On the maximal distance between two convex bodies

C. Hugo Jiménez
(joint work with Márton Naszódi)

Department of Mathematical Analysis
College of Mathematics
Universidad de Sevilla.

Fields Institute, September 9th, 2010

Banach-Mazur distance

Definition

$K=-K, L=-L \subset \mathbb{R}^{n}$ convex o-symmetric bodies.

$$
d_{\mathrm{BM}}(K, L)=\inf \{\lambda>0: K \subset T(L) \subset \lambda K\},
$$

infimum: over all $T \in G L_{n}$.

Question: What is the maximum? When is it attained?

John (1948)

Corollary

Banach-Mazur distance

Definition

$K=-K, L=-L \subset \mathbb{R}^{n}$ convex o-symmetric bodies.

$$
d_{\mathrm{BM}}(K, L)=\inf \{\lambda>0: K \subset T(L) \subset \lambda K\},
$$

infimum: over all $T \in G L_{n}$.

Question: What is the maximum? When is it attained?

John (1948)

Gluskin (1981)
There is a universal constant c s.t. $\forall n$ there are $K . L \subset R^{n}$ symmetric

Banach-Mazur distance

Definition

$K=-K, L=-L \subset \mathbb{R}^{n}$ convex o-symmetric bodies.

$$
d_{\mathrm{BM}}(K, L)=\inf \{\lambda>0: K \subset T(L) \subset \lambda K\},
$$

infimum: over all $T \in G L_{n}$.

Question: What is the maximum? When is it attained?

John (1948)
If \mathscr{E} is the largest volume ellipsoid in K then $K \subset \sqrt{n} \mathscr{E}$.
Corollary

$$
d_{\mathrm{BM}}(K, L) \leq n .
$$

Gluskin (1981)

Banach-Mazur distance

Definition

$K=-K, L=-L \subset \mathbb{R}^{n}$ convex o-symmetric bodies.

$$
d_{\mathrm{BM}}(K, L)=\inf \{\lambda>0: K \subset T(L) \subset \lambda K\}
$$

infimum: over all $T \in G L_{n}$.

Question: What is the maximum? When is it attained?

John (1948)
If \mathscr{E} is the largest volume ellipsoid in K then $K \subset \sqrt{n} \mathscr{E}$.
Corollary

$$
d_{\mathrm{BM}}(K, L) \leq n .
$$

Gluskin (1981)
There is a universal constant c s.t. $\forall n$ there are $K, L \subset \mathbb{R}^{n}$ symmetric convex bodies with $d_{\mathrm{BM}}(K, L) \geq c n$.

B-M distance non-symmetrical case

Definition

$K, L \subset \mathbb{R}^{n}$ convex bodies.

$$
d_{\mathrm{BM}}(K, L)=\inf \{\lambda>0: K-a \subset T(L-b) \subset \lambda(K-a)\},
$$

infimum: over all $a, b \in \mathbb{R}^{n}$ and all $T \in G L_{n}$.

Question: What is the maximum? When is it attained?
Rudelson (2000)

B-M distance non-symmetrical case

Definition

$K, L \subset \mathbb{R}^{n}$ convex bodies.

$$
d_{\mathrm{BM}}(K, L)=\inf \{\lambda>0: K-a \subset T(L-b) \subset \lambda(K-a)\},
$$

infimum: over all $a, b \in \mathbb{R}^{n}$ and all $T \in G L_{n}$.

Question: What is the maximum? When is it attained?

Rudelson (2000)

B-M distance non-symmetrical case

Definition

$K, L \subset \mathbb{R}^{n}$ convex bodies.

$$
d_{\mathrm{BM}}(K, L)=\inf \{\lambda>0: K-a \subset T(L-b) \subset \lambda(K-a)\},
$$

infimum: over all $a, b \in \mathbb{R}^{n}$ and all $T \in G L_{n}$.

Question: What is the maximum? When is it attained?
Rudelson (2000)

$$
d_{\mathrm{BM}}(K, L) \leq c n^{\frac{4}{3}} \log ^{\alpha} n .
$$

Modified B-M distance

Let $K, L \subset \mathbb{R}^{n}$ be convex bodies.

Definition

$$
d_{\mathrm{BM}}(K, L)=\inf \{\lambda>0: K-a \subset T(L-b) \subset \lambda(K-a)\},
$$

infimum: over all $a, b \in \mathbb{R}^{n}$ and all $T \in G L_{n}$.
infimum: over all $a, b \in \mathbb{R}^{n}$ and all $T \in G L_{n}$

Note that if $L=-L$ then $d(K, L)=d_{\mathrm{BM}}(K, L)$ for any convex body K

Modified B-M distance

Let $K, L \subset \mathbb{R}^{n}$ be convex bodies.

Definition

$$
d_{\mathrm{BM}}(K, L)=\inf \{\lambda>0: K-a \subset T(L-b) \subset \lambda(K-a)\},
$$

infimum: over all $a, b \in \mathbb{R}^{n}$ and all $T \in G L_{n}$.

Definition (Grünbaum, 1963)

$$
d(K, L)=\inf \{|\lambda|: K-a \subset T(L-b) \subset \lambda(K-a)\}
$$

infimum: over all $a, b \in \mathbb{R}^{n}$ and all $T \in G L_{n}$.

Note that if $L=-L$ then $d(K, L)=d_{\mathrm{BM}}(K, L)$ for any convex body K

Modified B-M distance

Let $K, L \subset \mathbb{R}^{n}$ be convex bodies.

Definition

$$
d_{\mathrm{BM}}(K, L)=\inf \{\lambda>0: K-a \subset T(L-b) \subset \lambda(K-a)\},
$$

infimum: over all $a, b \in \mathbb{R}^{n}$ and all $T \in G L_{n}$.

Definition (Grünbaum, 1963)

$$
d(K, L)=\inf \{|\lambda|: K-a \subset T(L-b) \subset \lambda(K-a)\}
$$

infimum: over all $a, b \in \mathbb{R}^{n}$ and all $T \in G L_{n}$.

Note that if $L=-L$ then $d(K, L)=d_{\mathrm{BM}}(K, L)$ for any convex body K.

What is the maximum?

Definition (Grünbaum, 1963)

$$
d(K, L)=\inf \{|\lambda|: K-a \subset T(L-b) \subset \lambda(K-a)\}
$$

infimum: over all $a, b \in \mathbb{R}^{n}$ and all $T \in G L_{n}$.

Question: What is the maximum?

Gordon, Litvak, Meyer, Pajor (2000)

What is the maximum?

Definition (Grünbaum, 1963)

$$
d(K, L)=\inf \{|\lambda|: K-a \subset T(L-b) \subset \lambda(K-a)\}
$$

infimum: over all $a, b \in \mathbb{R}^{n}$ and all $T \in G L_{n}$.

Question: What is the maximum?

Gordon, Litvak, Meyer, Pajor (2000)

$$
d(K, L) \leq n .
$$

When is it attained?

For which pair of bodies K and L does $d(K, L)=n$ hold?

Gordon, Litvak, Meyer, Pajor (2000)
Δ^{n} denotes an n dimensional non-degenerate simplex

When is it attained?

For which pair of bodies K and L does $d(K, L)=n$ hold?

Gordon, Litvak, Meyer, Pajor (2000)

$$
\text { If } K=\Delta^{n} \text { and } L=-L \text { then } d(K, L)=n \text {. }
$$

Δ^{n} denotes an n dimensional non-degenerate simplex.

When is it attained?

For which pair of bodies K and L does $d(K, L)=n$ hold?

Gordon, Litvak, Meyer, Pajor (2000)

$$
\text { If } K=\Delta^{n} \text { and } L=-L \text { then } d(K, L)=n \text {. }
$$

Δ^{n} denotes an n dimensional non-degenerate simplex.

Conjecture 1
If $d(K, L)=n$ then $K=\Delta^{n}$ and $L=-L$ or vice versa.

When is it attained?

Conjecture 1
If $d(K, L)=n$ then $K=\Delta^{n}$ and $L=-L$ or vice versa.
Asplund: False. $\exists L \subset \mathbb{R}^{2}: L \neq-L, d\left(\Delta^{2}, L\right)=2$.

When is it attained?

Conjecture 1
If $d(K, L)=n$ then $K=\Delta^{n}$ and $L=-L$ or vice versa.

Asplund: False. $\exists L \subset \mathbb{R}^{2}: L \neq-L, d\left(\Delta^{2}, L\right)=2$.
Conjecture 2
If $d(K, L)=n$ then K or L is a simplex.

Leichtweiß, Palmon ('59,'92)

CHJ, M. Naszódi (2009)
convex bodies, D smooth or strictly convex

When is it attained?

Conjecture 1
If $d(K, L)=n$ then $K=\Delta^{n}$ and $L=-L$ or vice versa.
Asplund: False. $\exists L \subset \mathbb{R}^{2}: L \neq-L, d\left(\Delta^{2}, L\right)=2$.
Conjecture 2
If $d(K, L)=n$ then K or L is a simplex.

Leichtweiß, Palmon ('59,'92)

$$
d\left(K, B_{2}^{n}\right)=n \Longrightarrow K=\Delta^{n} .
$$

CHJ, M. Naszódi (2009)
convex bodies, D smooth or strictly convex

When is it attained?

Conjecture 1

If $d(K, L)=n$ then $K=\Delta^{n}$ and $L=-L$ or vice versa.
Asplund: False. $\exists L \subset \mathbb{R}^{2}: L \neq-L, d\left(\Delta^{2}, L\right)=2$.

Conjecture 2

If $d(K, L)=n$ then K or L is a simplex.

Leichtweiß, Palmon ('59,'92)

$$
d\left(K, B_{2}^{n}\right)=n \Longrightarrow K=\Delta^{n} .
$$

CHJ, M. Naszódi (2009)
$K, D \subset \mathbb{R}^{n}$ convex bodies, D smooth or strictly convex.

$$
d(K, D)=n \Longrightarrow K=\Delta^{n} .
$$

John's Position

Definition

K is in John's position in L if $K \subseteq L$ and

$$
\begin{gathered}
I_{n}=\sum_{i=1}^{m} a_{i} u_{i} \otimes v_{i} \\
0=\sum_{i=1}^{m} a_{i} u_{i}=\sum_{i=1}^{m} a_{i} v_{i} \\
\left\langle u_{i}, v_{i}\right\rangle=1 \text { for all } i=1, \ldots, m .
\end{gathered}
$$

for some

$$
\begin{aligned}
\left\{u_{i}\right\} & \subseteq \partial L \cap \partial K, \\
\left\{v_{i}\right\} & \subseteq \partial L^{\circ} \cap \partial K^{\circ}, \\
\left\{a_{i}\right\} & \subseteq \mathbb{R}^{+} .
\end{aligned}
$$

Maximal distance

Theorem (CHJ, M. Naszódi (2009))

Let K be a convex body, and D be a strictly convex body or a smooth convex body in \mathbb{R}^{n}, with $K \subseteq D$ in John's position. Assume that the smallest negative homothet of K containing D is $-n K$. Then K is a simplex.

Can we drop the strict convexity or smoothness conditions on D ?

Maximal distance

Theorem (CHJ, M. Naszódi (2009))

Let K be a convex body, and D be a strictly convex body or a smooth convex body in \mathbb{R}^{n}, with $K \subseteq D$ in John's position. Assume that the smallest negative homothet of K containing D is $-n K$. Then K is a simplex.

Corollary

$K, D \subset \mathbb{R}^{n}$ convex bodies, D smooth or strictly convex.

$$
d(K, D)=n \Longrightarrow K=\Delta^{n} .
$$

Can we drop the strict convexity or smoothness conditions on D ?

Maximal distance

Theorem (CHJ, M. Naszódi (2009))

Let K be a convex body, and D be a strictly convex body or a smooth convex body in \mathbb{R}^{n}, with $K \subseteq D$ in John's position. Assume that the smallest negative homothet of K containing D is $-n K$. Then K is a simplex.

Corollary
$K, D \subset \mathbb{R}^{n}$ convex bodies, D smooth or strictly convex.

$$
d(K, D)=n \Longrightarrow K=\Delta^{n} .
$$

Can we drop the strict convexity or smoothness conditions on D ?

Maximal distance

Theorem (CHJ, M. Naszódi (2009))

Let K be a convex body, and D be a strictly convex body or a smooth convex body in \mathbb{R}^{n}, with $K \subseteq D$ in John's position. Assume that the smallest negative homothet of K containing D is $-n K$. Then K is a simplex.

Corollary
$K, D \subset \mathbb{R}^{n}$ convex bodies, D smooth or strictly convex.

$$
d(K, D)=n \Longrightarrow K=\Delta^{n} .
$$

Can we drop the strict convexity or smoothness conditions on D ? NO!

Is strict convexity (or smoothness) necessary?

Can we drop the strict convexity or smoothness condition on D ? NO!

Idea behind the proof

Gordon, Litvak, Meyer, Pajor (2000)
If K is in a position of maximal volume inside L then there is a translation $z \in \mathbb{R}^{n}$ such that $K-z$ is in John's position in $L-z$.

Gordon, Litvak, Meyer, Pajor (2000)

Idea behind the proof

Gordon, Litvak, Meyer, Pajor (2000)
If K is in a position of maximal volume inside L then there is a translation $z \in \mathbb{R}^{n}$ such that $K-z$ is in John's position in $L-z$.

Gordon, Litvak, Meyer, Pajor (2000)
If $K \subseteq L$ is in John's position then $L \subseteq-n K$.
Corollary

$$
d(K, L) \leq n .
$$

Idea behind the proof

Gordon, Litvak, Meyer, Pajor (2000)
If K is in a position of maximal volume inside L then there is a translation $z \in \mathbb{R}^{n}$ such that $K-z$ is in John's position in $L-z$.

Gordon, Litvak, Meyer, Pajor (2000)
If $K \subseteq L$ is in John's position then $L \subseteq-n K$.
Corollary
$d(K, L) \leq n$.
C.H.J., M.N. (2009)
$K, D \subset \mathbb{R}^{n}$ convex bodies, D smooth or strictly convex.

- $K \subseteq D$ in John's position, and
- $D \subseteq-n K$ minimal homothet.

Then $K=\Delta^{n}$.

From [GLMP]

$$
\begin{aligned}
\|-x\|_{K} & =\left\|-\sum_{i=1}^{m} a_{i}\left\langle x, v_{i}\right\rangle u_{i}\right\|_{K} \\
& =\left\|-\sum_{i=1}^{m} a_{i}\left\langle x, v_{i}\right\rangle u_{i}+\left(\sum_{i=1}^{m} a_{i} u_{i}\right) \max _{j=1}^{m}\left\langle x, v_{j}\right\rangle\right\|_{K} \\
& \leq \sum_{i=1}^{m}\left(\max _{j=1}^{m}\left\langle x, v_{j}\right\rangle-\left\langle x, v_{i}\right\rangle\right) a_{i}\left\|u_{i}\right\|_{K} \\
& =\max _{j=1}^{m}\left\langle x, v_{j}\right\rangle \sum_{i=1}^{m} a_{i}-\left\langle x, \sum_{i=1}^{m} a_{i} v_{i}\right\rangle \\
& =n \max _{j=1}^{m}\left\langle x, v_{j}\right\rangle \leq n
\end{aligned}
$$

Geometric interpretation

For every $x \in \partial L \cap(-n \partial K)$ i.e. for every $x \in \partial L$ s.t. $\|-x\|_{K}=n$ we have that:

- $\frac{-x}{n} \in \operatorname{conv}\left\{u_{i}: i \in B\right\}, B \subset\{1, \ldots, m\}$
- $\left\langle x, v_{i}\right\rangle=1$ for all $i \in B^{C}$.

Under strict convexity assumption:

Geometric interpretation

For every $x \in \partial L \cap(-n \partial K)$ i.e. for every $x \in \partial L$ s.t. $\|-x\|_{K}=n$ we have that:

- $\frac{-x}{n} \in \operatorname{conv}\left\{u_{i}: i \in B\right\}, B \subset\{1, \ldots, m\}$
- $\left\langle x, v_{i}\right\rangle=1$ for all $i \in B^{C}$.

Under strict convexity assumption:

Geometric interpretation

For every $x \in \partial L \cap(-n \partial K)$ i.e. for every $x \in \partial L$ s.t. $\|-x\|_{K}=n$ we have that:

- $\frac{-x}{n} \in \operatorname{conv}\left\{u_{i}: i \in B\right\}, B \subset\{1, \ldots, m\}$
- $\left\langle x, v_{i}\right\rangle=1$ for all $i \in B^{C}$.

Under strict convexity assumption:

- $x=u_{i}$ for some $1 \leq i \leq m$.
- $\partial D \cap(-n \partial K)=\left\{u_{i}: i=1, \ldots, r\right\}$ for some $1 \leq r \leq m$.
- $\left\langle u_{i}, v_{k}\right\rangle=-1 / n$ for every $i \neq k$.

Thank you

