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The Frobenius Number

o Let a=(a1,...,an) € NI, with gcd(a) = 1.
The largest integer I'(a) which cannot be written as a
non-negative integral combination of ay, ..., a, is called the
Frobenius number of a, i.e.,

F(a) =max{be Z: b # (a,z) for all z € N"}.

The average Frobenius number 2 /15



The Frobenius Number

o Let a=(a1,...,an) € NI, with gcd(a) = 1.
The largest integer I'(a) which cannot be written as a
non-negative integral combination of ay, ..., a, is called the
Frobenius number of a, i.e.,

F(a) =max{be€ Z: b # (a,z) for all z e N"}.

e For instance, let a = (3,10). Then
{(a,z):z € N"} = {0, 3, 6, 9, 10, 12,13, 15,16, 18,19,20, ...} .

Hence F(a) = 17.
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e P(a,b) = {x e Ry : (a,x) = b}.




e n = 2: Sylvester (most likely), 1884. F(a) = a1 a2 — (a1 + a2).




e n = 2: Sylvester (most likely), 1884. F(a) = a1 a2 — (a1 + a2).

e n > 3: "only" algorithmic solutions.
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(Upper) Bounds

Lletn>3and a1 < a, <--- < ap.

e Schur, 1935. F(a) < aja,+ax+ -+ ap_1.

e A. Brauer, Erd6s& Graham, Vitek, Selmer,
Beck&Diaz&Robins, Fukshansky&Robins,...

e All known upper bounds are of order |a|2,, which is also best
possible (Erd6s& Graham, 1972; Schlage-Puchta, 2005; V.I.
Arnol'd, 2006).



(Lower) Bounds

o Rddseth, 1990; Davison, 1994; Aliev& Gruber, 2007;...

F(a)ZCn (3132'...-an)ﬁ—(al_|_..._|_an)'



(Lower) Bounds

e Rodseth, 1990; Davison, 1994: Aliev& Gruber, 2007;...
1
F(a)>cp(araz-...-ap) 1 — (a1 + -+ an).
e If all a;'s are of the same size then all the known lower bounds

are of order |a|<1>j1/("71), which is also best possible
(Aliev&Gruber, 2007).
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Typical behaviour of F(a)?

e First systematic study by V.I. Arnol’'d, 1999.
He conjectures that F(a) grows like T11/("=1) for a "typical”
vector a with |a|]; = T.
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Typical behaviour of F(a)?

e First systematic study by V.I. Arnol’'d, 1999.
He conjectures that F(a) grows like T11/("=1) for a "typical”
vector a with |a|]; = T.

o Let T >0 and let
G(n, T)={aeNl;:gcd(a) =1, |a|oc < T}
Bourgain&Sinar, 2007.
Prob (F(a)/T”l/("’l) > D) < (D),

where €(D) does not depend on T and tends to 0 as D
approaches infinity.
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e Aliev&H., 2008.

Prob (F(a)/|a|g:1/<"—1> > D) <o D72,



e Aliev&H., 2008.

Prob (F(a)/|ayg:1/<"—1> > D) <n D72,

e Aliev&H., 2008.

> aeco.y F(a)/]aled /)

#G(n, T) <ot




e Aliev&H., 2008.

Prob (F(a)/]a]})jl/(”_l) > D) <, D72,

e Aliev&H., 2008.
> sccnr) F(a)/laled
#G(n, T)

So the "average” Frobenius number does not essentially exceed
|a|1+1/(n71)
0o .

<, L.
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1+1/(n—1)

e Problem. Can we replace |a| by the "lower bound”

~ (31 ay - ...- an)l/(n—l) ?

Conjectured (in a stronger form) by Arnol'd, 1999/2003 and
extensive computations by Beihoffer et al, 2005 suggest "Yes'!
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1+1/(n—1)

e Problem. Can we replace |a| by the "lower bound”

~ (31 ay - ...- an)l/(n—l) ?

Conjectured (in a stronger form) by Arnol'd, 1999/2003 and
extensive computations by Beihoffer et al, 2005 suggest "Yes'!

e Marklof, 2009. (Shchur, Sina¥, Ustinov, 2008). Let n > 3.
There exists a continuous non-increasing function
Y, :R>o — R>g with W,(0) = 1, such that

lim Prob (F(a)/(a1 3. ay)ml > D) = W,(D).

T—o0
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14+1/(n—1)

e Problem. Can we replace |a| by the "lower bound”

~ (31 ay ... an)l/(n—l) ?

Conjectured (in a stronger form) by Arnol'd, 1999/2003 and
extensive computations by Beihoffer et al, 2005 suggest "Yes'!

e Marklof, 2009. (Shchur, Sina¥, Ustinov, 2008). Let n > 3.
There exists a continuous non-increasing function
VU, :R>o = R>g with W,(0) = 1, such that

lim Prob (F(a)/(a1 3. ay)ml > D) = W,(D).

T—o0

Moreover, W,(-) is the probability distribution for the
inhomogeneous minimum of the (n — 1)-standard simplex with
respect to a random lattice of determinant 1.
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Observation

Prob (F(a)/|a|}+1/("—1) > D) <o D72,



Observation

Prob (F(a) J|ait V=D > D) <n D72,

All what is missing, is a (lattice) reverse Geometric-Arithmetic
Mean Inequality (with high probability), i.e., for large v, say,
we want to show that
1+ 1
a n =|a 1 n—
Prob 12l — >7 | = Prob <n’11 > — "1)
®5oo al-...- n

is small.
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Reverse (Lattice) Geometric-Arithmetic Mean Inequality
o Gluskin&Milman, 2003.

e S x?
Prob (x es"t. Vo &= T >y :) <n ’y_”/z.

(T ™"



Reverse (Lattice) Geometric-Arithmetic Mean Inequality
e Gluskin&Milman, 2003.

SIS K2
Prob [ x e "1 M

(IT7y i)™

o Aliev&H.&Hinrichs, 2009. Let n > 3. Then

2] <n '7_n/2-

1
Prob (nn‘a‘ll/n > 7) < ,y—(n—l)_
(ITizs i)
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Reverse (Lattice) Geometric-Arithmetic Mean Inequality
e Gluskin&Milman, 2003.

SIS K2
Prob [ x e "1 M

(IT7y i)™

o Aliev&H.&Hinrichs, 2009. Let n > 3. Then

2] <n 'Y_n/2-

1
Prob (nn‘a‘ll/n > 7) < ,y—(n—l)_
(ITizs i)

o Aliev&H.&Hinrichs, 2009. Let n > 3. Then

| 2
F e
Prob (( (a) — > D) <n D2%1 .

ayap ... ap)" 1
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Reverse (Lattice) Geometric-Arithmetic Mean Inequality
e Gluskin&Milman, 2003.

SIS K2
Prob [ x e "1 M

(IT7y i)™

o Aliev&H.&Hinrichs, 2009. Let n > 3. Then

2] <n 'Y_n/2-

1
Prob (nn‘a‘ll/n > 7) < ,y—(n—l)_
(ITizs i)

o Aliev&H.&Hinrichs, 2009. Let n > 3. Then

| 2
F e
Prob (( (a) — > D) <n D2%1 .

ayap ... ap)" 1

1

Yacan F(a)/ (122 ... - an) ™
#G(n, T)

<>, 1.
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Generalizations

e Let A€ Z™*" be a generic integral (m x n)-matrix, and for
beZ™ let P(A,b) = {x € RY,: Ax = b}. We are interested
in the structure of the set

F(A)={beZ™: P(A,b)NZ" #0}.
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Generalizations

e Let A€ Z™*" be a generic integral (m x n)-matrix, and for
beZ™ let P(A,b) = {x € RY,: Ax = b}. We are interested
in the structure of the set

F(A)={beZ™: P(A,b)NZ" #0}.

e Aliev&H., 2010. "Similar” results as in the case m = 1.
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Generalizations

o Let A€ Z™*" be a generic integral (m x n)-matrix, and for
beZ™ let P(A,b) = {x € RY,: Ax = b}. We are interested
in the structure of the set

F(A)={beZ™: P(A,b)NZ" £ 0}.

e Aliev&H., 2010. "Similar” results as in the case m = 1.

133
'A_<1 1 6)
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Idea(s) and ingredients of the proof
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Idea(s) and ingredients of the proof

ey (F(a)/\a\i;fl/(”_l) > D) <, D2

o Let

1 n
EZW{XEZ :<3,X>:0}.

Then det A, = 1, and let B,_1 be the (n — 1)-dimensional unit
ball in lin A,.
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Idea(s) and ingredients of the proof

Prob (F(a)/|a/5/"V > D) <, D2

o Let

1 n
EZW{XEZ :<3,X>:0}.

Then det A, = 1, and let B,_1 be the (n — 1)-dimensional unit
ball in lin A,.

e Based on results of Kannan, 1988, Fukshansky&Robins, 2007,
(see also Arnol'd, 2006) one can show

F(a) < n* [a3H D p(A),

where ;1(Ay)=min{g > 0: A, + uB,—1 =linA,} is called the
inhomogeneous minimum of A,.
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e Jarnik's, 1941, inequality finally gives

F(a) 4
W <n >\n—1(/\a)7
where

Ai(As) = min{A > 0:dim(AB,_1 NA;) > i}

is called the /-th successive minimum of A,.
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e Jarnik's, 1941, inequality finally gives

F(a) 4
/ey <7 Am(a),

where
Ai(As) = min{A > 0:dim(AB,_1 NA;) > i}
is called the /-th successive minimum of A,.
e Since det A\, = 1, and based on Minkowski's theorems on

successive minima one can show that there exists an

ie{l,...,n—2} with
LONPE T

a
|a| /(=) = Aa)

n72
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Jarnik's, 1941, inequality finally gives

F(a) 4
/ey <7 Am(a),

where
Ai(As) = min{A > 0:dim(AB,_1 NA;) > i}
is called the /-th successive minimum of A,.
Since det A, = 1, and based on Minkowski's theorems on

successive minima one can show that there exists an

ie{l,...,n—2} with

F(a) Ait1(A2)
|3|<;~_1/(”—1) S 6 ( Ai(A2)

Based on results of \W. Schmidt, 1998 on the distribution of

primitive sublattices of Z" one can show that the right hand

side is small (with high probability).

n72
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The End

Thank you for your attention!
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