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Banach-Mazur distance

Definition

K = −K ,L = −L ⊂ R
n convex o-symmetric bodies.

dBM(K ,L) = inf{λ > 0 : K ⊂ T (L) ⊂ λK},

infimum: over all T ∈ GLn.

Question: What is the maximum? When is it attained?

John (1948)
If E is the largest volume ellipsoid in K then K ⊂

√
nE .

Corollary
dBM(K , L) ≤ n.

Gluskin (1981)
There is a universal constant c s.t. ∀n there are K ,L ⊂ R

n symmetric
convex bodies with dBM(K ,L) ≥ cn.
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B-M distance non-symmetrical case

Definition

K , L ⊂ R
n convex bodies.

dBM(K ,L) = inf{λ > 0 : K − a ⊂ T (L − b) ⊂ λ(K − a)},

infimum: over all a, b ∈ R
n and all T ∈ GLn.

Question: What is the maximum? When is it attained?

Rudelson (2000)

dBM(K ,L) ≤ cn
4
3 logα n.
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Grünbaum’s distance
What is the maximum?
When is it attained?

Modified B-M distance

Let K ,L ⊂ R
n be convex bodies.

Definition

dBM(K ,L) = inf{λ > 0 : K − a ⊂ T (L − b) ⊂ λ(K − a)},
infimum: over all a, b ∈ R

n and all T ∈ GLn.

Definition (Grünbaum, 1963)

d(K ,L) = inf{|λ| : K − a ⊂ T (L − b) ⊂ λ(K − a)},
infimum: over all a, b ∈ R

n and all T ∈ GLn.

Note that if L = −L then d(K , L) = dBM(K ,L) for any convex body K .
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What is the maximum?

Definition (Grünbaum, 1963)

d(K ,L) = inf{|λ| : K − a ⊂ T (L − b) ⊂ λ(K − a)},
infimum: over all a, b ∈ R

n and all T ∈ GLn.

Question: What is the maximum?

Gordon, Litvak, Meyer, Pajor (2000)

d(K , L) ≤ n.
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When is it attained?

For which pair of bodies K and L does d(K ,L) = n hold?

Gordon, Litvak, Meyer, Pajor (2000)

If K = ∆n and L = −L then d(K ,L) = n.

∆n denotes an n dimensional non-degenerate simplex.

Conjecture 1

If d(K ,L) = n then K = ∆n and L = −L or vice versa.
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When is it attained?

Conjecture 1

If d(K ,L) = n then K = ∆n and L = −L or vice versa.

Asplund: False. ∃L ⊂ R
2 : L 6= −L,d(∆2, L) = 2.

Conjecture 2

If d(K ,L) = n then K or L is a simplex.

Leichtweiß, Palmon (’59,’92)
d(K ,Bn

2) = n =⇒ K = ∆n.

CHJ, M. Naszódi (2009)
K ,D ⊂ R

n convex bodies, D smooth or strictly convex.

d(K ,D) = n =⇒ K = ∆n.
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John’s Position

Definition

K is in John’s position in L if K ⊆ L and

In =
m
∑

i=1

aiui ⊗ vi

0 =
m
∑

i=1

aiui =
m
∑

i=1

aivi

〈ui , vi〉 = 1 for all i = 1, . . . ,m.

for some

{ui} ⊆ ∂L ∩ ∂K ,

{vi} ⊆ ∂L◦ ∩ ∂K ◦,

{ai} ⊆ R
+.
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Maximal distance

Theorem (CHJ, M. Naszódi (2009))

Let K be a convex body, and D be a strictly convex body or a smooth convex
body in R

n, with K ⊆ D in John’s position. Assume that the smallest negative
homothet of K containing D is −nK . Then K is a simplex.

Corollary

K ,D ⊂ R
n convex bodies, D smooth or strictly convex.

d(K ,D) = n =⇒ K = ∆n.

Can we drop the strict convexity or smoothness conditions on D?

NO!
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Is strict convexity (or smoothness) necessary?

Can we drop the strict convexity or smoothness condition on D?
NO!

L

v0

v1 P (x2) P (x1) v2

x1x2

o

K
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Main Theorem
Proof

Idea behind the proof

Gordon, Litvak, Meyer, Pajor (2000)
If K is in a position of maximal volume inside L then there is a transla-
tion z ∈ R

n such that K − z is in John’s position in L − z.

Gordon, Litvak, Meyer, Pajor (2000)
If K ⊆ L is in John’s position then L ⊆ −nK .

Corollary
d(K ,L) ≤ n.

C.H.J., M.N. (2009)
K ,D ⊂ R

n convex bodies, D smooth or strictly convex.

K ⊆ D in John’s position, and

D ⊆ −nK minimal homothet.

Then K = ∆n.

C. Hugo Jiménez, Márton Naszódi On the maximal distance between two convex bodies



uofalogo

Introduction
B-M type distance

Main Result

Main Theorem
Proof

Idea behind the proof

Gordon, Litvak, Meyer, Pajor (2000)
If K is in a position of maximal volume inside L then there is a transla-
tion z ∈ R

n such that K − z is in John’s position in L − z.

Gordon, Litvak, Meyer, Pajor (2000)
If K ⊆ L is in John’s position then L ⊆ −nK .

Corollary
d(K ,L) ≤ n.

C.H.J., M.N. (2009)
K ,D ⊂ R

n convex bodies, D smooth or strictly convex.

K ⊆ D in John’s position, and

D ⊆ −nK minimal homothet.

Then K = ∆n.

C. Hugo Jiménez, Márton Naszódi On the maximal distance between two convex bodies



uofalogo

Introduction
B-M type distance

Main Result

Main Theorem
Proof

Idea behind the proof

Gordon, Litvak, Meyer, Pajor (2000)
If K is in a position of maximal volume inside L then there is a transla-
tion z ∈ R

n such that K − z is in John’s position in L − z.

Gordon, Litvak, Meyer, Pajor (2000)
If K ⊆ L is in John’s position then L ⊆ −nK .

Corollary
d(K ,L) ≤ n.

C.H.J., M.N. (2009)
K ,D ⊂ R

n convex bodies, D smooth or strictly convex.

K ⊆ D in John’s position, and

D ⊆ −nK minimal homothet.

Then K = ∆n.

C. Hugo Jiménez, Márton Naszódi On the maximal distance between two convex bodies



uofalogo

Introduction
B-M type distance

Main Result

Main Theorem
Proof

From [GLMP]

‖ − x‖K =

∥

∥

∥

∥

∥

−
m
∑

i=1

ai〈x , vi〉ui

∥

∥

∥

∥

∥

K

=

∥

∥

∥

∥

∥

−
m
∑

i=1

ai〈x , vi〉ui +

(

m
∑

i=1

aiui

)

m
max

j=1
〈x , vj〉

∥

∥

∥

∥

∥

K

≤
m
∑

i=1

(

m
max

j=1
〈x , vj〉 − 〈x , vi〉

)

ai‖ui‖K

=
m

max
j=1

〈x , vj〉
m
∑

i=1

ai −
〈

x ,
m
∑

i=1

aivi

〉

= n
m

max
j=1

〈x , vj〉 ≤ n.
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Geometric interpretation

For every x ∈ ∂L ∩ (−n∂K ) i.e. for every x ∈ ∂L s.t. ‖ − x‖K = n we have
that:

−x
n ∈ conv{ui : i ∈ B}, B ⊂ {1, ...,m}
〈x , vi〉 = 1 for all i ∈ BC .

Under strict convexity assumption:

x = ui for some 1 ≤ i ≤ m.

∂D ∩ (−n∂K ) = {ui : i = 1, . . . , r} for some 1 ≤ r ≤ m.

〈ui , vk 〉 = −1/n for every i 6= k .
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Thank you
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