Poisson Summation Formula Uniquely Characterizes the Fourier Transform

Dmitry Faifman

Tel-Aviv University

September 16, 2010

- $f: \mathbb{R} \to \mathbb{C}, f \in L^2(\mathbb{R})$
- Fourier Transform: $\mathcal{F}f(\omega) = \int_{-\infty}^{\infty} f(t) exp(-2\pi i \omega t) dt$
- Assume f is sufficiently smooth and fast decaying (for example, $f \in \mathcal{S}$). Then we have

$$\sum^{\infty} f(n) = \sum^{\infty} \mathcal{F}f(n)$$

- A uniqueness result:
 - **Theorem (Cordoba 88').** Suppose $\{x_k\}$ and $\{y_k\}$ are two discrete sets in \mathbb{R}^n , and for all $f \in \mathcal{S}$, $\sum_k f(x_k) = \sum_k \mathcal{F}f(y_k)$. Then $\{x_k\}$ and $\{y_k\}$ are dual lattices, i.e. there is $A \in SL(n)$ such that $\{x_k\} = A(\mathbb{Z}^n)$ and $\{y_k\} = (A^*)^{-1}(\mathbb{Z}^n)$.
- For n=1, there is only one possibility: $\{x_k\}_{k=1}^n \{y_k\}_{k=1}^n \{y_k\}_{k=1}^$

- $f: \mathbb{R} \to \mathbb{C}$, $f \in L^2(\mathbb{R})$
- Fourier Transform: $\mathcal{F}f(\omega) = \int_{-\infty}^{\infty} f(t) \exp(-2\pi i \omega t) dt$
- Assume f is sufficiently smooth and fast decaying (for example, $f \in \mathcal{S}$). Then we have

$$\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \mathcal{F}f(n)$$

- A uniqueness result:
 - **Theorem (Cordoba 88').** Suppose $\{x_k\}$ and $\{y_k\}$ are two discrete sets in \mathbb{R}^n , and for all $f \in \mathcal{S}$, $\sum_k f(x_k) = \sum_k \mathcal{F}f(y_k)$. Then $\{x_k\}$ and $\{y_k\}$ are dual lattices, i.e. there is $A \in SL(n)$ such that $\{x_k\} = A(\mathbb{Z}^n)$ and $\{y_k\} = (A^*)^{-1}(\mathbb{Z}^n)$.
- For n=1, there is only one possibility: $\{x_k\}_{\leftarrow}$, $\{x_k\}_{\leftarrow}$

- $f: \mathbb{R} \to \mathbb{C}$, $f \in L^2(\mathbb{R})$
- Fourier Transform: $\mathcal{F}f(\omega) = \int_{-\infty}^{\infty} f(t) \exp(-2\pi i \omega t) dt$
- Assume f is sufficiently smooth and fast decaying (for example, $f \in S$). Then we have Poisson summation formula:

$$\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \mathcal{F}f(n)$$

- A uniqueness result:
 - **Theorem (Cordoba 88').** Suppose $\{x_k\}$ and $\{y_k\}$ are two discrete sets in \mathbb{R}^n , and for all $f \in \mathcal{S}$, $\sum_k f(x_k) = \sum_k \mathcal{F}f(y_k)$. Then $\{x_k\}$ and $\{y_k\}$ are dual lattices, i.e. there is $A \in SL(n)$ such that $\{x_k\} = A(\mathbb{Z}^n)$ and $\{y_k\} = (A^*)^{-1}(\mathbb{Z}^n)$.
- For n=1, there is only one possibility: $\{x_k\}_{k=1}^n \{x_k\}_{k=1}^n \{x_k\}_{k=1}^$

- $f: \mathbb{R} \to \mathbb{C}$, $f \in L^2(\mathbb{R})$
- Fourier Transform: $\mathcal{F}f(\omega) = \int_{-\infty}^{\infty} f(t) \exp(-2\pi i \omega t) dt$
- Assume f is sufficiently smooth and fast decaying (for example, $f \in S$). Then we have Poisson summation formula:

$$\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \mathcal{F}f(n)$$

- A uniqueness result:
 - **Theorem (Cordoba 88').** Suppose $\{x_k\}$ and $\{y_k\}$ are two discrete sets in \mathbb{R}^n , and for all $f \in \mathcal{S}$, $\sum_k f(x_k) = \sum_k \mathcal{F} f(y_k)$. Then $\{x_k\}$ and $\{y_k\}$ are dual lattices, i.e. there is $A \in SL(n)$ such that $\{x_k\} = A(\mathbb{Z}^n)$ and $\{y_k\} = (A^*)^{-1}(\mathbb{Z}^n)$.
- For n=1, there is only one possibility: $\{x_k\} \rightarrow \{y_k\} \rightarrow$

- $f: \mathbb{R} \to \mathbb{C}$, $f \in L^2(\mathbb{R})$
- Fourier Transform: $\mathcal{F}f(\omega) = \int_{-\infty}^{\infty} f(t) \exp(-2\pi i \omega t) dt$
- Assume f is sufficiently smooth and fast decaying (for example, $f \in S$). Then we have Poisson summation formula:

$$\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \mathcal{F}f(n)$$

- A uniqueness result:
 - **Theorem (Cordoba 88').** Suppose $\{x_k\}$ and $\{y_k\}$ are two discrete sets in \mathbb{R}^n , and for all $f \in \mathcal{S}$, $\sum_k f(x_k) = \sum_k \mathcal{F}f(y_k)$. Then $\{x_k\}$ and $\{y_k\}$ are dual lattices, i.e. there is $A \in SL(n)$ such that $\{x_k\} = A(\mathbb{Z}^n)$ and $\{y_k\} = (A^*)^{-1}(\mathbb{Z}^n)$.
- For n=1, there is only one possibility: $\{x_k\}_{\leftarrow} = \{y_k\}_{\leftarrow} = \mathbb{Z}$

- $f(-x) = -f(x) \Rightarrow \mathcal{F}f(-\omega) = -\mathcal{F}f(\omega)$ Thus $\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \mathcal{F}f(n)$ is nontrivial only for even functions, and we consider from now on $f \in L^2[0,\infty)$.
- Assume further that $f(0) = \int_0^\infty f(t)dt = 0$. PSF now reads: $\sum_{n=1}^\infty f(n) = \sum_{n=1}^\infty \mathcal{F}f(n)$
- Introduce a scaling factor x > 0. Then PSF gives

$$\sum_{n=1}^{\infty} \mathcal{F}f(nx) = \frac{1}{x} \sum_{n=1}^{\infty} f(\frac{n}{x})$$
 (1)

- $f(-x) = -f(x) \Rightarrow \mathcal{F}f(-\omega) = -\mathcal{F}f(\omega)$ Thus $\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \mathcal{F}f(n)$ is nontrivial only for even functions, and we consider from now on $f \in L^2[0,\infty)$.
- Assume further that $f(0) = \int_0^\infty f(t)dt = 0$. PSF now reads: $\sum_{n=1}^\infty f(n) = \sum_{n=1}^\infty \mathcal{F}f(n)$
- Introduce a scaling factor x > 0. Then PSF gives

$$\sum_{n=1}^{\infty} \mathcal{F}f(nx) = \frac{1}{x} \sum_{n=1}^{\infty} f(\frac{n}{x})$$
 (1)

- $f(-x) = -f(x) \Rightarrow \mathcal{F}f(-\omega) = -\mathcal{F}f(\omega)$ Thus $\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \mathcal{F}f(n)$ is nontrivial only for even functions, and we consider from now on $f \in L^2[0,\infty)$.
- Assume further that $f(0) = \int_0^\infty f(t)dt = 0$. PSF now reads: $\sum_{n=1}^\infty f(n) = \sum_{n=1}^\infty \mathcal{F}f(n)$
- Introduce a scaling factor x > 0. Then PSF gives

$$\sum_{n=1}^{\infty} \mathcal{F}f(nx) = \frac{1}{x} \sum_{n=1}^{\infty} f(\frac{n}{x})$$
 (1)

- $f(-x) = -f(x) \Rightarrow \mathcal{F}f(-\omega) = -\mathcal{F}f(\omega)$ Thus $\sum_{n=-\infty}^{\infty} f(n) = \sum_{n=-\infty}^{\infty} \mathcal{F}f(n)$ is nontrivial only for even functions, and we consider from now on $f \in L^2[0,\infty)$.
- Assume further that $f(0) = \int_0^\infty f(t)dt = 0$. PSF now reads: $\sum_{n=1}^\infty f(n) = \sum_{n=1}^\infty \mathcal{F}f(n)$
- Introduce a scaling factor x > 0. Then PSF gives

$$\sum_{n=1}^{\infty} \mathcal{F}f(nx) = \frac{1}{x} \sum_{n=1}^{\infty} f(\frac{n}{x})$$
 (1)

A Uniqueness Theorem

• **Theorem.** Assume $f \in C^2(0,\infty)$ and $f,f',f'' \in L_1[0,\infty)$. Also, assume $f(0) = \int_0^\infty f = 0$. Then $g = \mathcal{F}f$ is the unique $C(0,\infty)$ function satisfying

(a)
$$g(x) = O(x^{-1-\epsilon}), x \to \infty$$
 for some $\epsilon > 0$

(b)
$$\sum_{n=1}^{\infty} g(nx) = \frac{1}{x} \sum_{n=1}^{\infty} f(n/x)$$
.

- Consider the space of sequences $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$.
- Associate to every sequence (a_n) its Dirichlet series

$$L(s;a_n)=\sum_{n=1}^{\infty}\frac{a_n}{n^s}$$

$$(a*b)_k = \sum_{mn=k} a_m b_n$$

- $L(s; a_n * b_n) = L(s; a_n)L(s; b_n)$
- $\delta_n = 1, 0, 0, 0, ... \Leftrightarrow L(s; \delta_n) = 1$ is the unit element in the ring of sequences with convolution.
- (a_n) is invertible precisely if $a_1 \neq 0$.

- Consider the space of sequences $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$.
- Associate to every sequence (a_n) its Dirichlet series

$$L(s; a_n) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

$$(a*b)_k = \sum_{mn=k} a_m b_n$$

- $L(s; a_n * b_n) = L(s; a_n)L(s; b_n)$
- $\delta_n = 1, 0, 0, 0, ... \Leftrightarrow L(s; \delta_n) = 1$ is the unit element in the ring of sequences with convolution.
- (a_n) is invertible precisely if $a_1 \neq 0$.

- Consider the space of sequences $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$.
- Associate to every sequence (a_n) its Dirichlet series

$$L(s; a_n) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

$$(a*b)_k = \sum_{mn=k} a_m b_n$$

- $L(s; a_n * b_n) = L(s; a_n)L(s; b_n)$
- $\delta_n = 1, 0, 0, 0, ... \Leftrightarrow L(s; \delta_n) = 1$ is the unit element in the ring of sequences with convolution.
- (a_n) is invertible precisely if $a_1 \neq 0$.

- Consider the space of sequences $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$.
- Associate to every sequence (a_n) its Dirichlet series

$$L(s;a_n)=\sum_{n=1}^{\infty}\frac{a_n}{n^s}$$

$$(a*b)_k = \sum_{mn=k} a_m b_n$$

- $L(s; a_n * b_n) = L(s; a_n)L(s; b_n)$
- $\delta_n = 1, 0, 0, 0, ... \Leftrightarrow L(s; \delta_n) = 1$ is the unit element in the ring of sequences with convolution.
- (a_n) is invertible precisely if $a_1 \neq 0$.

- Consider the space of sequences $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$.
- Associate to every sequence (a_n) its Dirichlet series

$$L(s;a_n)=\sum_{n=1}^{\infty}\frac{a_n}{n^s}$$

$$(a*b)_k = \sum_{mn=k} a_m b_n$$

- $L(s; a_n * b_n) = L(s; a_n)L(s; b_n)$
- $\delta_n = 1, 0, 0, 0, ... \Leftrightarrow L(s; \delta_n) = 1$ is the unit element in the ring of sequences with convolution.
- (a_n) is invertible precisely if $a_1 \neq 0$.

- Consider the space of sequences $\{a_n\}_{n=1}^{\infty} \subset \mathbb{C}$.
- Associate to every sequence (a_n) its Dirichlet series

$$L(s;a_n)=\sum_{n=1}^{\infty}\frac{a_n}{n^s}$$

$$(a*b)_k = \sum_{mn=k} a_m b_n$$

- $L(s; a_n * b_n) = L(s; a_n)L(s; b_n)$
- $\delta_n = 1, 0, 0, 0, ... \Leftrightarrow L(s; \delta_n) = 1$ is the unit element in the ring of sequences with convolution.
- (a_n) is invertible precisely if $a_1 \neq 0$.

$$T(a_n)f(x) = \sum_{n=1}^{\infty} a_n f(nx)$$

- $T(a_n): L^2[0,\infty) \to L^2[0,\infty)$ is generally an unbounded operator.
- When all series involved are absolutely convergent, $T(a_n * b_n)f = T(a_n)T(b_n)f$.
- Define $S: L^2[0,\infty) \to L^2[0,\infty)$ by $Sf(x) = \frac{1}{x}f(\frac{1}{x})$
- S is a unitary involution: ||Sf|| = ||f|| and $S = S^* = S^{-1}$.
- Let $e_n = 1$, $n \ge 1$. Then Poisson's formula $\sum_{n=1}^{\infty} \mathcal{F}f(nx) = \frac{1}{x} \sum_{n=1}^{\infty} f(\frac{n}{x})$ can be written as

$$I(e_n)\mathcal{F}t = SI(e_n)t$$

$$T(a_n)f(x) = \sum_{n=1}^{\infty} a_n f(nx)$$

- $T(a_n): L^2[0,\infty) \to L^2[0,\infty)$ is generally an unbounded operator.
- When all series involved are absolutely convergent, $T(a_n * b_n)f = T(a_n)T(b_n)f$.
- Define $S: L^2[0,\infty) \to L^2[0,\infty)$ by $Sf(x) = \frac{1}{x}f(\frac{1}{x})$
- S is a unitary involution: ||Sf|| = ||f|| and $S = S^* = S^{-1}$.
- Let $e_n = 1$, $n \ge 1$. Then Poisson's formula $\sum_{n=1}^{\infty} \mathcal{F}f(nx) = \frac{1}{x} \sum_{n=1}^{\infty} f(\frac{n}{x})$ can be written as

$$T(e_n)\mathcal{F}f = ST(e_n)f$$

$$T(a_n)f(x) = \sum_{n=1}^{\infty} a_n f(nx)$$

- $T(a_n): L^2[0,\infty) \to L^2[0,\infty)$ is generally an unbounded operator.
- When all series involved are absolutely convergent, $T(a_n * b_n)f = T(a_n)T(b_n)f$.
- Define $S: L^2[0,\infty) \to L^2[0,\infty)$ by $Sf(x) = \frac{1}{x}f(\frac{1}{x})$
- S is a unitary involution: ||Sf|| = ||f|| and $S = S^* = S^{-1}$.
- Let $e_n = 1$, $n \ge 1$. Then Poisson's formula $\sum_{n=1}^{\infty} \mathcal{F}f(nx) = \frac{1}{x} \sum_{n=1}^{\infty} f(\frac{n}{x})$ can be written as

$$T(e_n)\mathcal{F}f=ST(e_n)f$$

$$T(a_n)f(x) = \sum_{n=1}^{\infty} a_n f(nx)$$

- $T(a_n): L^2[0,\infty) \to L^2[0,\infty)$ is generally an unbounded operator.
- When all series involved are absolutely convergent, $T(a_n * b_n)f = T(a_n)T(b_n)f$.
- Define $S: L^2[0,\infty) \to L^2[0,\infty)$ by $Sf(x) = \frac{1}{x}f(\frac{1}{x})$
- S is a unitary involution: ||Sf|| = ||f|| and $S = S^* = S^{-1}$.
- Let $e_n = 1$, $n \ge 1$. Then Poisson's formula $\sum_{n=1}^{\infty} \mathcal{F}f(nx) = \frac{1}{x} \sum_{n=1}^{\infty} f(\frac{n}{x})$ can be written as

$$T(e_n)\mathcal{F}f = ST(e_n)f$$

$$T(a_n)f(x) = \sum_{n=1}^{\infty} a_n f(nx)$$

- $T(a_n): L^2[0,\infty) \to L^2[0,\infty)$ is generally an unbounded operator.
- When all series involved are absolutely convergent, $T(a_n * b_n)f = T(a_n)T(b_n)f$.
- Define $S: L^2[0,\infty) \to L^2[0,\infty)$ by $Sf(x) = \frac{1}{x}f(\frac{1}{x})$
- S is a unitary involution: ||Sf|| = ||f|| and $S = S^* = S^{-1}$.
- Let $e_n = 1$, $n \ge 1$. Then Poisson's formula $\sum_{n=1}^{\infty} \mathcal{F}f(nx) = \frac{1}{x} \sum_{n=1}^{\infty} f(\frac{n}{x})$ can be written as

$$T(e_n)\mathcal{F}f = ST(e_n)f$$

$$T(a_n)f(x) = \sum_{n=1}^{\infty} a_n f(nx)$$

- $T(a_n): L^2[0,\infty) \to L^2[0,\infty)$ is generally an unbounded operator.
- When all series involved are absolutely convergent, $T(a_n * b_n)f = T(a_n)T(b_n)f$.
- Define $S: L^2[0,\infty) \to L^2[0,\infty)$ by $Sf(x) = \frac{1}{x}f(\frac{1}{x})$
- S is a unitary involution: ||Sf|| = ||f|| and $S = S^* = S^{-1}$.
- Let $e_n = 1$, $n \ge 1$. Then Poisson's formula $\sum_{n=1}^{\infty} \mathcal{F}f(nx) = \frac{1}{x} \sum_{n=1}^{\infty} f(\frac{n}{x})$ can be written as

$$T(e_n)\mathcal{F}f = ST(e_n)f$$

- For $e_n = 1$, $e * \mu = \delta$, so we expect $T(\mu_n) = T(e_n)^{-1}$.
- Lemma. Suppose $g \in C(0,\infty)$ and satisfies $g(x) = O(x^{-1-\epsilon})$ for some $\epsilon > 0$. Then $T(e_n)g = O(x^{-1-\epsilon})$ and $T(\mu_n)g = O(x^{-1-\epsilon})$, and these are inverse transforms: $T(e_n)T(\mu_n)g = T(\mu_n)T(e_n)g = g$.
- So, the equation $T(e_n)\mathcal{F}f = ST(e_n)f$ can be explicitly inverted under certain conditions:

$$\mathcal{F}f(x) = T(\mu_n)ST(e_n)f(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{nx} \sum_{m=1}^{\infty} f\left(\frac{m}{nx}\right)$$

$$\mu(n) = \left\{ \begin{array}{ll} (-1)^{\sharp \{p \text{ prime} | p \text{ divides } n\}}, & n \text{ square-free} \\ 0, & d^2 | n \end{array} \right.$$

- For $e_n = 1$, $e * \mu = \delta$, so we expect $T(\mu_n) = T(e_n)^{-1}$.
- **Lemma.** Suppose $g \in C(0,\infty)$ and satisfies $g(x) = O(x^{-1-\epsilon})$ for some $\epsilon > 0$. Then $T(e_n)g = O(x^{-1-\epsilon})$ and $T(\mu_n)g = O(x^{-1-\epsilon})$, and these are inverse transforms: $T(e_n)T(\mu_n)g = T(\mu_n)T(e_n)g = g$
- So, the equation $T(e_n)\mathcal{F}f = ST(e_n)f$ can be explicitly inverted under certain conditions:

$$\mathcal{F}f(x) = T(\mu_n)ST(e_n)f(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{nx} \sum_{m=1}^{\infty} f\left(\frac{m}{nx}\right)$$

$$\mu(n) = \left\{ \begin{array}{ll} (-1)^{\sharp \{p \text{ prime} | p \text{ divides } n\}}, & n \text{ square-free} \\ 0, & d^2 | n \end{array} \right.$$

- For $e_n = 1$, $e * \mu = \delta$, so we expect $T(\mu_n) = T(e_n)^{-1}$.
- **Lemma.** Suppose $g \in C(0,\infty)$ and satisfies $g(x) = O(x^{-1-\epsilon})$ for some $\epsilon > 0$. Then $T(e_n)g = O(x^{-1-\epsilon})$ and $T(\mu_n)g = O(x^{-1-\epsilon})$, and these are inverse transforms: $T(e_n)T(\mu_n)g = T(\mu_n)T(e_n)g = g$.
- So, the equation $T(e_n)\mathcal{F}f = ST(e_n)f$ can be explicitly inverted under certain conditions:

$$\mathcal{F}f(x) = T(\mu_n)ST(e_n)f(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{nx} \sum_{m=1}^{\infty} f\left(\frac{m}{nx}\right)$$

$$\mu(n) = \left\{ \begin{array}{ll} (-1)^{\sharp \{p \text{ prime} | p \text{ divides } n\}}, & n \text{ square-free} \\ 0, & d^2 | n \end{array} \right.$$

- For $e_n = 1$, $e * \mu = \delta$, so we expect $T(\mu_n) = T(e_n)^{-1}$.
- **Lemma.** Suppose $g \in C(0,\infty)$ and satisfies $g(x) = O(x^{-1-\epsilon})$ for some $\epsilon > 0$. Then $T(e_n)g = O(x^{-1-\epsilon})$ and $T(\mu_n)g = O(x^{-1-\epsilon})$, and these are inverse transforms: $T(e_n)T(\mu_n)g = T(\mu_n)T(e_n)g = g$.
- So, the equation $T(e_n)\mathcal{F}f = ST(e_n)f$ can be explicitly inverted under certain conditions:

$$\mathcal{F}f(x) = T(\mu_n)ST(e_n)f(x) = \sum_{n=1}^{\infty} \frac{\mu(n)}{nx} \sum_{m=1}^{\infty} f\left(\frac{m}{nx}\right)$$

Davenport's Theorem

- The equality $\mathcal{F}f = T(\mu_n)ST(e_n)f$ holds in other cases too. For example, consider
- Theorem (Davenport 37') $\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \{nx\} = -\frac{1}{\pi} \sin(2\pi x)$ (here $\{t\} = t \lfloor t \rfloor$ denotes the fractional part)
- This can be used to show that the Fourier Transform of a mean-zero step function such as $f(x) = \sum_k \alpha_k \chi_{[a_k,b_k]} \ (\sum \alpha_k (b_k a_k) = 0)$, when symmetrically extended to the real axis, is given by

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{nx} \sum_{m=1}^{\infty} f\left(\frac{m}{nx}\right) = \sum_{k} \frac{\alpha_k}{\pi x} (\sin(2\pi b_k x) - \sin(2\pi a_k x))$$

Davenport's Theorem

- The equality $\mathcal{F}f = T(\mu_n)ST(e_n)f$ holds in other cases too. For example, consider
- Theorem (Davenport 37') $\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \{nx\} = -\frac{1}{\pi} \sin(2\pi x)$ (here $\{t\} = t \lfloor t \rfloor$ denotes the fractional part)
- This can be used to show that the Fourier Transform of a mean-zero step function such as $f(x) = \sum_k \alpha_k \chi_{[a_k,b_k]} \ (\sum \alpha_k (b_k a_k) = 0)$, when symmetrically extended to the real axis, is given by

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{nx} \sum_{m=1}^{\infty} f\left(\frac{m}{nx}\right) = \sum_{k} \frac{\alpha_k}{\pi x} (\sin(2\pi b_k x) - \sin(2\pi a_k x))$$

Davenport's Theorem

- The equality $\mathcal{F}f = T(\mu_n)ST(e_n)f$ holds in other cases too. For example, consider
- Theorem (Davenport 37') $\sum_{n=1}^{\infty} \frac{\mu(n)}{n} \{nx\} = -\frac{1}{\pi} \sin(2\pi x)$ (here $\{t\} = t \lfloor t \rfloor$ denotes the fractional part)
- This can be used to show that the Fourier Transform of a mean-zero step function such as $f(x) = \sum_k \alpha_k \chi_{[a_k,b_k]} (\sum \alpha_k (b_k a_k) = 0)$, when symmetrically extended to the real axis, is given by

$$\sum_{n=1}^{\infty} \frac{\mu(n)}{nx} \sum_{m=1}^{\infty} f\left(\frac{m}{nx}\right) = \sum_{k} \frac{\alpha_k}{\pi x} (\sin(2\pi b_k x) - \sin(2\pi a_k x))$$

Generalizing Poisson's summation formula

• We are led naturally to the following **Question.** Given a sequence (a_n) , does there exist a linear operator $\mathcal{F}(a_n)$ on $L^2[0,\infty)$ such that for nice functions f the generalized Poisson formula

$$T(a_n)\mathcal{F}(a_n)f = ST(a_n)f$$

holds? Is it unique? Is it unitary?

• Lemma. Assume

$$\sum \frac{|a_n|}{\sqrt{n}} < \infty \tag{2}$$

holds. Then

- ① $T(a_n)$ extends to a bounded operator on $L^2[0,\infty)$, and $\|T(a_n)\| \leq \sum \frac{|a_n|}{\sqrt{n}}$.
- ② For $f \in C(0,\infty)$ and $f = O(x^{-1-\epsilon})$ for some $\epsilon > 0$, the formula

$$T(a_n)f(x) = \sum_{n=1}^{\infty} a_n f(nx)$$

is valid.

• Note that when condition (2) holds, $L(s; a_n)$ is absolutely convergent for $\Re s > 1/2$

Lemma. Assume

$$\sum \frac{|a_n|}{\sqrt{n}} < \infty \tag{2}$$

holds. Then

- **1** $T(a_n)$ extends to a bounded operator on $L^2[0,\infty)$, and $||T(a_n)|| \leq \sum \frac{|a_n|}{\sqrt{n}}$.
- ② For $f \in C(0,\infty)$ and $f = O(x^{-1-\epsilon})$ for some $\epsilon > 0$, the formula

$$T(a_n)f(x) = \sum_{n=1}^{\infty} a_n f(nx)$$

is valid.

• Note that when condition (2) holds, $L(s; a_n)$ is absolutely convergent for $\Re s > 1/2$

Lemma. Assume

$$\sum \frac{|a_n|}{\sqrt{n}} < \infty \tag{2}$$

holds. Then

- **1** $T(a_n)$ extends to a bounded operator on $L^2[0,\infty)$, and $||T(a_n)|| \leq \sum \frac{|a_n|}{\sqrt{n}}$.
- 2 For $f \in C(0,\infty)$ and $f = O(x^{-1-\epsilon})$ for some $\epsilon > 0$, the formula

$$T(a_n)f(x) = \sum_{n=1}^{\infty} a_n f(nx)$$

is valid.

• Note that when condition (2) holds, $L(s; a_n)$ is absolutely convergent for $\Re s \geq 1/2$

Lemma. Assume

$$\sum \frac{|a_n|}{\sqrt{n}} < \infty \tag{2}$$

holds. Then

- **1** $T(a_n)$ extends to a bounded operator on $L^2[0,\infty)$, and $||T(a_n)|| \leq \sum \frac{|a_n|}{\sqrt{n}}$.
- ② For $f \in C(0,\infty)$ and $f = O(x^{-1-\epsilon})$ for some $\epsilon > 0$, the formula

$$T(a_n)f(x) = \sum_{n=1}^{\infty} a_n f(nx)$$

is valid.

• Note that when condition (2) holds, $L(s; a_n)$ is absolutely convergent for $\Re s > 1/2$

Generalized operator - direct approach

• **Theorem.** Assume (a_n) is real, $\sum |a_n| n^{\epsilon} < \infty$ for some $\epsilon > 0$, and (b_n) satisfies $\sum |b_n|/\sqrt{n} < \infty$. Then

$$\mathcal{F}(a_n) = T(b_n)ST(a_n)$$

is a unitary operator.

- Corollary. Take a continuous f satisfying $f(x) = O(x^{-1-\epsilon})$ as $x \to \infty$ and $f(x) = O(x^{\epsilon})$ as $x \to 0$ for some $\epsilon > 0$. Then
 - ① $\mathcal{F}(a_n)f$ is continuous and $\mathcal{F}(a_n)f(x) = O(x^{-1-\epsilon})$
 - \bigcirc The formula $\sum a_n \mathcal{F}(a_n) f(nx) = (1/x) \sum a_n f(n/x)$ holds pointwise

Generalized operator - direct approach

• **Theorem.** Assume (a_n) is real, $\sum |a_n| n^{\epsilon} < \infty$ for some $\epsilon > 0$, and (b_n) satisfies $\sum |b_n|/\sqrt{n} < \infty$. Then

$$\mathcal{F}(a_n) = T(b_n)ST(a_n)$$

is a unitary operator.

- Corollary. Take a continuous f satisfying $f(x) = O(x^{-1-\epsilon})$ as $x \to \infty$ and $f(x) = O(x^{\epsilon})$ as $x \to 0$ for some $\epsilon > 0$. Then
 - ① $\mathcal{F}(a_n)f$ is continuous and $\mathcal{F}(a_n)f(x) = O(x^{-1-\epsilon})$.
 - 2 The formula $\sum a_n \mathcal{F}(a_n) f(nx) = (1/x) \sum a_n f(n/x)$ holds pointwise.

Generalized operator - direct approach

• **Theorem.** Assume (a_n) is real, $\sum |a_n| n^{\epsilon} < \infty$ for some $\epsilon > 0$, and (b_n) satisfies $\sum |b_n|/\sqrt{n} < \infty$. Then

$$\mathcal{F}(a_n) = T(b_n)ST(a_n)$$

is a unitary operator.

- Corollary. Take a continuous f satisfying $f(x) = O(x^{-1-\epsilon})$ as $x \to \infty$ and $f(x) = O(x^{\epsilon})$ as $x \to 0$ for some $\epsilon > 0$. Then
 - **1** $\mathcal{F}(a_n)f$ is continuous and $\mathcal{F}(a_n)f(x) = O(x^{-1-\epsilon})$.
 - 2 The formula $\sum a_n \mathcal{F}(a_n) f(nx) = (1/x) \sum a_n f(n/x)$ holds pointwise.

Generalized operator - direct approach

• **Theorem.** Assume (a_n) is real, $\sum |a_n| n^{\epsilon} < \infty$ for some $\epsilon > 0$, and (b_n) satisfies $\sum |b_n|/\sqrt{n} < \infty$. Then

$$\mathcal{F}(a_n) = T(b_n)ST(a_n)$$

is a unitary operator.

- Corollary. Take a continuous f satisfying $f(x) = O(x^{-1-\epsilon})$ as $x \to \infty$ and $f(x) = O(x^{\epsilon})$ as $x \to 0$ for some $\epsilon > 0$. Then
 - **1** $\mathcal{F}(a_n)f$ is continuous and $\mathcal{F}(a_n)f(x) = O(x^{-1-\epsilon})$.
 - 2 The formula $\sum a_n \mathcal{F}(a_n) f(nx) = (1/x) \sum a_n f(n/x)$ holds pointwise.

- By the change of variable $x = e^y$, we get the isometric isomorphism $u: L^2([0,\infty), dm) \to L^2(\mathbb{R}, e^y dy), f(x) \mapsto g(y) = f(e^y).$
- How to apply Fourier Transform in such space?
- Suggestion of B. Klartag: Define $w(f)(\omega) = u(f)(\omega + i/2)$. Then $w: L^2(\mathbb{R}, e^y dy) \to (\mathbb{R}, dm)$ is an isometric isomorphism, where

$$\widehat{h}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(t) \mathrm{e}^{-i\omega t} dt$$

denotes the Fourier Transform.

• Alternatively, define the isometry $v: L^2(\mathbb{R}, e^y dy) \to L^2(\mathbb{R}, dm)$ by $v(g)(y) = e^{y/2}g(y)$. Then w(f) = v(u(f)).

- By the change of variable $x = e^y$, we get the isometric isomorphism $u: L^2([0,\infty), dm) \to L^2(\mathbb{R}, e^y dy), f(x) \mapsto g(y) = f(e^y).$
- How to apply Fourier Transform in such space?
- Suggestion of B. Klartag: Define $w(f)(\omega) = u(f)(\omega + i/2)$. Then $w: L^2(\mathbb{R}, e^y dy) \to (\mathbb{R}, dm)$ is an isometric isomorphism, where

$$\widehat{h}(\omega) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(t) e^{-i\omega t} dt$$

denotes the Fourier Transform.

• Alternatively, define the isometry $v: L^2(\mathbb{R}, e^y dy) \to L^2(\mathbb{R}, dm)$ by $v(g)(y) = e^{y/2}g(y)$. Then $w(f) = \widehat{v(u(f))}$.

- By the change of variable $x = e^y$, we get the isometric isomorphism $u: L^2([0,\infty), dm) \to L^2(\mathbb{R}, e^y dy), f(x) \mapsto g(y) = f(e^y).$
- How to apply Fourier Transform in such space?
- Suggestion of B. Klartag: Define $w(f)(\omega) = u(f)(\omega + i/2)$. Then $w: L^2(\mathbb{R}, e^y dy) \to (\mathbb{R}, dm)$ is an isometric isomorphism, where

$$\widehat{h}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(t) e^{-i\omega t} dt$$

denotes the Fourier Transform.

• Alternatively, define the isometry $v: L^2(\mathbb{R}, e^y dy) \to L^2(\mathbb{R}, dm)$ by $v(g)(y) = e^{y/2}g(y)$. Then w(f) = v(u(f)).

- By the change of variable $x = e^y$, we get the isometric isomorphism $u: L^2([0,\infty), dm) \to L^2(\mathbb{R}, e^y dy), f(x) \mapsto g(y) = f(e^y).$
- How to apply Fourier Transform in such space?
- Suggestion of B. Klartag: Define $w(f)(\omega) = u(f)(\omega + i/2)$. Then $w: L^2(\mathbb{R}, e^y dy) \to (\mathbb{R}, dm)$ is an isometric isomorphism, where

$$\widehat{h}(\omega) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(t) e^{-i\omega t} dt$$

denotes the Fourier Transform.

• Alternatively, define the isometry $v: L^2(\mathbb{R}, e^y dy) \to L^2(\mathbb{R}, dm)$ by $v(g)(y) = e^{y/2}g(y)$. Then w(f) = v(u(f)).

- For an operator $A: L^2[0,\infty) \to L^2[0,\infty)$, we write $\tilde{A} = wAw^{-1}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ for its conjugate by w.
- $Sf(x) = \frac{1}{x}f(\frac{1}{x})$ becomes $\tilde{S}h(\omega) = h(-\omega)$.
- Assuming $\sum rac{|a_n|}{\sqrt{n}} < \infty$, we get for $g \in L^2(\mathbb{R}, e^y dy)$

$$(uT(a_n)u^{-1}g)(y) = \sum a_ng(y + \log n) = g * \nu(y)$$

where $\nu(y) = \sum a_n \delta_{-\log n}(y)$.

$$\sqrt{2\pi}\hat{\nu}(z) = \sum a_n e^{iz \log n} = \sum a_n n^{iz} = L(-iz; a_n)$$

which converges for $\Im z \geq 1/2$

$$T(a_n)h(\omega) = \widehat{g*\nu}(\omega + i/2) = L(1/2 - i\omega; a_n)h(\omega)$$

- For an operator $A: L^2[0,\infty) \to L^2[0,\infty)$, we write $\tilde{A} = wAw^{-1}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ for its conjugate by w.
- $Sf(x) = \frac{1}{x}f(\frac{1}{x})$ becomes $\hat{S}h(\omega) = h(-\omega)$.
- Assuming $\sum \frac{|a_n|}{\sqrt{n}} < \infty$, we get for $g \in L^2(\mathbb{R}, e^y dy)$

$$(uT(a_n)u^{-1}g)(y) = \sum a_n g(y + \log n) = g * \nu(y)$$

where $\nu(y) = \sum a_n \delta_{-\log n}(y)$.

$$\sqrt{2\pi}\hat{\nu}(z) = \sum a_n e^{iz \log n} = \sum a_n n^{iz} = L(-iz; a_n)$$

which converges for $\Im z \geq 1/2$

$$T(a_n)h(\omega) = \widehat{g*\nu}(\omega + i/2) = L(1/2 - i\omega; a_n)h(\omega)$$

- For an operator $A: L^2[0,\infty) \to L^2[0,\infty)$, we write $\tilde{A} = wAw^{-1}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ for its conjugate by w.
- $Sf(x) = \frac{1}{x} f(\frac{1}{x})$ becomes $\hat{S}h(\omega) = h(-\omega)$.
- Assuming $\sum \frac{|a_n|}{\sqrt{n}} < \infty$, we get for $g \in L^2(\mathbb{R}, e^y dy)$

$$(uT(a_n)u^{-1}g)(y) = \sum a_ng(y + \log n) = g * \nu(y)$$

where $\nu(y) = \sum a_n \delta_{-\log n}(y)$.

$$\sqrt{2\pi}\hat{\nu}(z) = \sum a_n e^{iz \log n} = \sum a_n n^{iz} = L(-iz; a_n)$$

which converges for $\Im z \geq 1/2$

$$T(a_n)h(\omega) = \widehat{g*\nu}(\omega + i/2) = L(1/2 - i\omega; a_n)h(\omega)$$

- For an operator $A: L^2[0,\infty) \to L^2[0,\infty)$, we write $\tilde{A} = wAw^{-1}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ for its conjugate by w.
- $Sf(x) = \frac{1}{x}f(\frac{1}{x})$ becomes $\hat{S}h(\omega) = h(-\omega)$.
- Assuming $\sum \frac{|a_n|}{\sqrt{n}} < \infty$, we get for $g \in L^2(\mathbb{R}, e^y dy)$

$$(uT(a_n)u^{-1}g)(y) = \sum a_ng(y + \log n) = g * \nu(y)$$

where $\nu(y) = \sum a_n \delta_{-\log n}(y)$.

$$\sqrt{2\pi}\hat{\nu}(z) = \sum_{n} a_n e^{iz \log n} = \sum_{n} a_n n^{iz} = L(-iz; a_n)$$

which converges for $\Im z \ge 1/2$.

$$T(a_n)h(\omega) = \widehat{g*\nu}(\omega + i/2) = L(1/2 - i\omega; a_n)h(\omega)$$

- For an operator $A: L^2[0,\infty) \to L^2[0,\infty)$, we write $\tilde{A} = wAw^{-1}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ for its conjugate by w.
- $Sf(x) = \frac{1}{x}f(\frac{1}{x})$ becomes $\hat{S}h(\omega) = h(-\omega)$.
- Assuming $\sum \frac{|a_n|}{\sqrt{n}} < \infty$, we get for $g \in L^2(\mathbb{R}, e^y dy)$

$$(uT(a_n)u^{-1}g)(y) = \sum a_ng(y + \log n) = g * \nu(y)$$

where $\nu(y) = \sum a_n \delta_{-\log n}(y)$.

$$\sqrt{2\pi}\hat{\nu}(z) = \sum_{n} a_n e^{iz \log n} = \sum_{n} a_n n^{iz} = L(-iz; a_n)$$

which converges for $\Im z \ge 1/2$.

$$T(a_n)h(\omega) = \widehat{g*\nu}(\omega + i/2) = L(1/2 - i\omega; a_n)h(\omega)$$

• The generalized Poisson summation formula becomes

$$L(1/2 - i\omega; a_n)\widetilde{\mathcal{F}(a_n)}h(\omega) = L(1/2 + i\omega; a_n)h(-\omega)$$

- **Theorem.** Assume $\sum |a_n| n^{-1/2} < \infty$, and $a_n \in e^{i\theta} \mathbb{R}$ for some fixed θ . Then
 - There exists a unitary involution $\mathcal{F}(a_n): L^2[0,\infty) \to L^2[0,\infty)$ satisfying the generalized PSF in operator form:
 - If for some $\epsilon > 0$, $\sum |a_n| n^{-1/2+\epsilon} < \infty$, then a bounded $\mathcal{F}(a_n)$ satisfying $T(a_n) \mathcal{F}(a_n) = ST(a_n)$ is unique.
- $\mathcal{F}(a_n)$ has the skew-diagonal form

$$\widetilde{\mathcal{F}(a_n)}h(\omega) = e^{2i(\arg L(1/2+i\omega;a_n)-\theta)}h(-\omega)$$

The generalized Poisson summation formula becomes

$$L(1/2 - i\omega; a_n)\widetilde{\mathcal{F}(a_n)}h(\omega) = L(1/2 + i\omega; a_n)h(-\omega)$$

- **Theorem.** Assume $\sum |a_n| n^{-1/2} < \infty$, and $a_n \in e^{i\theta} \mathbb{R}$ for some fixed θ . Then
 - **1** There exists a unitary involution $\mathcal{F}(a_n): L^2[0,\infty) \to L^2[0,\infty)$ satisfying the generalized PSF in operator form: $T(a_n)\mathcal{F}(a_n) = ST(a_n)$
 - 2 If for some $\epsilon > 0$, $\sum |a_n| n^{-1/2+\epsilon} < \infty$, then a bounded $\mathcal{F}(a_n)$ satisfying $T(a_n)\mathcal{F}(a_n) = ST(a_n)$ is unique.
- $\mathcal{F}(a_n)$ has the skew-diagonal form

$$\widetilde{\mathcal{F}(a_n)}h(\omega) = e^{2i(\arg L(1/2+i\omega;a_n)-\theta)}h(-\omega)$$

The generalized Poisson summation formula becomes

$$L(1/2 - i\omega; a_n)\widetilde{\mathcal{F}(a_n)}h(\omega) = L(1/2 + i\omega; a_n)h(-\omega)$$

- **Theorem.** Assume $\sum |a_n| n^{-1/2} < \infty$, and $a_n \in e^{i\theta} \mathbb{R}$ for some fixed θ . Then
 - **1** There exists a unitary involution $\mathcal{F}(a_n): L^2[0,\infty) \to L^2[0,\infty)$ satisfying the generalized PSF in operator form: $T(a_n)\mathcal{F}(a_n) = ST(a_n)$
 - 2 If for some $\epsilon > 0$, $\sum |a_n| n^{-1/2+\epsilon} < \infty$, then a bounded $\mathcal{F}(a_n)$ satisfying $T(a_n)\mathcal{F}(a_n) = ST(a_n)$ is unique.
- $\mathcal{F}(a_n)$ has the skew-diagonal form

$$\widetilde{\mathcal{F}(a_n)}h(\omega) = e^{2i(\arg L(1/2+i\omega;a_n)-\theta)}h(-\omega)$$

The generalized Poisson summation formula becomes

$$L(1/2 - i\omega; a_n)\widetilde{\mathcal{F}(a_n)}h(\omega) = L(1/2 + i\omega; a_n)h(-\omega)$$

- **Theorem.** Assume $\sum |a_n| n^{-1/2} < \infty$, and $a_n \in e^{i\theta} \mathbb{R}$ for some fixed θ . Then
 - **1** There exists a unitary involution $\mathcal{F}(a_n): L^2[0,\infty) \to L^2[0,\infty)$ satisfying the generalized PSF in operator form: $T(a_n)\mathcal{F}(a_n) = ST(a_n)$.
 - 2 If for some $\epsilon > 0$, $\sum |a_n| n^{-1/2+\epsilon} < \infty$, then a bounded $\mathcal{F}(a_n)$ satisfying $T(a_n)\mathcal{F}(a_n) = ST(a_n)$ is unique.
- $\mathcal{F}(a_n)$ has the skew-diagonal form

$$\widetilde{\mathcal{F}(a_n)}h(\omega) = e^{2i(\arg L(1/2+i\omega;a_n)-\theta)}h(-\omega)$$

The generalized Poisson summation formula becomes

$$L(1/2 - i\omega; a_n)\widetilde{\mathcal{F}(a_n)}h(\omega) = L(1/2 + i\omega; a_n)h(-\omega)$$

- **Theorem.** Assume $\sum |a_n| n^{-1/2} < \infty$, and $a_n \in e^{i\theta} \mathbb{R}$ for some fixed θ . Then
 - **1** There exists a unitary involution $\mathcal{F}(a_n): L^2[0,\infty) \to L^2[0,\infty)$ satisfying the generalized PSF in operator form: $T(a_n)\mathcal{F}(a_n) = ST(a_n)$.
 - ② If for some $\epsilon > 0$, $\sum |a_n| n^{-1/2+\epsilon} < \infty$, then a bounded $\mathcal{F}(a_n)$ satisfying $T(a_n)\mathcal{F}(a_n) = ST(a_n)$ is unique.
- $\mathcal{F}(a_n)$ has the skew-diagonal form

$$\widetilde{\mathcal{F}(a_n)}h(\omega) = e^{2i(\arg L(1/2+i\omega;a_n)-\theta)}h(-\omega)$$

The generalized Poisson summation formula becomes

$$L(1/2 - i\omega; a_n)\widetilde{\mathcal{F}(a_n)}h(\omega) = L(1/2 + i\omega; a_n)h(-\omega)$$

- **Theorem.** Assume $\sum |a_n| n^{-1/2} < \infty$, and $a_n \in e^{i\theta} \mathbb{R}$ for some fixed θ . Then
 - **1** There exists a unitary involution $\mathcal{F}(a_n): L^2[0,\infty) \to L^2[0,\infty)$ satisfying the generalized PSF in operator form: $T(a_n)\mathcal{F}(a_n) = ST(a_n)$.
 - ② If for some $\epsilon > 0$, $\sum |a_n| n^{-1/2+\epsilon} < \infty$, then a bounded $\mathcal{F}(a_n)$ satisfying $T(a_n)\mathcal{F}(a_n) = ST(a_n)$ is unique.
- $\mathcal{F}(a_n)$ has the skew-diagonal form

$$\widetilde{\mathcal{F}(a_n)}h(\omega) = e^{2i(\arg L(1/2+i\omega;a_n)-\theta)}h(-\omega)$$

The generalized Poisson summation formula becomes

$$L(1/2 - i\omega; a_n)\widetilde{\mathcal{F}(a_n)}h(\omega) = L(1/2 + i\omega; a_n)h(-\omega)$$

- **Theorem.** Assume $\sum |a_n| n^{-1/2} < \infty$, and $a_n \in e^{i\theta} \mathbb{R}$ for some fixed θ . Then
 - **1** There exists a unitary involution $\mathcal{F}(a_n): L^2[0,\infty) \to L^2[0,\infty)$ satisfying the generalized PSF in operator form: $T(a_n)\mathcal{F}(a_n) = ST(a_n)$.
 - ② If for some $\epsilon > 0$, $\sum |a_n| n^{-1/2+\epsilon} < \infty$, then a bounded $\mathcal{F}(a_n)$ satisfying $T(a_n)\mathcal{F}(a_n) = ST(a_n)$ is unique.
- $\mathcal{F}(a_n)$ has the skew-diagonal form

$$\widetilde{\mathcal{F}(a_n)}h(\omega) = e^{2i(\arg L(1/2+i\omega;a_n)-\theta)}h(-\omega)$$

- Denote Df = df/dx, and $Xf = x \cdot f$. The Fourier transform satisfies for nice functions f the identity $\mathcal{F}(Df) = iX\mathcal{F}(f)$.
- For an even f, Df is odd. Thus we shouldn't expect to have such a formula in our setting.
- However, for an even function we can also write $\mathcal{F}(Xf) = iD\mathcal{F}(f)$. Those can be combined together into (\star) $XD\mathcal{F} + \mathcal{F}XD + \mathcal{F} = 0$, where \mathcal{F} is applied only to even functions.
- Denote B = i(XD + Id/2) a symmetric operator in any reasonable domain. Then (\star) reads $\mathcal{F}B + B\mathcal{F} = 0$.

- Denote Df = df/dx, and $Xf = x \cdot f$. The Fourier transform satisfies for nice functions f the identity $\mathcal{F}(Df) = iX\mathcal{F}(f)$.
- For an even f, Df is odd. Thus we shouldn't expect to have such a formula in our setting.
- However, for an even function we can also write $\mathcal{F}(Xf) = iD\mathcal{F}(f)$. Those can be combined together into (\star) $XD\mathcal{F} + \mathcal{F}XD + \mathcal{F} = 0$, where \mathcal{F} is applied only to even functions.
- Denote B = i(XD + Id/2) a symmetric operator in any reasonable domain. Then (\star) reads $\mathcal{F}B + B\mathcal{F} = 0$.

- Denote Df = df/dx, and $Xf = x \cdot f$. The Fourier transform satisfies for nice functions f the identity $\mathcal{F}(Df) = iX\mathcal{F}(f)$.
- For an even f, Df is odd. Thus we shouldn't expect to have such a formula in our setting.
- However, for an even function we can also write $\mathcal{F}(Xf) = iD\mathcal{F}(f)$. Those can be combined together into (\star) $XD\mathcal{F} + \mathcal{F}XD + \mathcal{F} = 0$, where \mathcal{F} is applied only to even functions.
- Denote B = i(XD + Id/2) a symmetric operator in any reasonable domain. Then (\star) reads $\mathcal{F}B + B\mathcal{F} = 0$.

- Denote Df = df/dx, and $Xf = x \cdot f$. The Fourier transform satisfies for nice functions f the identity $\mathcal{F}(Df) = iX\mathcal{F}(f)$.
- For an even f, Df is odd. Thus we shouldn't expect to have such a formula in our setting.
- However, for an even function we can also write $\mathcal{F}(Xf) = iD\mathcal{F}(f)$. Those can be combined together into (\star) $XD\mathcal{F} + \mathcal{F}XD + \mathcal{F} = 0$, where \mathcal{F} is applied only to even functions.
- Denote B = i(XD + Id/2) a symmetric operator in any reasonable domain. Then (\star) reads $\mathcal{F}B + B\mathcal{F} = 0$.

- **Theorem.** Assume $a_n \in \mathbb{R}$ satisfies $\sum |a_n| n^{\epsilon} < \infty$ for some $\epsilon > 0$, and the convolution inverse (b_n) satisfies $\sum |b_n| / \sqrt{n} < \infty$.
- Note that

$$\frac{L(1-z;a_n)}{L(z;a_n)}$$

admits an analytic extension to the strip $-\epsilon < \Re z < 1 + \epsilon$.

• Assume further that there exists N such that

$$|L(1-z;a_n)/L(z;a_n)| \le C|y|^N$$

• Let $f \in S_0$, where

$$S_0 = \{ f \in C^{\infty} : \sup |x|^n | f^{(k)}(x) | < \infty \ \forall k \ge 0 \ , \forall n \in \mathbb{Z} \}$$

- **Theorem.** Assume $a_n \in \mathbb{R}$ satisfies $\sum |a_n| n^{\epsilon} < \infty$ for some $\epsilon > 0$, and the convolution inverse (b_n) satisfies $\sum |b_n| / \sqrt{n} < \infty$.
- Note that

$$\frac{L(1-z;a_n)}{L(z;a_n)}$$

admits an analytic extension to the strip $-\epsilon < \Re z < 1 + \epsilon$.

Assume further that there exists N such that

$$|L(1-z;a_n)/L(z;a_n)| \le C|y|^N$$

• Let $f \in S_0$, where

$$S_0 = \{ f \in C^{\infty} : \sup |x|^n | f^{(k)}(x) | < \infty \ \forall k \ge 0 \ , \forall n \in \mathbb{Z} \}$$

- **Theorem.** Assume $a_n \in \mathbb{R}$ satisfies $\sum |a_n| n^{\epsilon} < \infty$ for some $\epsilon > 0$, and the convolution inverse (b_n) satisfies $\sum |b_n|/\sqrt{n} < \infty$.
- Note that

$$\frac{L(1-z;a_n)}{L(z;a_n)}$$

admits an analytic extension to the strip $-\epsilon < \Re z < 1 + \epsilon$.

• Assume further that there exists N such that

$$|L(1-z;a_n)/L(z;a_n)| \leq C|y|^N$$

• Let $f \in S_0$, where

$$S_0 = \{ f \in C^{\infty} : \sup |x|^n | f^{(k)}(x) | < \infty \ \forall k \ge 0 \ , \forall n \in \mathbb{Z} \}$$

- **Theorem.** Assume $a_n \in \mathbb{R}$ satisfies $\sum |a_n| n^{\epsilon} < \infty$ for some $\epsilon > 0$, and the convolution inverse (b_n) satisfies $\sum |b_n|/\sqrt{n} < \infty$.
- Note that

$$\frac{L(1-z;a_n)}{L(z;a_n)}$$

admits an analytic extension to the strip $-\epsilon < \Re z < 1 + \epsilon$.

• Assume further that there exists N such that

$$|L(1-z;a_n)/L(z;a_n)| \le C|y|^N$$

• Let $f \in \mathcal{S}_0$, where

$$S_0 = \{ f \in C^{\infty} : \sup |x|^n |f^{(k)}(x)| < \infty \ \forall k \ge 0 \ \forall n \in \mathbb{Z} \}$$

- **Theorem.** Assume $a_n \in \mathbb{R}$ satisfies $\sum |a_n| n^{\epsilon} < \infty$ for some $\epsilon > 0$, and the convolution inverse (b_n) satisfies $\sum |b_n|/\sqrt{n} < \infty$.
- Note that

$$\frac{L(1-z;a_n)}{L(z;a_n)}$$

admits an analytic extension to the strip $-\epsilon < \Re z < 1 + \epsilon$.

Assume further that there exists N such that

$$|L(1-z;a_n)/L(z;a_n)| \leq C|y|^N$$

• Let $f \in \mathcal{S}_0$, where

$$S_0 = \{ f \in C^{\infty} : \sup |x|^n |f^{(k)}(x)| < \infty \ \forall k \ge 0 \ , \forall n \in \mathbb{Z} \}$$

• It is not hard to see that the general form of $\mathcal{F}(a_n)$ with $\sum |a_n|/\sqrt{n} < \infty$ is given by

$$\mathcal{F}(a_n)f(x) = \int_0^\infty A(xs)f(s)ds$$

- For example, for $(a_n) = (\delta_n) = 1, 0, 0, ...$ we get $A(s) = \delta_1(s)$
- Though not fitting into our discussion, the ordinary Fourier transform corresponds to $a_n = 1, 1, 1, ...$ and $A(s) = 2 \cos s$.
- Any such operator formally satisfies the identity $\mathcal{F}B + B\mathcal{F} = 0$. The difficulty lies in verifying that $\mathcal{F}f$ is sufficiently regular for regular functions f.

• It is not hard to see that the general form of $\mathcal{F}(a_n)$ with $\sum |a_n|/\sqrt{n} < \infty$ is given by

$$\mathcal{F}(a_n)f(x) = \int_0^\infty A(xs)f(s)ds$$

- ullet For example, for $(a_n)=(\delta_n)=1,0,0,...$ we get $A(s)=\delta_1(s)$
- Though not fitting into our discussion, the ordinary Fourier transform corresponds to $a_n = 1, 1, 1, ...$ and $A(s) = 2 \cos s$.
- Any such operator formally satisfies the identity $\mathcal{F}B + B\mathcal{F} = 0$. The difficulty lies in verifying that $\mathcal{F}f$ is sufficiently regular for regular functions f.

• It is not hard to see that the general form of $\mathcal{F}(a_n)$ with $\sum |a_n|/\sqrt{n} < \infty$ is given by

$$\mathcal{F}(a_n)f(x) = \int_0^\infty A(xs)f(s)ds$$

- ullet For example, for $(a_n)=(\delta_n)=1,0,0,...$ we get $A(s)=\delta_1(s)$
- Though not fitting into our discussion, the ordinary Fourier transform corresponds to $a_n = 1, 1, 1, ...$ and $A(s) = 2 \cos s$.
- Any such operator formally satisfies the identity $\mathcal{F}B + B\mathcal{F} = 0$. The difficulty lies in verifying that $\mathcal{F}f$ is sufficiently regular for regular functions f.

• It is not hard to see that the general form of $\mathcal{F}(a_n)$ with $\sum |a_n|/\sqrt{n} < \infty$ is given by

$$\mathcal{F}(a_n)f(x) = \int_0^\infty A(xs)f(s)ds$$

- For example, for $(a_n) = (\delta_n) = 1, 0, 0, ...$ we get $A(s) = \delta_1(s)$
- Though not fitting into our discussion, the ordinary Fourier transform corresponds to $a_n = 1, 1, 1, ...$ and $A(s) = 2 \cos s$.
- Any such operator formally satisfies the identity $\mathcal{F}B + B\mathcal{F} = 0$. The difficulty lies in verifying that $\mathcal{F}f$ is sufficiently regular for regular functions f.

A family of unitary operators

- Let us determine when the operators $T(a_n)$ are unitary.
- Call an operator T C-unitary if $\frac{1}{C}T$ is unitary.
- Corollary. Assume a_n satisfies $\sum |a_n| n^{-1/2} < \infty$. Then the following are equivalent:
 - (a) $|L(1/2 + ix; a_n)| = C$
 - (b) $T(a_n)$ is C-unitary on $L^2[0,\infty]$
 - (c) (a_n) satisfies

$$\sum_{k=1}^{\infty} \frac{a_{m_0 k} \overline{a_{n_0 k}}}{k} = \begin{cases} C^2, & (m_0, n_0) = (1, 1) \\ 0, & \gcd(m_0, n_0) = 1, m_0 \neq n_0 \end{cases}$$
(3)

A family of unitary operators

- Let us determine when the operators $T(a_n)$ are unitary.
- Call an operator T C-unitary if $\frac{1}{C}T$ is unitary.
- Corollary. Assume a_n satisfies $\sum |a_n| n^{-1/2} < \infty$. Then the following are equivalent:
 - (a) $|L(1/2 + ix; a_n)| = C$
 - (b) $T(a_n)$ is C-unitary on $L^2[0,\infty]$
 - (c) (a_n) satisfies

$$\sum_{k=1}^{\infty} \frac{a_{m_0 k} \overline{a_{n_0 k}}}{k} = \begin{cases} C^2, & (m_0, n_0) = (1, 1) \\ 0, & \gcd(m_0, n_0) = 1, m_0 \neq n_0 \end{cases}$$
(3)

A family of unitary operators

- Let us determine when the operators $T(a_n)$ are unitary.
- Call an operator T C-unitary if $\frac{1}{C}T$ is unitary.
- Corollary. Assume a_n satisfies $\sum |a_n| n^{-1/2} < \infty$. Then the following are equivalent:
 - (a) $|L(1/2 + ix; a_n)| = C$
 - (b) $T(a_n)$ is C-unitary on $L^2[0,\infty)$
 - (c) (a_n) satisfies

$$\sum_{k=1}^{\infty} \frac{a_{m_0 k} \overline{a_{n_0 k}}}{k} = \begin{cases} C^2, & (m_0, n_0) = (1, 1) \\ 0, & \gcd(m_0, n_0) = 1, m_0 \neq n_0 \end{cases}$$
(3)

Unitary operators - examples

- A curious example of such an operator is $T(a_n)f(x) = f(x) + f(2x) f(4x) + f(8x) f(16x) + ...$ associated with $a_n = 1, 1, 0, -1, 0, 0, 0, 1, ...$ and $L(s; a_n) = \frac{2+2^s}{1+2^s}$. $T(a_n)$ is $\sqrt{2}$ -unitary on $L^2[0, \infty)$.
- Note that in this case, the convolution-inverse of a_n is

$$(b_n) = (a_n)^{-1} = 1, -1, 0, 2, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 8, \dots$$

And so the inverse of $T(a_n)$ is not $T(b_n)$ (which is unbounded) but rather $T(a_n)^{-1}f = T(a_n)^*f = \sum_{n=1}^{\infty} \frac{a_n}{n} f\left(\frac{x}{n}\right)$

A similar example is

$$Tf(x) = f(x) - f(2x) - f(4x) - f(8x) - \dots$$

Unitary operators - examples

- A curious example of such an operator is $T(a_n)f(x) = f(x) + f(2x) f(4x) + f(8x) f(16x) + ...$ associated with $a_n = 1, 1, 0, -1, 0, 0, 0, 1, ...$ and $L(s; a_n) = \frac{2+2^s}{1+2^s}$. $T(a_n)$ is $\sqrt{2}$ -unitary on $L^2[0, \infty)$.
- Note that in this case, the convolution-inverse of a_n is

$$(b_n) = (a_n)^{-1} = 1, -1, 0, 2, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 8, \dots$$

And so the inverse of $T(a_n)$ is not $T(b_n)$ (which is unbounded) but rather $T(a_n)^{-1}f = T(a_n)^*f = \sum_{n=1}^{\infty} \frac{a_n}{n} f\left(\frac{x}{n}\right)$

A similar example is

$$Tf(x) = f(x) - f(2x) - f(4x) - f(8x) - \dots$$

Unitary operators - examples

- A curious example of such an operator is $T(a_n)f(x) = f(x) + f(2x) f(4x) + f(8x) f(16x) + ...$ associated with $a_n = 1, 1, 0, -1, 0, 0, 0, 1, ...$ and $L(s; a_n) = \frac{2+2^s}{1+2^s}$. $T(a_n)$ is $\sqrt{2}$ -unitary on $L^2[0, \infty)$.
- Note that in this case, the convolution-inverse of a_n is

$$(b_n) = (a_n)^{-1} = 1, -1, 0, 2, 0, 0, 0, -4, 0, 0, 0, 0, 0, 0, 0, 8, \dots$$

And so the inverse of $T(a_n)$ is not $T(b_n)$ (which is unbounded) but rather $T(a_n)^{-1}f = T(a_n)^*f = \sum_{n=1}^{\infty} \frac{a_n}{n} f\left(\frac{x}{n}\right)$

A similar example is

$$Tf(x) = f(x) - f(2x) - f(4x) - f(8x) - ...$$

Unitary operators - more examples

• For a natural number m, take $b_{m^k}^{(m)}=\left(\frac{m}{2}\right)^{k/2}a_{2^k}$ and $b_n^{(m)}=0$ for $n\neq m^k$. Then

$$T_m f(x) = \sum b_n^{(m)} f(nx)$$

is again a $\sqrt{2}$ -isometry.

• For unitary $T(a_n)$, $T(b_n)$, we have a new unitary operator $T(a_n * b_n) = T(a_n)T(b_n)$. Thus we can construct sequences a_n having larger support with $T(a_n)$ C-unitary.

Unitary operators - more examples

• For a natural number m, take $b_{m^k}^{(m)}=\left(\frac{m}{2}\right)^{k/2}a_{2^k}$ and $b_n^{(m)}=0$ for $n\neq m^k$. Then

$$T_m f(x) = \sum b_n^{(m)} f(nx)$$

is again a $\sqrt{2}$ -isometry.

• For unitary $T(a_n)$, $T(b_n)$, we have a new unitary operator $T(a_n * b_n) = T(a_n)T(b_n)$. Thus we can construct sequences a_n having larger support with $T(a_n)$ C-unitary.

The end

Thank you!