad F\left(x_{0}, x_{0}, f^{\prime}\left(y_{0}\right) g^{\prime}\left(x_{0}\right)\right)=F\left(y_{0}, y_{0}, g^{\prime}\left(x_{0}\right) f^{\prime}\left(y_{0}\right)\right)$. Hence $\quad F\left(x_{0}, x_{0}, u\right)=F\left(y_{0}, y_{0}, u\right)=: K(u)$ for all $u \in \mathbb{R}$, independently of $x_{0}, y_{0} \in \mathbb{R}$.

Proof.

For $x_{0}, y_{0} \in \mathbb{R}, \quad f, g \in C^{1}(\mathbb{R})$ with $f\left(y_{0}\right)=x_{0}, g\left(x_{0}\right)=y_{0}$

$$
\begin{equation*}
T(f \circ g)\left(x_{0}\right)=(T f)\left(y_{0}\right)(T g)\left(x_{0}\right)=(T g)\left(x_{0}\right)(T f)\left(y_{0}\right)=T(g \circ f)\left(y_{0}\right) \tag{5}
\end{equation*}
$$

means $\quad F\left(x_{0}, x_{0}, f^{\prime}\left(y_{0}\right) g^{\prime}\left(x_{0}\right)\right)=F\left(y_{0}, y_{0}, g^{\prime}\left(x_{0}\right) f^{\prime}\left(y_{0}\right)\right)$.
Hence $\quad F\left(x_{0}, x_{0}, u\right)=F\left(y_{0}, y_{0}, u\right)=: K(u)$ for all $u \in \mathbb{R}$, independently of $x_{0}, y_{0} \in \mathbb{R}$.
$x_{0}=y_{0}$ yields $\quad K(u v)=K(u) K(v) . \quad$ By (5) also

$$
\begin{aligned}
K\left(f^{\prime}\left(y_{0}\right) g^{\prime}\left(x_{0}\right)\right) & =F\left(x_{0}, y_{0}, g^{\prime}\left(x_{0}\right)\right) F\left(y_{0}, x_{0}, f^{\prime}\left(y_{0}\right)\right), \\
F\left(x_{0}, y_{0}, u\right) & =\frac{K(u v)}{F\left(y_{0}, x_{0}, v\right)}=\frac{K(u)}{F\left(y_{0}, x_{0}, 1\right)} .
\end{aligned}
$$

Proof.

For $x_{0}, y_{0} \in \mathbb{R}, \quad f, g \in C^{1}(\mathbb{R})$ with $f\left(y_{0}\right)=x_{0}, g\left(x_{0}\right)=y_{0}$

$$
\begin{equation*}
T(f \circ g)\left(x_{0}\right)=(T f)\left(y_{0}\right)(T g)\left(x_{0}\right)=(T g)\left(x_{0}\right)(T f)\left(y_{0}\right)=T(g \circ f)\left(y_{0}\right) \tag{5}
\end{equation*}
$$

means $\quad F\left(x_{0}, x_{0}, f^{\prime}\left(y_{0}\right) g^{\prime}\left(x_{0}\right)\right)=F\left(y_{0}, y_{0}, g^{\prime}\left(x_{0}\right) f^{\prime}\left(y_{0}\right)\right)$.
Hence $\quad F\left(x_{0}, x_{0}, u\right)=F\left(y_{0}, y_{0}, u\right)=: K(u)$ for all $u \in \mathbb{R}$, independently of $x_{0}, y_{0} \in \mathbb{R}$.
$x_{0}=y_{0}$ yields $\quad K(u v)=K(u) K(v) . \quad$ By (5) also

$$
\begin{aligned}
K\left(f^{\prime}\left(y_{0}\right) g^{\prime}\left(x_{0}\right)\right) & =F\left(x_{0}, y_{0}, g^{\prime}\left(x_{0}\right)\right) F\left(y_{0}, x_{0}, f^{\prime}\left(y_{0}\right)\right), \\
F\left(x_{0}, y_{0}, u\right) & =\frac{K(u v)}{F\left(y_{0}, x_{0}, v\right)}=\frac{K(u)}{F\left(y_{0}, x_{0}, 1\right)} .
\end{aligned}
$$

Let $G\left(x_{0}, y_{0}\right)=1 / F\left(y_{0}, x_{0}, 1\right)$ and $H(y):=G(0, y)$. Then $G(x, y)=G(x, 0) G(0, y)=H(y) / H(x)$. In fact,

$$
H\left(x_{0}\right)=G\left(0, x_{0}\right)=F\left(0, x_{0}, 1\right)=T\left(\operatorname{Id}+x_{0}\right)(0) .
$$

IV. Smoothness of K and H

Sierpinski, Banach: Assume $K: \mathbb{R} \rightarrow \mathbb{R}$ is measurable, $\not \equiv 0$, $K(u v)=K(u) K(v)$. Then $K(u)=|u|^{p}\{\operatorname{sgn}(u)\}$ for a suitable p.
IV. Smoothness of K and H

Sierpinski, Banach: Assume $K: \mathbb{R} \rightarrow \mathbb{R}$ is measurable, $\not \equiv 0$,
$K(u v)=K(u) K(v)$.
Then $K(u)=|u|^{p}\{\operatorname{sgn}(u)\}$ for a suitable p.
We use this in

$$
\begin{equation*}
(T f)(x)=H(f(x)) / H(x) K\left(f^{\prime}(x)\right) \tag{4}
\end{equation*}
$$

$$
\begin{gathered}
\varphi(x):=\frac{H(2 x)}{H(x)}=K(2)^{-1} T(2 \operatorname{Id})(x) \quad \text { is continuous on } \mathbb{R}, \\
\frac{H(b)}{H(1)}=\frac{H\left(\frac{b}{2^{k}}\right)}{H\left(\frac{1}{2^{k}}\right)} \prod_{i=1}^{k}\left(\frac{\varphi\left(\frac{b}{2^{i}}\right)}{\varphi\left(\frac{1}{2^{i}}\right)}\right) .
\end{gathered}
$$

Continuity of $T(b$ Id $)$ implies the existence of $\lim _{k \rightarrow \infty} \frac{H\left(\frac{b}{2^{k}}\right)}{H\left(\frac{1}{2^{k}}\right)}=1$,

IV. Smoothness of K and H

Sierpinski, Banach: Assume $K: \mathbb{R} \rightarrow \mathbb{R}$ is measurable, $\not \equiv 0$, $K(u v)=K(u) K(v)$.
Then $K(u)=|u|^{p}\{\operatorname{sgn}(u)\}$ for a suitable p.
We use this in

$$
\begin{equation*}
(T f)(x)=H(f(x)) / H(x) K\left(f^{\prime}(x)\right) \tag{4}
\end{equation*}
$$

$$
\begin{gathered}
\varphi(x):=\frac{H(2 x)}{H(x)}=K(2)^{-1} T(2 \operatorname{Id})(x) \quad \text { is continuous on } \mathbb{R} \\
\frac{H(b)}{H(1)}=\frac{H\left(\frac{b}{2^{k}}\right)}{H\left(\frac{1}{2^{k}}\right)} \prod_{i=1}^{k}\left(\frac{\varphi\left(\frac{b}{2^{i}}\right)}{\varphi\left(\frac{1}{2^{i}}\right)}\right) .
\end{gathered}
$$

Continuity of T (b Id) implies the existence of $\lim _{k \rightarrow \infty} \frac{H\left(\frac{b}{2^{k}}\right)}{H\left(\frac{1}{2^{k}}\right)}=1$, H is pointwise limit of continuous functions, hence measurable. Take $f(x)=x^{2} / 2$. Then $K(x)=H(x) / H\left(x^{2} / 2\right)(T f)(x)$ is measurable and thus $K(u)=|u|^{p}\{\operatorname{sgn}(u)\}$.

Continuity of H follows from the one of

$$
H \circ f(x) / H(x)=(T f)(x) / K\left(f^{\prime}(x)\right)
$$

for $f \in C^{1}(\mathbb{R})$ with $f^{\prime}(x) \neq 0$: If H would be discontinuous somewhere, it would be "uniformly discontinuous everywhere",

$$
\varlimsup_{y \rightarrow c} H(y) / H(c) \quad \text { and } \quad \lim _{x \rightarrow c} H(x) / H(c)
$$

would be independent of c ($f=$ translation from one c to another).

Continuity of H follows from the one of

$$
H \circ f(x) / H(x)=(T f)(x) / K\left(f^{\prime}(x)\right)
$$

for $f \in C^{1}(\mathbb{R})$ with $f^{\prime}(x) \neq 0$: If H would be discontinuous somewhere, it would be "uniformly discontinuous everywhere",

$$
\varlimsup_{y \rightarrow c} H(y) / H(c) \quad \text { and } \quad \lim _{x \rightarrow c} H(x) / H(c)
$$

would be independent of c ($f=$ translation from one c to another). Yields a contradiction for a sequence $x_{n} \rightarrow 0$ with suitably defined function $f, f\left(x_{n}\right)=y_{n} \rightarrow 0, H\left(y_{n}\right) / H\left(x_{n}\right) \nrightarrow 1$.
V. C^{k}-Localization for $T: C^{k}(\mathbb{R}) \rightarrow C^{\ell}(\mathbb{R})$

Replace f on $x>x_{0}$ by a Taylor polynomial g of f of degree k to get a $C^{k}(\mathbb{R})$-function. Localization on intervals then gives

$$
(T f)(x)=F\left(x, f(x), \ldots, f^{(k)}(x)\right) ; \quad x \in \mathbb{R}, f \in C^{k}(\mathbb{R}) .
$$

V. C^{k}-Localization for $T: C^{k}(\mathbb{R}) \rightarrow C^{\ell}(\mathbb{R})$

Replace f on $x>x_{0}$ by a Taylor polynomial g of f of degree k to get a $C^{k}(\mathbb{R})$-function. Localization on intervals then gives

$$
(T f)(x)=F\left(x, f(x), \ldots, f^{(k)}(x)\right) ; \quad x \in \mathbb{R}, f \in C^{k}(\mathbb{R})
$$

Taking $f, g \in C^{k}(\mathbb{R})$ with $f\left(y_{0}\right)=x_{0}, g\left(x_{0}\right)=y_{0}$,

$$
T(f \circ g)\left(x_{0}\right)=(T f)\left(y_{0}\right)(T g)\left(x_{0}\right)=(T g)\left(x_{0}\right)(T f)\left(y_{0}\right)=T(g \circ f)\left(y_{0}\right)
$$

gives with $K:=F\left(x_{0}, x_{0}, \ldots\right) \quad$ and $\quad g^{(k)}\left(x_{0}\right)=t_{k}, \quad f^{(k)}\left(y_{0}\right)=s_{k}$

$$
K\left(s_{1} t_{1}, s_{1} t_{2}+t_{1}^{2} s_{2}, \ldots\right)=K\left(s_{1} t_{1}, s_{1}^{2} t_{2}+t_{1} s_{2}, \ldots\right) .
$$

V. C^{k}-Localization for $T: C^{k}(\mathbb{R}) \rightarrow C^{\ell}(\mathbb{R})$

Replace f on $x>x_{0}$ by a Taylor polynomial g of f of degree k to get a $C^{k}(\mathbb{R})$-function. Localization on intervals then gives

$$
(T f)(x)=F\left(x, f(x), \ldots, f^{(k)}(x)\right) ; \quad x \in \mathbb{R}, f \in C^{k}(\mathbb{R})
$$

Taking $f, g \in C^{k}(\mathbb{R})$ with $f\left(y_{0}\right)=x_{0}, g\left(x_{0}\right)=y_{0}$,

$$
T(f \circ g)\left(x_{0}\right)=(T f)\left(y_{0}\right)(T g)\left(x_{0}\right)=(T g)\left(x_{0}\right)(T f)\left(y_{0}\right)=T(g \circ f)\left(y_{0}\right)
$$

gives with $K:=F\left(x_{0}, x_{0}, \ldots\right) \quad$ and $\quad g^{(k)}\left(x_{0}\right)=t_{k}, \quad f^{(k)}\left(y_{0}\right)=s_{k}$

$$
K\left(s_{1} t_{1}, s_{1} t_{2}+t_{1}^{2} s_{2}, \ldots\right)=K\left(s_{1} t_{1}, s_{1}^{2} t_{2}+t_{1} s_{2}, \ldots\right) .
$$

K is independent of the second and further variables: for arbitrary a_{2}, b_{2} and given values s_{1}, t_{1} (first derivatives) solve

$$
s_{1} t_{2}+t_{1}^{2} s_{2}=a_{2}, \quad s_{1}^{2} t_{2}+t_{1} s_{2}=b_{2}
$$

for (t_{2}, s_{2}): possible if $s_{1} t_{1} \notin\{0,1,-1\}$. Get as before

$$
\begin{aligned}
(T f)(x) & =\tilde{F}\left(x, f(x), f^{\prime}(x)\right) \\
& =H(f(x)) / H(x) K\left(f^{\prime}(x)\right) .
\end{aligned}
$$

VI. Higher Smoothness of $H\left(\operatorname{Im} T \subset C^{\ell}(\mathbb{R})\right)$

Take $f=2$ Id then $H(2 x) / H(x)=K(2)^{-1}(T f)(x) \quad$ is in $C^{\ell}(\mathbb{R})$. Show $H \in C^{\ell}(\mathbb{R})$. Take logarithm and apply the

Lemma 6

For $0<a \leq 1, \quad L \in C(\mathbb{R})$ s. th. $\psi(x):=L(x)-a L(x / 2)$ is in $C^{1}(\mathbb{R})$. Then $L \in C^{1}(\mathbb{R})$.

VI. Higher Smoothness of $H\left(\operatorname{Im} T \subset C^{\ell}(\mathbb{R})\right)$

Take $f=2$ Id then $H(2 x) / H(x)=K(2)^{-1}(T f)(x) \quad$ is in $C^{\ell}(\mathbb{R})$. Show $H \in C^{\ell}(\mathbb{R})$. Take logarithm and apply the

Lemma 6

For $0<a \leq 1, \quad L \in C(\mathbb{R})$ s. th. $\psi(x):=L(x)-a L(x / 2)$ is in $C^{1}(\mathbb{R})$. Then $L \in C^{1}(\mathbb{R})$.

Iteration technique for proof:

$$
\sum_{j=0}^{n-1} a^{j} \psi\left(\frac{x}{2^{j}}\right)=L(x)-a^{n} L\left(\frac{x}{2^{n}}\right)
$$

VI. Higher Smoothness of $H\left(\operatorname{Im} T \subset C^{\ell}(\mathbb{R})\right)$

Take $f=2$ Id then $H(2 x) / H(x)=K(2)^{-1}(T f)(x) \quad$ is in $C^{\ell}(\mathbb{R})$. Show $H \in C^{\ell}(\mathbb{R})$. Take logarithm and apply the

Lemma 6

For $0<a \leq 1, \quad L \in C(\mathbb{R})$ s. th. $\psi(x):=L(x)-a L(x / 2)$ is in $C^{1}(\mathbb{R})$. Then $L \in C^{1}(\mathbb{R})$.

Iteration technique for proof:

$$
\sum_{j=0}^{n-1} a^{j} \psi\left(\frac{x}{2^{j}}\right)=L(x)-a^{n} L\left(\frac{x}{2^{n}}\right)
$$

yields with $a^{n} L\left(\frac{x}{2^{n}}\right) \rightarrow 0$ for $a<1$ and $\rightarrow L(0)$ for $a=1$ that

$$
\lim _{x \rightarrow 0} \frac{L(x)-L(0)}{x}=\frac{\psi^{\prime}(0)}{1-a / 2} .
$$

An n-dimensional analogue

$C_{b}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right):=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid f \in C^{1}, \operatorname{Im} f \subseteq H, H \subseteq R^{n}\right.$ open half-space $\}$
A map $T: C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{n}, L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)\right)$ is non-degenerate if

$$
\exists x_{1} \in \mathbb{R}^{n}, f \in C_{b}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \quad \operatorname{det}(T f)\left(x_{1}\right) \neq 0
$$

An n-dimensional analogue
$C_{b}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right):=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid f \in C^{1}, \operatorname{Im} f \subseteq H, H \subseteq R^{n}\right.$ open half-space $\}$
A map $T: C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{n}, L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)\right)$ is non-degenerate if

$$
\exists x_{1} \in \mathbb{R}^{n}, f \in C_{b}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \quad \operatorname{det}(T f)\left(x_{1}\right) \neq 0
$$

It is locally surjective if
$\exists x_{2} \in \mathbb{R}^{n}\left\{(T f)\left(x_{2}\right) \mid f \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right), f\left(x_{2}\right)=x_{2}, \operatorname{det} f^{\prime}\left(x_{2}\right) \neq 0\right\} \supseteq G L(n)$.

An n-dimensional analogue
$C_{b}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right):=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \mid f \in C^{1}, \operatorname{Im} f \subseteq H, H \subseteq R^{n}\right.$ open half-space $\}$
A map $T: C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{n}, L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)\right)$ is non-degenerate if

$$
\exists x_{1} \in \mathbb{R}^{n}, f \in C_{b}^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \quad \operatorname{det}(T f)\left(x_{1}\right) \neq 0
$$

It is locally surjective if
$\exists x_{2} \in \mathbb{R}^{n}\left\{(T f)\left(x_{2}\right) \mid f \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right), f\left(x_{2}\right)=x_{2}, \operatorname{det} f^{\prime}\left(x_{2}\right) \neq 0\right\} \supseteq G L(n)$.

We denote $G L(n)_{+}=\left\{\begin{array}{cc}G L(n) & n \text { odd } \\ \{u \in G L(n) \mid \operatorname{det} u>0\} & n \text { even }\end{array}\right\}$.

Theorem 7

Assume that $T: C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{n}, L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)\right)$ is non-degenerate and locally surjective and satisfies the chain rule equation

$$
T(f \circ g)(x)=((T f) \circ g)(x) \circ \operatorname{Tg}(x) ; f, g \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right), x \in \mathbb{R}^{n}
$$

Theorem 7

Assume that $T: C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \rightarrow C\left(\mathbb{R}^{n}, L\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)\right)$ is non-degenerate and locally surjective and satisfies the chain rule equation

$$
T(f \circ g)(x)=((T f) \circ g)(x) \circ T g(x) ; f, g \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right), x \in \mathbb{R}^{n}
$$

Then there is $p \geq 0$ and $H \in C\left(\mathbb{R}^{n}, G L(n)\right)$ and - for $n \in \mathbb{N}$ even - a diagonal matrix J with diagonal entries ± 1 such that for all $f \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right)$ with $\operatorname{det} f^{\prime}(x) \neq 0(T f)(x)$ is given by either

$$
\left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}\left|\operatorname{det} f^{\prime}(x)\right|^{p}(H \circ f)(x) \circ f^{\prime}(x) \circ H(x)^{-1}
$$

or
$\left\{\begin{array}{ll}\left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}\left|\operatorname{det} f^{\prime}(x)\right|^{p}(H \circ f)(x) \circ H(x)^{-1} & \text { if } f^{\prime}(x) \in G L(n)_{+} \\ \left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}\left|\operatorname{det} f^{\prime}(x)\right|^{p}(H \circ f)(x) \circ J \circ H(x)^{-1}, & \text { if } f^{\prime}(x) \notin G L(n)_{+}\end{array}\right\}$

The term $\left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}$ might be missing.

Theorem 7

$(T f)(x)$ is given by either
$\left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}\left|\operatorname{det} f^{\prime}(x)\right|^{p}(H \circ f)(x) \circ f^{\prime}(x) \circ H(x)^{-1}$
or
$\left\{\begin{array}{ll}\left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}\left|\operatorname{det} f^{\prime}(x)\right|^{p}(H \circ f)(x) \circ H(x)^{-1} & \text { if } f^{\prime}(x) \in G L(n)_{+} \\ \left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}\left|\operatorname{det} f^{\prime}(x)\right|^{p}(H \circ f)(x) \circ J \circ H(x)^{-1}, & \text { if } f^{\prime}(x) \notin G L(n)_{+}\end{array}\right\}$
The term $\left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}$ might be missing.

Theorem 7

$(T f)(x)$ is given by either $\left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}\left|\operatorname{det} f^{\prime}(x)\right|^{p}(H \circ f)(x) \circ f^{\prime}(x) \circ H(x)^{-1}$
or

$$
\left\{\begin{array}{ll}
\left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}\left|\operatorname{det} f^{\prime}(x)\right|^{p}(H \circ f)(x) \circ H(x)^{-1} & \text { if } f^{\prime}(x) \in G L(n)_{+} \\
\left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}\left|\operatorname{det} f^{\prime}(x)\right|^{p}(H \circ f)(x) \circ J \circ H(x)^{-1}, & \text { if } f^{\prime}(x) \notin G L(n)_{+}
\end{array}\right\}
$$

The term $\left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}$ might be missing.
Conversely, any such operator - with $p>0$ if $\left\{\operatorname{sgn}\left(\operatorname{det} f^{\prime}(x)\right)\right\}$ is present satisfies the chain rule.
If additionally $T(2 \mathrm{Id})=2$ Id is constant, $H=1$ and $p=0$ or $p=1 / n$ so that $T f= \pm f^{\prime}$.

Localization Step: $(T f)\left(x_{0}\right)=F\left(x_{0}, f\left(x_{0}\right), f^{\prime}\left(x_{0}\right)\right)$
For $f \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \quad$ and $\quad k \in\{0, \ldots, n\}$ define
$h_{k}(x)=f\left(x_{01}, \ldots, x_{0 k}, x_{k+1}, \ldots, x_{n}\right)+\sum_{j=1}^{k}\left(x_{j}-x_{0 j}\right) \frac{\partial f}{\partial x_{j}}\left(x_{01}, \ldots, x_{0 k}, x_{k+1}, \ldots, x_{n}\right)$
$f=h_{0}, h=h_{n} ; \quad h(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(x-x_{0}\right)$. Then

Localization Step: $(T f)\left(x_{0}\right)=F\left(x_{0}, f\left(x_{0}\right), f^{\prime}\left(x_{0}\right)\right)$
For $f \in C^{1}\left(\mathbb{R}^{n}, \mathbb{R}^{n}\right) \quad$ and $\quad k \in\{0, \ldots, n\}$ define
$h_{k}(x)=f\left(x_{01}, \ldots, x_{0 k}, x_{k+1}, \ldots, x_{n}\right)+\sum_{j=1}^{k}\left(x_{j}-x_{0 j}\right) \frac{\partial f}{\partial x_{j}}\left(x_{01}, \ldots, x_{0 k}, x_{k+1}, \ldots, x_{n}\right)$
$f=h_{0}, h=h_{n} ; \quad h(x)=f\left(x_{0}\right)+D f\left(x_{0}\right)\left(x-x_{0}\right)$. Then

$$
g_{k}(x)=\left\{\begin{array}{ll}
h_{k-1}(x) & x_{k}<x_{0 k} \\
h_{k}(x) & x_{k} \geq x_{0 k}
\end{array}\right\}
$$

is in C^{1} and

$$
(T f)\left(x_{0}\right)=\left(T h_{0}\right)\left(x_{0}\right)=\left(T h_{1}\right)\left(x_{0}\right)=\ldots=\left(T h_{n}\right)\left(x_{0}\right)=(T h)\left(x_{0}\right) .
$$

The chain rule means for F

$$
F\left(x_{0}, z_{0}, u \circ v\right)=F\left(y_{0}, z_{0}, u\right) \circ F\left(x_{0}, y_{0}, v\right)
$$

Let $\quad K_{x_{0}}(u):=F\left(x_{0}, x_{0}, u\right)$. For $\quad u=\lambda \operatorname{Id}, K(\lambda \operatorname{Id})=K_{x_{0}}(\lambda \operatorname{Id})$ is independent of x_{0} and measurable in λ. Further

$$
K_{x_{0}}(u v)=K_{x_{0}}(u) \circ K_{x_{0}}(v), K_{x_{0}}(\operatorname{Id})=\operatorname{Id}
$$

The chain rule means for F

$$
F\left(x_{0}, z_{0}, u \circ v\right)=F\left(y_{0}, z_{0}, u\right) \circ F\left(x_{0}, y_{0}, v\right)
$$

Let $\quad K_{x_{0}}(u):=F\left(x_{0}, x_{0}, u\right)$. For $\quad u=\lambda \operatorname{Id}, K(\lambda \operatorname{Id})=K_{x_{0}}(\lambda \operatorname{Id})$ is independent of x_{0} and measurable in λ. Further

$$
K_{x_{0}}(u v)=K_{x_{0}}(u) \circ K_{x_{0}}(v), K_{x_{0}}(\operatorname{Id})=\operatorname{Id}
$$

Local surjectivity of T implies surjectivity of

$$
K_{x_{0}}: G L(n) \rightarrow G L(n) .
$$

If $K_{x_{0}} \mid S L(n) \quad$ is trivial, get second form of T in Theorem 7.

The chain rule means for F

$$
F\left(x_{0}, z_{0}, u \circ v\right)=F\left(y_{0}, z_{0}, u\right) \circ F\left(x_{0}, y_{0}, v\right)
$$

Let $\quad K_{x_{0}}(u):=F\left(x_{0}, x_{0}, u\right)$. For $\quad u=\lambda \operatorname{Id}, K(\lambda \operatorname{Id})=K_{x_{0}}(\lambda \operatorname{Id})$ is independent of x_{0} and measurable in λ. Further

$$
K_{x_{0}}(u v)=K_{x_{0}}(u) \circ K_{x_{0}}(v), K_{x_{0}}(\operatorname{Id})=\operatorname{Id}
$$

Local surjectivity of T implies surjectivity of

$$
K_{x_{0}}: G L(n) \rightarrow G L(n) .
$$

If $\quad K_{x_{0}} \mid S L(n) \quad$ is trivial, get second form of T in Theorem 7. Else $K_{x_{0}}$ is an automorphism of $G L(n)$, and of the form

$$
K_{x_{0}}(u)=\chi(u) \quad H\left(x_{0}\right) \circ u \circ H\left(x_{0}\right)^{-1}
$$

where $\quad \chi: G L(n) \rightarrow \mathbb{R} \quad$ is a character independent of x_{0}.

