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The Poisson summation formula
Introduction
Some conventions and the characterization problem

The Poisson Summation Formula

e f:R—=C, f€L2(R)
e Fourier Transform: Ff(w) = ffo

oo

f(t)exp(—2miwt)dt
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The Poisson summation formula
Introduction
Some conventions and the characterization problem

The Poisson Summation Formula

o f:R—C, fel?R)

e Fourier Transform: Ff(w) = [ f(t)exp(—2miwt)dt

@ Assume f is sufficiently smooth and fast decaying (for example,
f € S). Then we have

Poisson summation formula:

Y f(n)y= Y Ff(n)

n=——oo n=—o0

Dmitry Faifman Poisson Summation Formula Uniquely Characterizes the Fourie



The Poisson summation formula
Introduction
Some conventions and the characterization problem

The Poisson Summation Formula

o f:R—C, fel?R)

e Fourier Transform: Ff(w) = [ f(t)exp(—2miwt)dt

@ Assume f is sufficiently smooth and fast decaying (for example,
f € S). Then we have
Poisson summation formula:

Y f(n)y= Y Ff(n)

@ A uniqueness result:
Theorem (Cordoba 88’). Suppose {xx} and {yx} are two discrete
sets in R”, and for all f € S, >, f(xk) = >, Ff(yk). Then {xx}
and {yx} are dual lattices, i.e. there is A € SL(n) such that
{3} = A(Z") and {y,} = (A")"H(Z").
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The Poisson summation formula
Introduction
Some conventions and the characterization problem

The Poisson Summation Formula

o f:R—C, fel?R)

e Fourier Transform: Ff(w) = [ f(t)exp(—2miwt)dt

@ Assume f is sufficiently smooth and fast decaying (for example,
f € S). Then we have
Poisson summation formula:

Y f(n)y= Y Ff(n)

@ A uniqueness result:
Theorem (Cordoba 88’). Suppose {xx} and {yx} are two discrete
sets in R”, and for all f € S, >, f(xk) = >, Ff(yk). Then {xx}
and {yx} are dual lattices, i.e. there is A € SL(n) such that
[k = AZ?) and {y} = (A) (2.

@ For n =1, there is only one possibility: {xx} = {w} =Z
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The Poisson summation formula
Introduction
Some conventions and the characterization problem

Some conventions

o f(—x) = —f(x) = Ff(—w) = —Ff(w)
Thus 02 f(n) =372 __ Ff(n) is nontrivial only for even
functions, and we consider from now on f € L2]0, 00).
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The Poisson summation formula
Introduction
Some conventions and the characterization problem

Some conventions

o f(—x) = —f(x) = Ff(—w) = —Ff(w)
Thus 02 f(n) =372 __ Ff(n) is nontrivial only for even
functions, and we consider from now on f € L2]0, 00).

o Assume further that £(0) = [;° f(t)dt = 0.
PSF now reads: "7, f(n) = Y72 Ff(n)
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The Poisson summation formula
Introduction
Some conventions and the characterization problem

Some conventions

o f(—x)=—f(x) = Ff(—w) = —Ff(w)
Thus 02 f(n) =372 __ Ff(n) is nontrivial only for even
functions, and we consider from now on f € L2]0, 00).

o Assume further that £(0) = [;° f(t)dt = 0.
PSF now reads: "7, f(n) = Y72 Ff(n)

@ Introduce a scaling factor x > 0. Then PSF gives

o0

Z}"f nx) %Z (1)
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The Poisson summation formula
Introduction
Some conventions and the characterization problem

Some conventions

f(—x) = =f(x) = Ff(-w) = —Ff(w)
Thus 02 f(n) =372 __ Ff(n) is nontrivial only for even
functions, and we consider from now on f € L2]0, 00).

Assume further that £(0) = [;° f(t)dt = 0.
PSF now reads: "7, f(n) = Y72 Ff(n)

@ Introduce a scaling factor x > 0. Then PSF gives
1 o0
Ff( = 1
> Fm) = 13- AE) W
@ Question (V. Milman): Does relation (1) uniquely characterize the

Fourier Transform?
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Uniqueness 2
q erators on L°[0, co)

0 uniqueness theorem

enport’s theorem

A Uniqueness Theorem

e Theorem. Assume f € C?(0,00) and f, ', f" € L1]0, ). Also,
assume f(0) = [ f = 0. Then g = Ff is the unique C(0, )
function satisfying
(a) g(x) = O(x717¢), x — oo for some € > 0

(b) Xon2ig(nx) = % 3202y f(n/x).
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A uniqueness theorem
Sequences A
Some operators on L“|(
Proof of uniquene
Davenport’s the

Uniqueness

Sequences

o Consider the space of sequences {a,}7°; C C.
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A uniqueness theorem
Sequences A

Some operators on L“[0
Proof of uniquene heorem
Davenport’s theorem

Uniqueness

Sequences

o Consider the space of sequences {a,}7°; C C.
@ Associate to every sequence (a,) its Dirichlet series
an
L(s;an) = e
n=1
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A uniqueness theorem
Sequences A

Some operators on L[0, co)
Pro: uniqueness theorem
Davenport’s theorem

Uniqueness

Sequences

o Consider the space of sequences {a,}7°; C C.
@ Associate to every sequence (a,) its Dirichlet series
an
L(s;an) = e
n=1

e Given two sequences a,, b, their convolution is

(a*b)x = Z ambn

mn=k
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A uniqueness theorem
Sequences A

Some operators on L[0, co)
Pro: uniqueness theorem
Davenport’s theorem

Uniqueness

Sequences

Consider the space of sequences {a,}7°; C C.
Associate to every sequence (a,) its Dirichlet series

a
L(s;an) = —=
n=1 n®

Given two sequences a,,, by, their convolution is

(a*b)x = Z ambn

mn=k

o L(s;an* by) = L(s; an)L(s; bp)
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A uniqueness theorem
Sequences A

Some operators on L]0, co)
Proof of uniquen
Davenport’s theorem

Uniqueness

Sequences

Consider the space of sequences {a,}7°; C C.

@ Associate to every sequence (a,) its Dirichlet series
an
L(s;an) = e
n=1

Given two sequences a,,, by, their convolution is

(a*b)x = Z ambn

mn=k

L(s; an * by) = L(s; an)L(s; bs)
@ 0, =1,0,0,0,... < L(s; 0,) = 1 is the unit element in the ring of
sequences with convolution.
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A uniqueness theorem
Sequences A

Some operators on L]0, co)
Proof of uniquen
Davenport’s theorem

Uniqueness

Sequences

Consider the space of sequences {a,}7°; C C.

@ Associate to every sequence (a,) its Dirichlet series
an
L(s;an) = e
n=1

Given two sequences a,,, by, their convolution is

(a*b)x = Z ambn

mn=k

L(s; an * by) = L(s; an)L(s; bs)

@ 0, =1,0,0,0,... < L(s; 0,) = 1 is the unit element in the ring of
sequences with convolution.

(an) is invertible precisely if a; # 0.
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A uniqueness theorem
Sequences

Some operators on L2[0, co)
Proof of uniquene heorem
Davenport’s theorem

Uniqueness

Some operators on L?[0, co)

@ For a sequence {a,}72; C C define

T(an)f(x) = _ anf(nx)
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A uniqueness theorem
Sequences

Some operators on L2[0, co)
Proof of uniqueness theorem
Davenport’s theorem

Uniqueness

Some operators on L?[0, co)

@ For a sequence {a,}72; C C define
T(an)f(x) = _ anf(nx)
n=1

e T(ap): L2[0,00) — L2]0,00) is generally an unbounded operator.
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A uniqueness theorem
Sequences

Some operators on L2[0, co)
Proof of uniqueness theorem
Davenport’s theorem

Uniqueness

Some operators on L?[0, co)

@ For a sequence {a,}72; C C define
T(an)f(x) = _ anf(nx)
n=1
e T(ap): L2[0,00) — L2]0,00) is generally an unbounded operator.

@ When all series involved are absolutely convergent,
T(an* by)f = T(an) T(bn)f.
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A uniqueness theorem
Sequences

Some operators on L2[0, co)
Proof of uniqueness theorem
Davenport’s theorem

Uniqueness

Some operators on L?[0, co)

@ For a sequence {a,}72; C C define
T(an)f(x) = _ anf(nx)
n=1

e T(ap): L2[0,00) — L2]0,00) is generally an unbounded operator.
@ When all series involved are absolutely convergent,

T(an* by)f = T(an) T(bn)f.
e Define S : L2[0,00) — L2[0,00) by Sf(x) = l7“'(%)

X

Dmitry Faifman Poisson Summation Formula Uniquely Characterizes the Fourie



A uniqueness theorem

Uniqueness

0
Davenport’s theoren

Some operators on L?[0, co)

@ For a sequence {a,}72; C C define
T(an)f(x) = _ anf(nx)
n=1

e T(ap): L2[0,00) — L2]0,00) is generally an unbounded operator.
@ When all series involved are absolutely convergent,
T(an* by)f = T(an) T(bn)f.
e Define S : L2[0,00) — L2[0,00) by Sf(x) = %f(%)
e S is a unitary involution: ||Sf|| = ||f|| and S = S* = S~ 1
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A uniqueness theorem

Uniqueness

Davenport’s theoren

Some operators on L?[0, co)

@ For a sequence {a,}72; C C define

T(an)f(x) = _ anf(nx)

T(as) : L2]0,00) — L2[0,0) is generally an unbounded operator.
When all series involved are absolutely convergent,

T(an* by)f = T(an) T(bn)f.

Define S : L2]0, 00) — L2[0,00) by Sf(x) = Lf(1)

S is a unitary involution: ||Sf|| = ||f|| and S = S* = S1.

@ Let e, =1, n> 1. Then Poisson’s formula

S0 Ff(nx) =135, £(2) can be written as

T(en)Ff = ST(en)f
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ss theorem

Uniqueness 2

a Some operators on L[0, co)

Proof of uniqueness theorem
Davenport’s theorem

Proof of uniqueness theorem

@ Recall the Mobius function
(_1)ﬁ{p prime|p divides n}’ n square-free
0, d?|n
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ss theorem

Uniqueness 2

a Some operators on L[0, co)

Proof of uniqueness theorem
Davenport’s theorem

Proof of uniqueness theorem

@ Recall the Mobius function
(_1)ﬁ{p prime|p divides n}’ n square-free
0, d?|n

@ Fore, =1, ex =24, sowe expect T(u,) = T(e,) L.
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Uniqueness - 2
a Some operators on L[0, co)
Proof of uniqueness theorem

Davenport’s theorem

Proof of uniqueness theorem

@ Recall the Mobius function

wu(n) = (—1)ﬁ{P prime|p divides n}’ n square-free
05 d2|n

@ Fore, =1, ex =24, sowe expect T(u,) = T(e,) L.

e Lemma. Suppose g € C(0,00) and satisfies g(x) = O(x~17¢) for
some ¢ > 0. Then T(e,)g = O(x~17¢) and T(un)g = O(x~179),
and these are inverse transforms: T(e,) T (1n)g = T(un)T(en)g = &.
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A uniqueness theorem

Uniqueness

ieness theorem
Davenport’s theorem

Proof of uniqueness theorem

@ Recall the Mobius function

p(n) = (—1)ﬁ{P prime|p divides n}’ n square-free
0, d?|n

@ Fore, =1, ex =24, sowe expect T(u,) = T(e,) L.

e Lemma. Suppose g € C(0,00) and satisfies g(x) = O(x~17¢) for
some ¢ > 0. Then T(e,)g = O(x~17¢) and T(un)g = O(x~179),
and these are inverse transforms: T(e,) T (1n)g = T(un)T(en)g = &.

@ So, the equation T(e,)Ff = ST(ep)f can be explicitly inverted under
certain conditions:

FF() = T(n)ST(e)f() =3 M0 57 (1)

nx
n=1 m=1

Dmitry Faifman Poisson Summation Formula Uniquely Characterizes the Fourie



A uniqueness theorem
Sequences A

Some operators on L[0, co)
Proof of uniqueness theorem
Davenport’s theorem

Uniqueness

Davenport's Theorem

@ The equality Ff = T(un)ST(en)f holds in other cases too. For
example, consider
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A uniqueness theorem
Sequences A

Some operators on L[0, co)
Proof of uniqueness theorem
Davenport’s theorem

Uniqueness

Davenport's Theorem

@ The equality Ff = T(un)ST(en)f holds in other cases too. For
example, consider

e Theorem (Davenport 37°) > 7, @{nx} = —1sin(27x) (here
{t} =t — [t] denotes the fractional part)
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A uniqueness theorem

Uniqueness S 21

0 rs on L°[0, co)

uniqueness theorem
Davenport’s theorem

Davenport's Theorem

@ The equality Ff = T(un)ST(en)f holds in other cases too. For
example, consider

e Theorem (Davenport 37°) > 7, @{nx} = —1sin(27x) (here
{t} =t — [t] denotes the fractional part)

@ This can be used to show that the Fourier Transform of a mean-zero

step function such as f(x) = >, akXa, 6] (O ak(bk — ak) = 0),
when symmetrically extended to the real axis, is given by

u()f:) i (%) = %(sin(%rbkx) — sin(2maxx))
m=1 k

n

[eS)
n=1
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. . . . The general uniqueness problem
Generalizing Poisson’s summation formula g qa P

Generalizing Poisson’s summation formula

@ We are led naturally to the following
Question. Given a sequence (a,), does there exist a linear operator
F(an) on L2]0,00) such that for nice functions f the generalized
Poisson formula

T(an)F(an)f = ST (an)f

holds? Is it unique? lIs it unitary?

Dmitry Faifman Poisson Summation Formula Uniquely Characterizes the Fourie



. . . . The general uniqueness problem
Generalizing Poisson’s summation formula g qa P

Bounded operators

@ Lemma. Assume 2
an
holds. Then
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. . . . The general uniqueness problem
Generalizing Poisson’s summation formula g qa P

Bounded operators

@ Lemma. Assume

|an|
< 0 2
holds. Then
© T (a,) extends to a bounded operator on L?[0, >0), and

I T (an)l| < 35 122
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. . . . The general uniqueness problem
Generalizing Poisson’s summation formula g qa P

Bounded operators

@ Lemma. Assume

|an|
< 0 2
holds. Then
© T (a,) extends to a bounded operator on L?[0, >0), and

I T (an)l| < 35 122
@ For f € C(0,00) and f = O(x~17¢) for some € > 0, the formula

T(an)f(x) = anf(nx)

is valid.
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. . . . The general uniqueness problem
Generalizing Poisson’s summation formula g qa P

Bounded operators

@ Lemma. Assume

|an|
< 0 2
holds. Then
© T (a,) extends to a bounded operator on L?[0, >0), and

I T (an)l| < 35 122
@ For f € C(0,00) and f = O(x~17¢) for some € > 0, the formula

T(an)f(x) = anf(nx)

is valid.

@ Note that when condition (2) holds, L(s; a,) is absolutely convergent
for Rs > 1/2
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. . . . The general uniqueness problem
Generalizing Poisson’s summation formula g qa P

Generalized operator - direct approach

@ Theorem. Assume (a,) is real, Y |ap|n® < oo for some € > 0, and
(bn) satisfies Y |bp|/\/n < co. Then

F(an) = T(bn)ST(an)

is a unitary operator.
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. . . . The general uniqueness problem
Generalizing Poisson’s summation formula g qa P

Generalized operator - direct approach

@ Theorem. Assume (a,) is real, Y |ap|n® < oo for some € > 0, and
(bn) satisfies Y |bp|/\/n < co. Then

F(an) = T(bn)ST(an)

is a unitary operator.

e Corollary. Take a continuous f satisfying f(x) = O(x~17¢) as
x — 00 and f(x) = O(x€) as x — 0 for some € > 0. Then
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. . . . The general uniqueness problem
Generalizing Poisson’s summation formula g qa P

Generalized operator - direct approach

@ Theorem. Assume (a,) is real, Y |ap|n® < oo for some € > 0, and
(bn) satisfies Y |bp|/\/n < co. Then

F(an) = T(bn)ST(an)

is a unitary operator.

e Corollary. Take a continuous f satisfying f(x) = O(x~17¢) as
x — 00 and f(x) = O(x€) as x — 0 for some € > 0. Then

© F(an)f is continuous and F(a,)f(x) = O(x~17¢).
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. . . . The general uniqueness problem
Generalizing Poisson’s summation formula g qa P

Generalized operator - direct approach

@ Theorem. Assume (a,) is real, Y |ap|n® < oo for some € > 0, and
(bn) satisfies Y |bp|/\/n < co. Then

F(an) = T(bn)ST(an)

is a unitary operator.

e Corollary. Take a continuous f satisfying f(x) = O(x~17¢) as
x — 00 and f(x) = O(x€) as x — 0 for some € > 0. Then

© 7(a,)f is continuous and F(a,)f(x) = O(x~17¢).
@ The formula > a,F(a,)f(nx) = (1/x) > a,f(n/x) holds pointwise.
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Change of space
Derivative
Diagonal form A family of unitary operators

Change of space

@ By the change of variable x = e¥, we get the isometric isomorphism
u: L?([0,00),dm) — L3(R, e’ dy), f(x) — g(y) = f(e”).
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Change of space
Derivative
Diagonal form A family of unitary operators

Change of space

@ By the change of variable x = e¥, we get the isometric isomorphism
u: L?([0,00),dm) — L3(R, e’ dy), f(x) — g(y) = f(e”).

@ How to apply Fourier Transform in such space?
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Change of space
Derivative
Diagonal form A family of unitary operators

Change of space

@ By the change of variable x = e¥, we get the isometric isomorphism
u: L?([0,00),dm) — L3(R, e’ dy), f(x) — g(y) = f(e”).

@ How to apply Fourier Transform in such space?

@ Suggestion of B. Klartag: Define w(f)(w) = u/(?)(w +1i/2). Then
w: L2(R, e’dy) — (R, dm) is an isometric isomorphism, where

h(w) = \/127?/_00 h(t)e “tdt

denotes the Fourier Transform.
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Change of space
Derivative
Diagonal form A family of unitary operators

Change of space

@ By the change of variable x = e¥, we get the isometric isomorphism
u: L?([0,00),dm) — L3(R, e’ dy), f(x) — g(y) = f(e”).
@ How to apply Fourier Transform in such space?

@ Suggestion of B. Klartag: Define w(f)(w) = u/(?)(w +1i/2). Then
w: L2(R, e’dy) — (R, dm) is an isometric isomorphism, where

h(w) = \/127?/_00 h(t)e “tdt

denotes the Fourier Transform.
o Alternatively, define the isometry v : L?(R, e¥dy) — L2(R, dm) by
v(g)(y) = e/?g(y). Then w(f) = v(u(f)) .

Dmitry Faifman Poisson Summation Formula Uniquely Characterizes the Fourie



Change of space
Derivative
Diagonal form A family of unitary operators

Some diagonal forms

o For an operator A: L2[0,00) — L?[0,00), we write
A= wAw™!: [2(R) — L%(R) for its conjugate by w.
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Change of space
Derivative
Diagonal form A family of unitary operators

Some diagonal forms

o For an operator A: L2[0,00) — L?[0,00), we write
A=wAw!: [2(R) — L2£R) for its conjugate by w.
o Sf(x) = 1f () becomes Sh(w) = h(—w).
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Change of space
Derivative
Diagonal form A family of unitary operators

Some diagonal forms

e For an operator A : L]0, 00) — L?[0, 00), we write
A=wAw 1 [2(R) — L2(R) for its conjugate by w.

e Sf(x) = f( ) becomes Sh(w) = h(—w).

(R, e¥dy)

@ Assuming Z
(uT(an)u'e)(y) = D _ ang(y +logn) = g * v(y)
where v(y) =3 and_og n(Y)-
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Change of space
Derivative
Diagonal form A family of unitary operators

Some diagonal forms

e For an operator A : L]0, 00) — L?[0, 00), we write
A=wAw 1 [2(R) — L2(R) for its conjugate by w.

o Sf(x) =1f () becomes Sh(w) = h(-w).

T < 00, we get for g € L*(R, e’ dy)

(uT(an)u ) = angly +logn) = g +(y)
where v(y) = > apd_ |og,,(y).

°
= g apezloen — E apn* = L(—iz; ap)

which converges for Sz > 1/2.
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Change of space
Derivative

. A family of unitary operators
Diagonal form y o yor o

Some diagonal forms

e For an operator A : L]0, 00) — L?[0, 00), we write
A=wAw 1 [2(R) — L2(R) for its conjugate by w.

e Sf(x) = f( ) becomes Sh(w) = h(—w).

(R, e¥dy)

@ Assuming Z

(WT (o 2)) = 3 angly + log ) = g+ 1(y)
where v(y) = > apd_ |og,,(y).

°
= g apezloen — E apn* = L(—iz; ap)

which converges for Sz > 1/2.
@ Thus for h = vg, the diagonal form of T(a,) is

—_~—

T(an)h(w) = g*xv(w+i/2) = L(1/2 — iw; an) h(w)
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Change of space
Derivative
Diagonal form A family of unitary operators

Existence and uniqueness theorem

@ The generalized Poisson summation formula becomes

—_~—

L(1/2 — iw; apn)F(an)h(w) = L(1/2 4 iw; ap)h(—w)
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Change of space
Derivative
Diagonal form A family of unitary operators

Existence and uniqueness theorem

@ The generalized Poisson summation formula becomes

L(1/2 — iw; apn)F(an)h(w) = L(1/2 4 iw; ap)h(—w)

~1/2

e Theorem. Assume ) |ap|n < 00, and a, € eR for some fixed

6. Then
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Change of space
Derivative
Diagonal form A family of unitary operators

Existence and uniqueness theorem

@ The generalized Poisson summation formula becomes

L(1/2 — iw; apn)F(an)h(w) = L(1/2 4 iw; ap)h(—w)

~1/2

e Theorem. Assume ) |ap|n < 00, and a, € eR for some fixed

6. Then

Dmitry Faifman Poisson Summation Formula Uniquely Characterizes the Fourie



Change of space
Derivative
Diagonal form A family of unitary operators

Existence and uniqueness theorem

@ The generalized Poisson summation formula becomes

L(1/2 — iw; apn)F(an)h(w) = L(1/2 4 iw; ap)h(—w)

~1/2 « 5o, and a, € e?R for some fixed

e Theorem. Assume ) |ap|n
0. Then
© There exists a unitary involution F(a,) : L2[0, 00) — L2[0, c0)
satisfying the generalized PSF in operator form:

T(an)F(an) = ST(an).
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Existence and uniqueness theorem

@ The generalized Poisson summation formula becomes

L(1/2 — iw; apn)F(an)h(w) = L(1/2 4 iw; ap)h(—w)

~1/2 « 5o, and a, € e?R for some fixed

e Theorem. Assume ) |ap|n
0. Then
© There exists a unitary involution F(a,) : L2[0, 00) — L2[0, c0)
satisfying the generalized PSF in operator form:
T(an)F(an) = ST(an).
@ If for some ¢ >0, 3" |a,|n~1/?"¢ < oo, then a bounded F(a,)
satisfying T(ap)F(an) = ST(a,) is unique.
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Existence and uniqueness theorem

@ The generalized Poisson summation formula becomes

—_~—

L(1/2 — iw; apn)F(an)h(w) = L(1/2 4 iw; ap)h(—w)

~1/2 « 5o, and a, € e?R for some fixed

e Theorem. Assume ) |ap|n
0. Then
© There exists a unitary involution F(a,) : L2[0, 00) — L2[0, c0)
satisfying the generalized PSF in operator form:
T(an)F(an) = ST(an).
@ If for some ¢ >0, 3" |a,|n~1/?"¢ < oo, then a bounded F(a,)
satisfying T(ap)F(an) = ST(a,) is unique.

e F(a,) has the skew-diagonal form

F(an)h(w) _ p2i(arg L(1/2+iw;an)—9)h(_w)
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Existence and uniqueness theorem

@ The generalized Poisson summation formula becomes

L(1/2 — iw; apn)F(an)h(w) = L(1/2 4 iw; ap)h(—w)

~1/2 « 5o, and a, € e?R for some fixed

e Theorem. Assume ) |ap|n
0. Then
© There exists a unitary involution F(a,) : L2[0, 00) — L2[0, c0)
satisfying the generalized PSF in operator form:
T(an)F(an) = ST(an).
@ If for some ¢ >0, 3" |a,|n~1/?"¢ < oo, then a bounded F(a,)
satisfying T(ap)F(an) = ST(a,) is unique.
@ F(ap) has the skew-diagonal form

—_——

F(an)h(w) _ p2i(arg L(1/2+iw;an)—9)h(_w)

@ Note that PSF need not hold pointwise (pointed out by F. Nazarov).
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What about differentiation?

@ Denote Df = df /dx, and Xf = x - f. The Fourier transform satisfies
for nice functions f the identitiy F(Df) = iXF(f).
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Diagonal form e Y Of o

What about differentiation?

@ Denote Df = df /dx, and Xf = x - f. The Fourier transform satisfies
for nice functions f the identitiy F(Df) = iXF(f).

@ For an even f, Df is odd. Thus we shouldn’'t expect to have such a
formula in our setting.
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Change of space
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. A family of unitary operators
Diagonal form e Y Of o

What about differentiation?

@ Denote Df = df /dx, and Xf = x - f. The Fourier transform satisfies
for nice functions f the identitiy F(Df) = iXF(f).

@ For an even f, Df is odd. Thus we shouldn’'t expect to have such a
formula in our setting.

@ However, for an even function we can also write F(Xf) = iDF(f).
Those can be combined together into (x) XDF + FXD + F =0,
where F is applied only to even functions.
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What about differentiation?

@ Denote Df = df /dx, and Xf = x - f. The Fourier transform satisfies
for nice functions f the identitiy F(Df) = iXF(f).

@ For an even f, Df is odd. Thus we shouldn’'t expect to have such a
formula in our setting.

@ However, for an even function we can also write F(Xf) = iDF(f).
Those can be combined together into (x) XDF + FXD + F =0,
where F is applied only to even functions.

@ Denote B = i(XD + Id/2) - a symmetric operator in any reasonable
domain. Then (x) reads B + BF = 0.
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A general formula involving derivative

@ Theorem. Assume a, € R satisfies ) |a,|n® < oo for some € > 0,
and the convolution inverse (b,) satisfies ) |by|/+/n < 0.
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A general formula involving derivative

@ Theorem. Assume a, € R satisfies ) |a,|n® < oo for some € > 0,
and the convolution inverse (b,) satisfies ) |by|/+/n < 0.

@ Note that
L(1—z; a,)

L(z; ap)
admits an analytic extension to the strip —e < Rz < 1+ €.
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A general formula involving derivative

@ Theorem. Assume a, € R satisfies ) |a,|n® < oo for some € > 0,
and the convolution inverse (b,) satisfies ) |by|/+/n < 0.

@ Note that
L(1—z; a,)

L(z; ap)
admits an analytic extension to the strip —e < Rz < 1+ €.
@ Assume further that there exists N such that

IL(1 — z; 2n)/L(2; an)| < Cly|"
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A general formula involving derivative

@ Theorem. Assume a, € R satisfies ) |a,|n® < oo for some € > 0,
and the convolution inverse (b,) satisfies ) |by|/+/n < 0.

@ Note that
L(1—z; a,)

L(z; ap)
admits an analytic extension to the strip —e < Rz < 1+ €.
@ Assume further that there exists N such that

IL(1 =z an)/L(z; )| < Cly["
o Let f € Sy, where

So = {f € C :sup|x|"|f(x)| < 00 Yk >0 Vn e Z}
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A general formula involving derivative

@ Theorem. Assume a, € R satisfies ) |a,|n® < oo for some € > 0,
and the convolution inverse (b,) satisfies ) |by|/+/n < 0.

@ Note that
L(1—z; a,)

L(z; ap)
admits an analytic extension to the strip —e < Rz < 1+ €.
@ Assume further that there exists N such that

L(1 — z;30)/L(z:a0)] < Cly|"
o Let f € Sy, where
So = {f € € :sup |x|"|fR)(x)| < 00 Vk >0 ,Vn € Z}
@ Then F(a,)Bf + BF(an)f =0.
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An integral formula

@ It is not hard to see that the general form of F(a,) with
> lan]/v/n < oo is given by

Flan)f(x) = /0 " A(xs)F(s)ds

Where A is some generalized function depending on a,.
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An integral formula

@ It is not hard to see that the general form of F(a,) with
> lan]/v/n < oo is given by

Flan)f(x) = /0 " A(xs)F(s)ds

Where A is some generalized function depending on a,.
e For example, for (a,) = (dn) = 1,0,0, ... we get A(s) = d1(s)
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Change of space
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. A family of unitary operators
Diagonal form e Y Of o

An integral formula

@ It is not hard to see that the general form of F(a,) with
> lan]/v/n < oo is given by

Flan)f(x) = /0 " A(xs)F(s)ds

Where A is some generalized function depending on a,.

e For example, for (a,) = (dn) = 1,0,0, ... we get A(s) = d1(s)

@ Though not fitting into our discussion, the ordinary Fourier transform
corresponds to a, = 1,1,1,... and A(s) = 2coss.
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An integral formula

@ It is not hard to see that the general form of F(a,) with
> lan]/v/n < oo is given by

Flan)f(x) = /0 " A(xs)F(s)ds

Where A is some generalized function depending on a,.

e For example, for (a,) = (dn) = 1,0,0, ... we get A(s) = d1(s)

@ Though not fitting into our discussion, the ordinary Fourier transform
corresponds to a, = 1,1,1,... and A(s) = 2coss.

@ Any such operator formally satisfies the identity B + BF = 0.
The difficulty lies in verifying that Ff is sufficiently regular for regular
functions f.
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A family of unitary operators

@ Let us determine when the operators T(a,) are unitary.
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A family of unitary operators

@ Let us determine when the operators T(a,) are unitary.

o Call an operator T C-unitary if %T is unitary.
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A family of unitary operators

@ Let us determine when the operators T(a,) are unitary.

o Call an operator T C-unitary if %T is unitary.

~1/2 < 50. Then the following

e Corollary. Assume a, satisfies > |ap|n
are equivalent:
(@) [L(1/2+ ix;an)| = C
(b) T(a,) is C-unitary on L2[0, c0)

(c) (an) satisfies

i amokangk _ { C2, (mO’ nO) = (1’ 1) (3)

—~ k 0, gcd(mg,ng) =1, mg # ng
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Unitary operators - examples

@ A curious example of such an operator is
T(an)f(x) = f(x) + f(2x) — f(4x) + f(8x) — f(16x) + ...
associated with a, = 1,1,0,-1,0,0,0,1, .. and L(s; a,) = £i5:.
T(an) is v/2-unitary on L2[0, c0).

Dmitry Faifman
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Unitary operators - examples

@ A curious example of such an operator is
T(an)f(x) = f(x) + f(2x) — f(4x) + f(8x) — f(16x) + ...
associated with a, = 1,1,0,-1,0,0,0,1, .. and L(s; a,) = £i5:.
T(an) is v/2-unitary on L2[0, c0).

@ Note that in this case, the convolution-inverse of a, is

(bn) = (an)"' =1,-1,0,2,0,0,0,-4,0,0,0,0,0,0,0,8, ...

And so the inverse of T(a,) is not T(b,) (which is unbounded) but
rather T(a,)~1f = T(an)*f = > ooy 2f (%)

n=1 n
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Unitary operators - examples

@ A curious example of such an operator is
T(an)f(x) = f(x) + f(2x) — f(4x) + f(8x) — f(16x) + ...
associated with a, = 1,1,0,-1,0,0,0,1, .. and L(s; a,) = £i5:.
T(an) is v/2-unitary on L2[0, c0).

@ Note that in this case, the convolution-inverse of a, is

(bn) = (an) " =1,-1,0,2,0,0,0,-4,0,0,0,0,0,0,0,8, ...
And so the inverse of T(a,) is not T(b,) (which is unbounded) but
rather T(a,)~1f = T(an)*f = > ooy 2f (%)

n=1 n
@ A similar example is

TF(x) = f(x) — f(2x) — f(4x) — f(8x) — ...
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Unitary operators - more examples

e For a natural number m, take bfn"k’) = (%)k/z ay and b™ = 0 for
n # m*. Then

Tmf(x) = > b F(nx)

is again a v/2-isometry.

Dmitry Faifman Poisson Summation Formula Uniquely Characterizes the Fourie



Change of space
Derivative
Diagonal form A family of unitary operators

Unitary operators - more examples

e For a natural number m, take bfn"k’) = (%)k/z ay and b™ = 0 for
n # m*. Then
Tmf(x) = > b F(nx)

is again a v/2-isometry.

e For unitary T(a,), T(bn), we have a new unitary operator
T(an* by) = T(an) T(bn). Thus we can construct sequences a,
having larger support with T(a,) C-unitary.
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The end

Thank you!
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