Concentration of measure phenomenon and eigenvalues of Laplacian

K. Funano (Kumamoto Univ.)joint with T. Shioya (Tohoku Univ.)

0. Introduction

Purpose.

Concentration of measure (cf. Lévy and Milman)

 $\overset{?}{\Longleftrightarrow}$

Eigenvalues of Laplacian

1. Concentration of measure

$$X = (X, d_X, \mu_X)$$
 : an **mm-space** (a **m**etric **m**easure space)

$$\stackrel{\text{def}}{\Longleftrightarrow} (X, d_X)$$
 : a cplt. sep. met. sp., μ_X : a Borel prob. meas. on X

Example.

M: a closed Riem. mfd.

 d_M : the Riem. dist.

 $\mu_M := vol(\cdot)/vol(M)$

Concentration of measure

For $\forall r, \kappa > 0$, estimate

$$\alpha_X(r;\kappa) := \sup\{\mu_X(X \setminus A_r) \mid A \subseteq X : \mu_X(A) \ge \kappa\}$$

from above, where A_r : the r-nbd. of A.

$$A \longrightarrow A_r$$

$$\mu_X(A) \ge \kappa \qquad \mu_X(X \setminus A_r)?$$

 $\{X_n\}_{n=1}^{\infty}$: mm-sps.

 $\{X_n\}_{n=1}^{\infty}$ is a Lévy family (cf. Gromov-V. Milman).

$$\stackrel{\text{def}}{\Longrightarrow} \lim_{n\to\infty} \alpha_{X_n}(r;1/2) = 0 \text{ for } \forall r > 0.$$

$$\iff \lim_{n\to\infty} \alpha_{X_n}(r;\kappa) = 0 \text{ for } \forall r>0 \ \forall \kappa>0.$$

$$(\alpha_X(r;\kappa) = \sup\{\mu_X(X \setminus A_r) \mid A \subseteq X : \mu_X(A) \ge \kappa\})$$

$$\iff \forall r, \kappa > 0 \ \forall A_n \subseteq X_n : \mu_{X_n}(A_n) \ge \kappa$$
,

$$\lim_{n\to\infty}\mu_{X_n}((A_n)_r)=1.$$

M: a closed Riem. mfd.

Eigenvalues of \triangle_M : $0 < \lambda_1(M) \le \lambda_2(M) \le \cdots$.

Theorem (Gromov-V. Milman, 83').

M: a closed Riem. mfd.

$$\Rightarrow \alpha_M(r; 1/2) \leq 2 \exp(-\sqrt{\lambda_1(M)}r/3).$$

" $\lambda_1(M_n) \to +\infty \Rightarrow M_n$ form a Lévy family"

e.g.,

$$\{\mathbb{S}^n\}_{n=1}^{\infty}, \{\mathbb{R}P^n\}_{n=1}^{\infty}, \{SO(n)\}_{n=1}^{\infty} \cdots$$

Theorem (E.Milman, '08-'09).

M: a closed Riem. mfd. s.t. $Ric_M \geq 0$

 $\Rightarrow \exists C, \varepsilon_0 > 0$: univ. consts. s.t.

$$\alpha_M(r; 1/2) < \varepsilon_0 \Rightarrow \lambda_1(M) \ge Cr^{-2}.$$

The proof relies on a consequence of Geometric measure theory and Riemannian geometry (concavity of isoperimetric profile under $Ric \ge 0$).

Corollary (Gromov-V. Milman, E. Milman).

 M_n : closed Riem. mfds. s.t. $Ric_{M_n} \geq 0$.

Then, the following conditions (1) and (2) are equiv.

- (1) $\{M_n\}_{n=1}^{\infty}$ is a Lévy family.
- (2) $\lim_{n\to\infty} \lambda_1(M_n) = +\infty$.

2. Main theorem

Theorem.

 $k \in \mathbb{N}$,

 M_n : closed Riem. mfds. s.t.

 $Ric_{M_n} \geq 0$ and $\sup_{n \in \mathbb{N}} Diam M_n < +\infty$.

If $\lim_{n\to\infty}\lambda_k(M_n)=+\infty$, then $\{M_n\}_{n=1}^\infty$ is a Lévy family.

Corollary.

 M_n : closed Riem. mfds. s.t.

 $Ric_{M_n} \geq 0$ and $\sup_{n \in \mathbb{N}} Diam M_n < +\infty$.

Then, the following conditions (1),(2),(3) are equiv.

- (1) $\{M_n\}_{n=1}^{\infty}$ is a Lévy family.
- (2) $\lim_{n\to\infty} \lambda_k(M_n) = +\infty$ for some $k \in \mathbb{N}$.
- (3) $\lim_{n\to\infty} \lambda_k(M_n) = +\infty$ for all $k \in \mathbb{N}$.

Observation

" $\lim_{n\to\infty} \lambda_k(M_n) = +\infty \Rightarrow \lim_{n\to\infty} \lambda_1(M_n) = +\infty$ "

Theorem.

M: a closed Riem. mfd. s.t. $Ric_M \geq 0$

$$\Rightarrow \lambda_2(M) \leq C\lambda_1(M)\{\log(1+\lambda_1(M))\}^2,$$

where C > 0 depends only on Diam M.

Proposition. If we can remove $\sup_{n\in\mathbb{N}}\operatorname{Diam} M_n<$

 $+\infty$ in Main Thm., then we have the following:

M: a closed Riem. mfd. s.t. $Ric_M \geq 0$

$$\Rightarrow \lambda_k(M) \leq C_k \lambda_1(M),$$

where $C_k > 0$ depends only on $k \in \mathbb{N}$.

3. Generalization

Concentration around k-sets

For $\forall r, \kappa_1, \cdots, \kappa_k > 0$, estimate

$$\begin{aligned} \alpha_X(r;\kappa_1,\cdots,\kappa_k) \\ := & \sup\left\{\mu_X\Big(X\setminus \Big(\bigcup_{i=1}^k A_i\Big)_r\Big) \mid A_i\subseteq X: \mu_X(A_i)\geq \kappa_i \\ & d_X(A_i,A_j)\geq r \ (i\neq j)\right\} \end{aligned}$$

from above.

 $\{X_n\}_{n=1}^{\infty}$: mm-sps. $k \in \mathbb{N}$.

 $\{X_n\}_{n=1}^{\infty}$ concentrates around k-sets.

 $\stackrel{\text{def}}{\Longrightarrow} \forall r, \kappa_1, \cdots, \kappa_k > 0$, $\lim_{n \to \infty} \alpha_{X_n}(r; \kappa_1, \cdots, \kappa_k) = 0$.

Easy observation

Concentration of measure (k = 1)

 \Rightarrow Concentration around k-sets

"No converse!"

Example. (k = 2)

Theorem (Chung-Grigor'yan-Yau, '97).

 $k \in \mathbb{N}$, M: a closed Riem. mfd.

$$\Rightarrow \alpha_M(r; \underbrace{\kappa, \cdots, \kappa}_{k}) \le \kappa^{-1} e^{1/2} \cdot \exp(-2^{-1} \sqrt{\lambda_k(M)} r)$$

for $\forall r, \kappa > 0$.

Based on the eigenfunctions expansion of the heat kernel.

Corollary (Chung-Grigor'yan-Yau).

 $k \in \mathbb{N}$,

 M_n : closed Riem. mfds. s.t.

$$\lim_{n\to\infty}\lambda_k(M_n)=+\infty.$$

 $\Rightarrow M_n$ conc. around k-sets.

Remark. The above corollary is also mentioned by Gromov in his Green book.

3. Proof of the main thm.

Key Theorem.

 $k \in \mathbb{N}$,

 X_n : mm-sps. s.t.

 $\mathsf{BM}(0,\infty) \ (\Leftarrow Ric \geq 0) \ \text{and} \ \sup_{n \in \mathbb{N}} \mathsf{Diam} \, X_n < +\infty.$

Then, the following conditions (1) and (2) are equiv.

- (1) $\{X_n\}_{n=1}^{\infty}$ is a Lévy family.
- (2) $\{X_n\}_{n=1}^{\infty}$ conc. around k-sets.

Idea of the proof of the key thm.

"Convergence of mm-sps. \Rightarrow Conc. of meas.".

We use the dist. $\mathbb{D}_{conc.}(X,Y)$ between mm-sps. introduced by Gromov.

- (1) $\{X_n\}_{n=1}^{\infty}$ is a Lévy family. $\iff X_n \stackrel{\mathbb{D}_{conc.}}{\longrightarrow} \{*\}.$
- (2) Under the diam. assump., Conc. around k-sets
- \Rightarrow Conv. to a finite sp. X w.r.t. $\mathbb{D}_{conc.}$ s.t. $\#X \leq k$ (cf. Gromov).
- (3) Under BM $(0,\infty)$ and the diam. assump., we prove the connectivity of the limit sp.

Question. 1. Can we remove $\sup_{n\in\mathbb{N}}\operatorname{Diam} M_n<$

 $+\infty$ in Main Thm.?

- 2. How about the case for graphs? (cf. Alon-
- V. Milman)
- 3. Can $\mathbb{D}_{conc.}$ capture the asymp. behavior of λ_k ?

Theorem (Fukaya, Cheeger-Colding).

M, M_n : closed Riem. mfds. s.t. $M_n \stackrel{\mathsf{mGH}}{\longrightarrow} M$,

 $\sup_{n\in\mathbb{N}} \dim M_n < +\infty$, and $Ric_{M_n} \geq K \in \mathbb{R}$.

 $\Rightarrow \lim_{n\to\infty} \lambda_k(M_n) = \lambda_k(M)$ for any $k \in \mathbb{N}$.

Remark.

- 1. mGH topology > topology determined by $\mathbb{D}_{conc.}$
- 2. Under $\sup_{n\in\mathbb{N}}\dim M_n<+\infty$ and $Ric_{M_n}\geq K\in\mathbb{R}$, $M_n\stackrel{\mathsf{mGH}}{\longrightarrow} M \iff M_n\stackrel{\mathbb{D}_{conc.}}{\longrightarrow} M$