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The Poisson Summation Formula

f : R→ C, f ∈ L2(R)
Fourier Transform: F f (ω) =

∫∞
−∞ f (t)exp(−2πiωt)dt

Assume f is sufficiently smooth and fast decaying (for example,
f ∈ S). Then we have
Poisson summation formula:

∞∑
n=−∞

f (n) =
∞∑

n=−∞
F f (n)

A uniqueness result:
Theorem (Cordoba 88’). Suppose {xk} and {yk} are two discrete
sets in Rn, and for all f ∈ S,

∑
k f (xk) =

∑
k F f (yk). Then {xk}

and {yk} are dual lattices, i.e. there is A ∈ SL(n) such that
{xk} = A(Zn) and {yk} = (A∗)−1(Zn).
For n = 1, there is only one possibility: {xk} = {yk} = Z
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Some conventions

f (−x) = −f (x)⇒ F f (−ω) = −F f (ω)
Thus

∑∞
n=−∞ f (n) =

∑∞
n=−∞F f (n) is nontrivial only for even

functions, and we consider from now on f ∈ L2[0,∞).

Assume further that f (0) =
∫∞
0 f (t)dt = 0.

PSF now reads:
∑∞

n=1 f (n) =
∑∞

n=1F f (n)

Introduce a scaling factor x > 0. Then PSF gives

∞∑
n=1

F f (nx) =
1

x

∞∑
n=1

f (
n

x
) (1)

Question (V. Milman): Does relation (1) uniquely characterize the
Fourier Transform?
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A Uniqueness Theorem

Theorem. Assume f ∈ C 2(0,∞) and f , f ′, f ′′ ∈ L1[0,∞). Also,
assume f (0) =

∫∞
0 f = 0. Then g = F f is the unique C (0,∞)

function satisfying
(a) g(x) = O(x−1−ε), x →∞ for some ε > 0
(b)

∑∞
n=1 g(nx) = 1

x

∑∞
n=1 f (n/x).
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Sequences

Consider the space of sequences {an}∞n=1 ⊂ C.

Associate to every sequence (an) its Dirichlet series

L(s; an) =
∞∑
n=1

an
ns

Given two sequences an, bn, their convolution is

(a ∗ b)k =
∑
mn=k

ambn

L(s; an ∗ bn) = L(s; an)L(s; bn)

δn = 1, 0, 0, 0, ...⇔ L(s; δn) = 1 is the unit element in the ring of
sequences with convolution.

(an) is invertible precisely if a1 6= 0.
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Some operators on L2[0,∞)

For a sequence {an}∞n=1 ⊂ C define

T (an)f (x) =
∞∑
n=1

anf (nx)

T (an) : L2[0,∞)→ L2[0,∞) is generally an unbounded operator.

When all series involved are absolutely convergent,
T (an ∗ bn)f = T (an)T (bn)f .

Define S : L2[0,∞)→ L2[0,∞) by Sf (x) = 1
x f ( 1

x )

S is a unitary involution: ‖Sf ‖ = ‖f ‖ and S = S∗ = S−1.

Let en = 1, n ≥ 1. Then Poisson’s formula∑∞
n=1F f (nx) = 1

x

∑∞
n=1 f (nx ) can be written as

T (en)F f = ST (en)f
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Proof of uniqueness theorem

Recall the Möbius function

µ(n) =

{
(−1)]{p prime|p divides n}, n square-free
0, d2|n

For en = 1, e ∗ µ = δ, so we expect T (µn) = T (en)−1.

Lemma. Suppose g ∈ C (0,∞) and satisfies g(x) = O(x−1−ε) for
some ε > 0. Then T (en)g = O(x−1−ε) and T (µn)g = O(x−1−ε),
and these are inverse transforms: T (en)T (µn)g = T (µn)T (en)g = g .

So, the equation T (en)F f = ST (en)f can be explicitly inverted under
certain conditions:

F f (x) = T (µn)ST (en)f (x) =
∞∑
n=1

µ(n)

nx

∞∑
m=1

f
(m

nx

)
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Davenport’s Theorem

The equality F f = T (µn)ST (en)f holds in other cases too. For
example, consider

Theorem (Davenport 37’)
∑∞

n=1
µ(n)
n {nx} = − 1

π sin(2πx) (here
{t} = t − btc denotes the fractional part)

This can be used to show that the Fourier Transform of a mean-zero
step function such as f (x) =

∑
k αkχ[ak ,bk ] (

∑
αk(bk − ak) = 0),

when symmetrically extended to the real axis, is given by

∞∑
n=1

µ(n)

nx

∞∑
m=1

f
(m

nx

)
=
∑
k

αk

πx
(sin(2πbkx)− sin(2πakx))
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Diagonal form

The general uniqueness problem

Generalizing Poisson’s summation formula

We are led naturally to the following
Question. Given a sequence (an), does there exist a linear operator
F(an) on L2[0,∞) such that for nice functions f the generalized
Poisson formula

T (an)F(an)f = ST (an)f

holds? Is it unique? Is it unitary?
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Uniqueness

Generalizing Poisson’s summation formula
Diagonal form

The general uniqueness problem

Bounded operators

Lemma. Assume ∑ |an|√
n
<∞ (2)

holds. Then
1 T (an) extends to a bounded operator on L2[0,∞), and

‖T (an)‖ ≤
∑ |an|√

n
.

2 For f ∈ C (0,∞) and f = O(x−1−ε) for some ε > 0, the formula

T (an)f (x) =
∞∑
n=1

anf (nx)

is valid.

Note that when condition (2) holds, L(s; an) is absolutely convergent
for <s ≥ 1/2
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Uniqueness

Generalizing Poisson’s summation formula
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The general uniqueness problem

Generalized operator - direct approach

Theorem. Assume (an) is real,
∑
|an|nε <∞ for some ε > 0, and

(bn) satisfies
∑
|bn|/

√
n <∞. Then

F(an) = T (bn)ST (an)

is a unitary operator.

Corollary. Take a continuous f satisfying f (x) = O(x−1−ε) as
x →∞ and f (x) = O(xε) as x → 0 for some ε > 0. Then

1 F(an)f is continuous and F(an)f (x) = O(x−1−ε).
2 The formula

∑
anF(an)f (nx) = (1/x)

∑
anf (n/x) holds pointwise.
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The Poisson summation formula
Uniqueness

Generalizing Poisson’s summation formula
Diagonal form

Change of space
Derivative
A family of unitary operators

Change of space

By the change of variable x = ey , we get the isometric isomorphism
u : L2 ([0,∞), dm)→ L2(R, eydy), f (x) 7→ g(y) = f (ey ).

How to apply Fourier Transform in such space?

Suggestion of B. Klartag: Define w(f )(ω) = û(f )(ω + i/2). Then
w : L2(R, eydy)→ (R, dm) is an isometric isomorphism, where

ĥ(ω) =
1√
2π

∫ ∞
−∞

h(t)e−iωtdt

denotes the Fourier Transform.

Alternatively, define the isometry v : L2(R, eydy)→ L2(R, dm) by

v(g)(y) = ey/2g(y). Then w(f ) = ̂v(u(f )) .
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The Poisson summation formula
Uniqueness

Generalizing Poisson’s summation formula
Diagonal form

Change of space
Derivative
A family of unitary operators

Some diagonal forms

For an operator A : L2[0,∞)→ L2[0,∞), we write
Ã = wAw−1 : L2(R)→ L2(R) for its conjugate by w .
Sf (x) = 1

x f
(
1
x

)
becomes S̃h(ω) = h(−ω).

Assuming
∑ |an|√

n
<∞, we get for g ∈ L2(R, eydy)

(uT (an)u−1g)(y) =
∑

ang(y + log n) = g ∗ ν(y)

where ν(y) =
∑

anδ− log n(y).

√
2πν̂(z) =

∑
ane

iz log n =
∑

ann
iz = L(−iz ; an)

which converges for =z ≥ 1/2.
Thus for h = v̂g , the diagonal form of T (an) is

T̃ (an)h(ω) = ĝ ∗ ν(ω + i/2) = L(1/2− iω; an)h(ω)
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The Poisson summation formula
Uniqueness

Generalizing Poisson’s summation formula
Diagonal form

Change of space
Derivative
A family of unitary operators

Existence and uniqueness theorem

The generalized Poisson summation formula becomes

L(1/2− iω; an)F̃(an)h(ω) = L(1/2 + iω; an)h(−ω)

Theorem. Assume
∑
|an|n−1/2 <∞, and an ∈ e iθR for some fixed

θ. Then
1 There exists a unitary involution F(an) : L2[0,∞)→ L2[0,∞)

satisfying the generalized PSF in operator form:
T (an)F(an) = ST (an).

2 If for some ε > 0,
∑
|an|n−1/2+ε <∞, then a bounded F(an)

satisfying T (an)F(an) = ST (an) is unique.

F(an) has the skew-diagonal form

F̃(an)h(ω) = e2i(arg L(1/2+iω;an)−θ)h(−ω)

Note that PSF need not hold pointwise (pointed out by F. Nazarov).
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1 There exists a unitary involution F(an) : L2[0,∞)→ L2[0,∞)

satisfying the generalized PSF in operator form:
T (an)F(an) = ST (an).

2 If for some ε > 0,
∑
|an|n−1/2+ε <∞, then a bounded F(an)

satisfying T (an)F(an) = ST (an) is unique.

F(an) has the skew-diagonal form

F̃(an)h(ω) = e2i(arg L(1/2+iω;an)−θ)h(−ω)

Note that PSF need not hold pointwise (pointed out by F. Nazarov).
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What about differentiation?

Denote Df = df /dx , and Xf = x · f . The Fourier transform satisfies
for nice functions f the identitiy F(Df ) = iXF(f ).

For an even f , Df is odd. Thus we shouldn’t expect to have such a
formula in our setting.

However, for an even function we can also write F(Xf ) = iDF(f ).
Those can be combined together into (?) XDF + FXD + F = 0,
where F is applied only to even functions.

Denote B = i(XD + Id/2) - a symmetric operator in any reasonable
domain. Then (?) reads FB + BF = 0.
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A general formula involving derivative

Theorem. Assume an ∈ R satisfies
∑
|an|nε <∞ for some ε > 0,

and the convolution inverse (bn) satisfies
∑
|bn|/

√
n <∞.

Note that
L(1− z ; an)

L(z ; an)

admits an analytic extension to the strip −ε < <z < 1 + ε.

Assume further that there exists N such that

|L(1− z ; an)/L(z ; an)| ≤ C |y |N

Let f ∈ S0, where

S0 = {f ∈ C∞ : sup |x |n|f (k)(x)| <∞ ∀k ≥ 0 ,∀n ∈ Z}

Then F(an)Bf + BF(an)f = 0.
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An integral formula

It is not hard to see that the general form of F(an) with∑
|an|/
√
n <∞ is given by

F(an)f (x) =

∫ ∞
0

A(xs)f (s)ds

Where A is some generalized function depending on an.

For example, for (an) = (δn) = 1, 0, 0, ... we get A(s) = δ1(s)

Though not fitting into our discussion, the ordinary Fourier transform
corresponds to an = 1, 1, 1, ... and A(s) = 2 cos s.

Any such operator formally satisfies the identity FB + BF = 0.
The difficulty lies in verifying that F f is sufficiently regular for regular
functions f .
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A family of unitary operators

Let us determine when the operators T (an) are unitary.

Call an operator T C -unitary if 1
CT is unitary.

Corollary. Assume an satisfies
∑
|an|n−1/2 <∞. Then the following

are equivalent:
(a) |L(1/2 + ix ; an)| = C
(b) T (an) is C -unitary on L2[0,∞)
(c) (an) satisfies

∞∑
k=1

am0kan0k
k

=

{
C 2, (m0, n0) = (1, 1)
0, gcd(m0, n0) = 1,m0 6= n0

(3)
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Unitary operators - examples

A curious example of such an operator is
T (an)f (x) = f (x) + f (2x)− f (4x) + f (8x)− f (16x) + ...
associated with an = 1, 1, 0,−1, 0, 0, 0, 1, ... and L(s; an) = 2+2s

1+2s .

T (an) is
√

2-unitary on L2[0,∞).

Note that in this case, the convolution-inverse of an is

(bn) = (an)−1 = 1,−1, 0, 2, 0, 0, 0,−4, 0, 0, 0, 0, 0, 0, 0, 8, ...

And so the inverse of T (an) is not T (bn) (which is unbounded) but
rather T (an)−1f = T (an)∗f =

∑∞
n=1

an
n f
(
x
n

)
A similar example is

Tf (x) = f (x)− f (2x)− f (4x)− f (8x)− ...
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Unitary operators - more examples

For a natural number m, take b
(m)

mk =
(
m
2

)k/2
a2k and b

(m)
n = 0 for

n 6= mk . Then

Tmf (x) =
∑

b
(m)
n f (nx)

is again a
√

2-isometry.

For unitary T (an),T (bn), we have a new unitary operator
T (an ∗ bn) = T (an)T (bn). Thus we can construct sequences an
having larger support with T (an) C -unitary.
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The end

Thank you!
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