Poisson Summation Formula Uniquely Characterizes the Fourier Transform

Dmitry Faifman
Tel-Aviv University

September 16, 2010

The Poisson summation formula

Some conventions and the characterization problem

The Poisson Summation Formula

- $f: \mathbb{R} \rightarrow \mathbb{C}, f \in L^{2}(\mathbb{R})$
- Fourier Transform: $\mathcal{F} f(\omega)=\int_{-\infty}^{\infty} f(t) \exp (-2 \pi i \omega t) d t$
- Assume f is sufficiently smooth and fast decaying (for example, $f \in \mathcal{S}$). Then we have
Poisson summation formula

- A uniqueness result:

Theorem (Cordoba 88'). Suppose $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are two discrete sets in \mathbb{R}^{n}, and for all $f \in \mathcal{S}, \sum_{k} f\left(x_{k}\right)=\sum_{k} \mathcal{F} f\left(y_{k}\right)$. Then $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are dual lattices, i.e. there is $A \in S L(n)$ such that $\left\{x_{k}\right\}=A\left(\mathbb{Z}^{n}\right)$ and $\left\{y_{k}\right\}=\left(A^{*}\right)^{-1}\left(\mathbb{Z}^{n}\right)$.

The Poisson summation formula

The Poisson Summation Formula

- $f: \mathbb{R} \rightarrow \mathbb{C}, f \in L^{2}(\mathbb{R})$
- Fourier Transform: $\mathcal{F} f(\omega)=\int_{-\infty}^{\infty} f(t) \exp (-2 \pi i \omega t) d t$
- Assume f is sufficiently smooth and fast decaying (for example, $f \in \mathcal{S}$). Then we have
Poisson summation formula

- A uniqueness result:

Theorem (Cordoba 88'). Suppose $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are two discrete sets in \mathbb{R}^{n}, and for all $f \in \mathcal{S}, \sum_{k} f\left(x_{k}\right)=\sum_{k} \mathcal{F} f\left(y_{k}\right)$. Then $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are dual lattices, i.e. there is $A \in S L(n)$ such that $\left\{x_{k}\right\}=A\left(\mathbb{Z}^{n}\right)$ and $\left\{y_{k}\right\}=\left(A^{*}\right)^{-1}\left(\mathbb{Z}^{n}\right)$

The Poisson Summation Formula

- $f: \mathbb{R} \rightarrow \mathbb{C}, f \in L^{2}(\mathbb{R})$
- Fourier Transform: $\mathcal{F} f(\omega)=\int_{-\infty}^{\infty} f(t) \exp (-2 \pi i \omega t) d t$
- Assume f is sufficiently smooth and fast decaying (for example, $f \in \mathcal{S}$). Then we have
Poisson summation formula:

$$
\sum_{n=-\infty}^{\infty} f(n)=\sum_{n=-\infty}^{\infty} \mathcal{F} f(n)
$$

- A uniqueness result:

Theorem (Cordoba 88'). Suppose $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are two discrete
sets in \mathbb{R}^{n}, and for all $f \in \mathcal{S}, \sum_{k} f\left(x_{k}\right)=\sum_{k} \mathcal{F} f\left(y_{k}\right)$. Then $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are dual lattices, i.e. there is $A \in S L(n)$ such that
\square

The Poisson Summation Formula

- $f: \mathbb{R} \rightarrow \mathbb{C}, f \in L^{2}(\mathbb{R})$
- Fourier Transform: $\mathcal{F} f(\omega)=\int_{-\infty}^{\infty} f(t) \exp (-2 \pi i \omega t) d t$
- Assume f is sufficiently smooth and fast decaying (for example, $f \in \mathcal{S}$). Then we have
Poisson summation formula:

$$
\sum_{n=-\infty}^{\infty} f(n)=\sum_{n=-\infty}^{\infty} \mathcal{F} f(n)
$$

- A uniqueness result:

Theorem (Cordoba 88'). Suppose $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are two discrete sets in \mathbb{R}^{n}, and for all $f \in \mathcal{S}, \sum_{k} f\left(x_{k}\right)=\sum_{k} \mathcal{F} f\left(y_{k}\right)$. Then $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are dual lattices, i.e. there is $A \in S L(n)$ such that $\left\{x_{k}\right\}=A\left(\mathbb{Z}^{n}\right)$ and $\left\{y_{k}\right\}=\left(A^{*}\right)^{-1}\left(\mathbb{Z}^{n}\right)$.

The Poisson Summation Formula

- $f: \mathbb{R} \rightarrow \mathbb{C}, f \in L^{2}(\mathbb{R})$
- Fourier Transform: $\mathcal{F} f(\omega)=\int_{-\infty}^{\infty} f(t) \exp (-2 \pi i \omega t) d t$
- Assume f is sufficiently smooth and fast decaying (for example, $f \in \mathcal{S}$). Then we have
Poisson summation formula:

$$
\sum_{n=-\infty}^{\infty} f(n)=\sum_{n=-\infty}^{\infty} \mathcal{F} f(n)
$$

- A uniqueness result:

Theorem (Cordoba 88'). Suppose $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are two discrete sets in \mathbb{R}^{n}, and for all $f \in \mathcal{S}, \sum_{k} f\left(x_{k}\right)=\sum_{k} \mathcal{F} f\left(y_{k}\right)$. Then $\left\{x_{k}\right\}$ and $\left\{y_{k}\right\}$ are dual lattices, i.e. there is $A \in S L(n)$ such that $\left\{x_{k}\right\}=A\left(\mathbb{Z}^{n}\right)$ and $\left\{y_{k}\right\}=\left(A^{*}\right)^{-1}\left(\mathbb{Z}^{n}\right)$.

- For $n=1$, there is only one possibility: $\left\{x_{k}\right\}=\left\{y_{k}\right\}=\mathbb{Z}$

Some conventions

- $f(-x)=-f(x) \Rightarrow \mathcal{F} f(-\omega)=-\mathcal{F} f(\omega)$

Thus $\sum_{n=-\infty}^{\infty} f(n)=\sum_{n=-\infty}^{\infty} \mathcal{F} f(n)$ is nontrivial only for even functions, and we consider from now on $f \in L^{2}[0, \infty)$.

- Assume further that $f(0)=\int_{0}^{\infty} f(t) d t=0$.
PSF now reads: $\sum_{n=1}^{\infty} f(n)=\sum_{n=1}^{\infty} \mathcal{F} f(n)$
- Introduce a scaling factor $x>0$. Then PSF gives

- Question (V. Milman): Does relation (1) uniquely characterize the Fourier Transform?

Some conventions

- $f(-x)=-f(x) \Rightarrow \mathcal{F} f(-\omega)=-\mathcal{F} f(\omega)$

Thus $\sum_{n=-\infty}^{\infty} f(n)=\sum_{n=-\infty}^{\infty} \mathcal{F} f(n)$ is nontrivial only for even functions, and we consider from now on $f \in L^{2}[0, \infty)$.

- Assume further that $f(0)=\int_{0}^{\infty} f(t) d t=0$. PSF now reads: $\sum_{n=1}^{\infty} f(n)=\sum_{n=1}^{\infty} \mathcal{F} f(n)$
- Introduce a scaling factor $x>0$. Then PSF gives

- Question (V. Milman): Does relation (1) uniquely characterize the Fourier Transform?

Some conventions

- $f(-x)=-f(x) \Rightarrow \mathcal{F} f(-\omega)=-\mathcal{F} f(\omega)$

Thus $\sum_{n=-\infty}^{\infty} f(n)=\sum_{n=-\infty}^{\infty} \mathcal{F} f(n)$ is nontrivial only for even functions, and we consider from now on $f \in L^{2}[0, \infty)$.

- Assume further that $f(0)=\int_{0}^{\infty} f(t) d t=0$.

PSF now reads: $\sum_{n=1}^{\infty} f(n)=\sum_{n=1}^{\infty} \mathcal{F} f(n)$

- Introduce a scaling factor $x>0$. Then PSF gives

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathcal{F} f(n x)=\frac{1}{x} \sum_{n=1}^{\infty} f\left(\frac{n}{x}\right) \tag{1}
\end{equation*}
$$

- Question (V. Milman): Does relation (1) uniquely characterize the Fourier Transform?

Some conventions

- $f(-x)=-f(x) \Rightarrow \mathcal{F} f(-\omega)=-\mathcal{F} f(\omega)$

Thus $\sum_{n=-\infty}^{\infty} f(n)=\sum_{n=-\infty}^{\infty} \mathcal{F} f(n)$ is nontrivial only for even functions, and we consider from now on $f \in L^{2}[0, \infty)$.

- Assume further that $f(0)=\int_{0}^{\infty} f(t) d t=0$.

PSF now reads: $\sum_{n=1}^{\infty} f(n)=\sum_{n=1}^{\infty} \mathcal{F} f(n)$

- Introduce a scaling factor $x>0$. Then PSF gives

$$
\begin{equation*}
\sum_{n=1}^{\infty} \mathcal{F} f(n x)=\frac{1}{x} \sum_{n=1}^{\infty} f\left(\frac{n}{x}\right) \tag{1}
\end{equation*}
$$

- Question (V. Milman): Does relation (1) uniquely characterize the Fourier Transform?

A Uniqueness Theorem

- Theorem. Assume $f \in C^{2}(0, \infty)$ and $f, f^{\prime}, f^{\prime \prime} \in L_{1}[0, \infty)$. Also, assume $f(0)=\int_{0}^{\infty} f=0$. Then $g=\mathcal{F} f$ is the unique $C(0, \infty)$ function satisfying
(a) $g(x)=O\left(x^{-1-\epsilon}\right), x \rightarrow \infty$ for some $\epsilon>0$
(b) $\sum_{n=1}^{\infty} g(n x)=\frac{1}{x} \sum_{n=1}^{\infty} f(n / x)$.

The Poisson summation formula

A uniqueness theorem Sequences Some operators on $L^{2}[0, \infty)$ Proof of uniqueness theorem Davenport's theorem

Sequences

- Consider the space of sequences $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$.
- Associate to every sequence $\left(a_{n}\right)$ its Dirichlet series

- Given two sequences a_{n}, b_{n}, their convolution is

- $L\left(s ; a_{n} * b_{n}\right)=L\left(s ; a_{n}\right) L\left(s ; b_{n}\right)$
- $\delta_{n}=1,0,0,0, \ldots \Leftrightarrow L\left(s ; \delta_{n}\right)=1$ is the unit element in the ring of sequences with convolution.
- $\left(a_{n}\right)$ is invertible precisely if $a_{1} \neq 0$

The Poisson summation formula

A uniqueness theorem Sequences
Some operators on $L^{2}[0, \infty)$
Proof of uniqueness theorem
Davenport's theorem

Sequences

- Consider the space of sequences $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$.
- Associate to every sequence $\left(a_{n}\right)$ its Dirichlet series

$$
L\left(s ; a_{n}\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

- Given two sequences a_{n}, b_{n}, their convolution is

- $L\left(s ; a_{n} * b_{n}\right)=L\left(s ; a_{n}\right) L\left(s ; b_{n}\right)$
- $\delta_{n}=1,0,0,0, \ldots \Leftrightarrow L\left(s ; \delta_{n}\right)=1$ is the unit element in the ring of
sequences with convolution
- $\left(a_{n}\right)$ is invertible precisely if $a_{1} \neq 0$.

Sequences

- Consider the space of sequences $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$.
- Associate to every sequence $\left(a_{n}\right)$ its Dirichlet series

$$
L\left(s ; a_{n}\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

- Given two sequences a_{n}, b_{n}, their convolution is

$$
(a * b)_{k}=\sum_{m n=k} a_{m} b_{n}
$$

- $L\left(s ; a_{n} * b_{n}\right)=L\left(s ; a_{n}\right) L\left(s ; b_{n}\right)$
- $\delta_{n}=1,0,0,0, \ldots \Leftrightarrow L\left(s ; \delta_{n}\right)=1$ is the unit element in the ring of
sequences with convolution.
- $\left(a_{n}\right)$ is invertible precisely if $a_{1} \neq 0$.

Sequences

- Consider the space of sequences $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$.
- Associate to every sequence $\left(a_{n}\right)$ its Dirichlet series

$$
L\left(s ; a_{n}\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

- Given two sequences a_{n}, b_{n}, their convolution is

$$
(a * b)_{k}=\sum_{m n=k} a_{m} b_{n}
$$

- $L\left(s ; a_{n} * b_{n}\right)=L\left(s ; a_{n}\right) L\left(s ; b_{n}\right)$
sequences with convolution.
- $\left(a_{n}\right)$ is invertible precisely if $a_{1} \neq 0$.

Sequences

- Consider the space of sequences $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$.
- Associate to every sequence $\left(a_{n}\right)$ its Dirichlet series

$$
L\left(s ; a_{n}\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

- Given two sequences a_{n}, b_{n}, their convolution is

$$
(a * b)_{k}=\sum_{m n=k} a_{m} b_{n}
$$

- $L\left(s ; a_{n} * b_{n}\right)=L\left(s ; a_{n}\right) L\left(s ; b_{n}\right)$
- $\delta_{n}=1,0,0,0, \ldots \Leftrightarrow L\left(s ; \delta_{n}\right)=1$ is the unit element in the ring of sequences with convolution.

Sequences

- Consider the space of sequences $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$.
- Associate to every sequence $\left(a_{n}\right)$ its Dirichlet series

$$
L\left(s ; a_{n}\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}
$$

- Given two sequences a_{n}, b_{n}, their convolution is

$$
(a * b)_{k}=\sum_{m n=k} a_{m} b_{n}
$$

- $L\left(s ; a_{n} * b_{n}\right)=L\left(s ; a_{n}\right) L\left(s ; b_{n}\right)$
- $\delta_{n}=1,0,0,0, \ldots \Leftrightarrow L\left(s ; \delta_{n}\right)=1$ is the unit element in the ring of sequences with convolution.
- $\left(a_{n}\right)$ is invertible precisely if $a_{1} \neq 0$.

The Poisson summation formula

A uniqueness theorem Sequences Some operators on $L^{2}[0, \infty)$ Proof of uniqueness theorem Davenport's theorem

Some operators on $L^{2}[0, \infty)$

- For a sequence $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ define

$$
T\left(a_{n}\right) f(x)=\sum_{n=1}^{\infty} a_{n} f(n x)
$$

- $T\left(a_{n}\right): L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ is generally an unbounded operator.
- When all series involved are absolutely convergent,

- Define $S: L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ by $S f(x)=\frac{1}{x} f\left(\frac{1}{x}\right)$
- S is a unitary involution: $\|S f\|=\|f\|$ and $S=S^{*}=S^{-1}$
- Let $e_{n}=1, n \geq 1$. Then Poisson's formula $\sum_{n=1}^{\infty} \mathcal{F} f(n x)=\frac{1}{x} \sum_{n=1}^{\infty} f\left(\frac{n}{x}\right)$ can be written as
$T\left(e_{n}\right) \mathcal{F} f=S T\left(e_{n}\right) f$

Some operators on $L^{2}[0, \infty)$

- For a sequence $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ define

$$
T\left(a_{n}\right) f(x)=\sum_{n=1}^{\infty} a_{n} f(n x)
$$

- $T\left(a_{n}\right): L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ is generally an unbounded operator.
- When all series involved are absolutely convergent,

- S is a unitary involution
- Let $e_{n}=1, n \geq 1$. Then P oisson's formula $\sum_{n=1}^{\infty} \mathcal{F} f(n x)=\frac{1}{x} \sum_{n=1}^{\infty} f\left(\frac{n}{x}\right)$ can be written as
$T\left(e_{n}\right) \mathcal{F} f=S T\left(e_{n}\right) f$

A uniqueness theorem

Some operators on $L^{2}[0, \infty)$

- For a sequence $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ define

$$
T\left(a_{n}\right) f(x)=\sum_{n=1}^{\infty} a_{n} f(n x)
$$

- $T\left(a_{n}\right): L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ is generally an unbounded operator.
- When all series involved are absolutely convergent, $T\left(a_{n} * b_{n}\right) f=T\left(a_{n}\right) T\left(b_{n}\right) f$.

A uniqueness theorem

Some operators on $L^{2}[0, \infty)$

- For a sequence $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ define

$$
T\left(a_{n}\right) f(x)=\sum_{n=1}^{\infty} a_{n} f(n x)
$$

- $T\left(a_{n}\right): L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ is generally an unbounded operator.
- When all series involved are absolutely convergent, $T\left(a_{n} * b_{n}\right) f=T\left(a_{n}\right) T\left(b_{n}\right) f$.
- Define $S: L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ by $S f(x)=\frac{1}{x} f\left(\frac{1}{x}\right)$
- S is a unitary involution
- Let $e_{n}=1, n \geq 1$. Then Poisson's formula

$T\left(e_{n}\right) \mathcal{F} f=S T\left(e_{n}\right) f$

A uniqueness theorem

Some operators on $L^{2}[0, \infty)$

- For a sequence $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ define

$$
T\left(a_{n}\right) f(x)=\sum_{n=1}^{\infty} a_{n} f(n x)
$$

- $T\left(a_{n}\right): L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ is generally an unbounded operator.
- When all series involved are absolutely convergent, $T\left(a_{n} * b_{n}\right) f=T\left(a_{n}\right) T\left(b_{n}\right) f$.
- Define $S: L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ by $S f(x)=\frac{1}{x} f\left(\frac{1}{x}\right)$
- S is a unitary involution: $\|S f\|=\|f\|$ and $S=S^{*}=S^{-1}$.

A uniqueness theorem

Some operators on $L^{2}[0, \infty)$

- For a sequence $\left\{a_{n}\right\}_{n=1}^{\infty} \subset \mathbb{C}$ define

$$
T\left(a_{n}\right) f(x)=\sum_{n=1}^{\infty} a_{n} f(n x)
$$

- $T\left(a_{n}\right): L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ is generally an unbounded operator.
- When all series involved are absolutely convergent, $T\left(a_{n} * b_{n}\right) f=T\left(a_{n}\right) T\left(b_{n}\right) f$.
- Define $S: L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ by $S f(x)=\frac{1}{x} f\left(\frac{1}{x}\right)$
- S is a unitary involution: $\|S f\|=\|f\|$ and $S=S^{*}=S^{-1}$.
- Let $e_{n}=1, n \geq 1$. Then Poisson's formula $\sum_{n=1}^{\infty} \mathcal{F} f(n x)=\frac{1}{x} \sum_{n=1}^{\infty} f\left(\frac{n}{x}\right)$ can be written as

$$
T\left(e_{n}\right) \mathcal{F} f=S T\left(e_{n}\right) f
$$

The Poisson summation formula

A uniqueness theorem

Proof of uniqueness theorem

- Recall the Möbius function

$$
\mu(n)= \begin{cases}(-1)^{\sharp\{p \text { prime } \mid p \text { divides } n\}}, & n \text { square-free } \\ 0, & d^{2} \mid n\end{cases}
$$

- For $e_{n}=1$, $e * \mu=\delta$, so we expect $T\left(\mu_{n}\right)=T\left(e_{n}\right)^{-1}$
- Lemma. Suppose $g \in C(0, \infty)$ and satisfies $g(x)=O\left(x^{-1-\epsilon}\right)$ for some $\epsilon>0$. Then $T\left(e_{n}\right) g=O\left(x^{-1-\epsilon}\right)$ and $T\left(\mu_{n}\right) g=O\left(x^{-1-\epsilon}\right)$, and these are inverse transforms: $T\left(e_{n}\right) T\left(\mu_{n}\right) g=T\left(\mu_{n}\right) T\left(e_{n}\right) g=g$
- So, the equation $T\left(e_{n}\right) \mathcal{F} f=S T\left(e_{n}\right) f$ can be explicitly inverted under certain conditions:

The Poisson summation formula

A uniqueness theorem

Proof of uniqueness theorem

- Recall the Möbius function

$$
\mu(n)= \begin{cases}(-1)^{\sharp\{p \text { prime } \mid p \text { divides } n\}}, & n \text { square-free } \\ 0, & d^{2} \mid n\end{cases}
$$

- For $e_{n}=1, e * \mu=\delta$, so we expect $T\left(\mu_{n}\right)=T\left(e_{n}\right)^{-1}$.
- Lemma. Suppose $g \in C(0, \infty)$ and satisfies $g(x)=O\left(x^{-1-\epsilon}\right)$ for some $\epsilon>0$. Then $T\left(e_{n}\right) g=O\left(x^{-1-\epsilon}\right)$ and $T\left(\mu_{n}\right) g=O\left(x^{-1-\epsilon}\right)$, and these are inverse transforms: $T\left(e_{n}\right) T\left(\mu_{n}\right) g=T\left(\mu_{n}\right) T\left(e_{n}\right) g=g$
- So, the equation $T\left(e_{n}\right) \mathcal{F} f=S T\left(e_{n}\right) f$ can be explicitly inverted under certain conditions:

A uniqueness theorem

Proof of uniqueness theorem

- Recall the Möbius function

$$
\mu(n)= \begin{cases}(-1)^{\sharp\{p \text { prime } \mid p \text { divides } n\}}, & n \text { square-free } \\ 0, & d^{2} \mid n\end{cases}
$$

- For $e_{n}=1, e * \mu=\delta$, so we expect $T\left(\mu_{n}\right)=T\left(e_{n}\right)^{-1}$.
- Lemma. Suppose $g \in C(0, \infty)$ and satisfies $g(x)=O\left(x^{-1-\epsilon}\right)$ for some $\epsilon>0$. Then $T\left(e_{n}\right) g=O\left(x^{-1-\epsilon}\right)$ and $T\left(\mu_{n}\right) g=O\left(x^{-1-\epsilon}\right)$, and these are inverse transforms: $T\left(e_{n}\right) T\left(\mu_{n}\right) g=T\left(\mu_{n}\right) T\left(e_{n}\right) g=g$.
- So, the equation $T\left(e_{n}\right) \mathcal{F} f=S T\left(e_{n}\right) f$ can be explicitly inverted under certain conditions:

A uniqueness theorem

Proof of uniqueness theorem

- Recall the Möbius function

$$
\mu(n)= \begin{cases}(-1)^{\sharp\{p \text { prime } \mid p \text { divides } n\}}, & n \text { square-free } \\ 0, & d^{2} \mid n\end{cases}
$$

- For $e_{n}=1, e * \mu=\delta$, so we expect $T\left(\mu_{n}\right)=T\left(e_{n}\right)^{-1}$.
- Lemma. Suppose $g \in C(0, \infty)$ and satisfies $g(x)=O\left(x^{-1-\epsilon}\right)$ for some $\epsilon>0$. Then $T\left(e_{n}\right) g=O\left(x^{-1-\epsilon}\right)$ and $T\left(\mu_{n}\right) g=O\left(x^{-1-\epsilon}\right)$, and these are inverse transforms: $T\left(e_{n}\right) T\left(\mu_{n}\right) g=T\left(\mu_{n}\right) T\left(e_{n}\right) g=g$.
- So, the equation $T\left(e_{n}\right) \mathcal{F} f=S T\left(e_{n}\right) f$ can be explicitly inverted under certain conditions:

$$
\mathcal{F} f(x)=T\left(\mu_{n}\right) S T\left(e_{n}\right) f(x)=\sum_{n=1}^{\infty} \frac{\mu(n)}{n x} \sum_{m=1}^{\infty} f\left(\frac{m}{n x}\right)
$$

Davenport's Theorem

- The equality $\mathcal{F} f=T\left(\mu_{n}\right) S T\left(e_{n}\right) f$ holds in other cases too. For example, consider
- Theorem (Davenport 37') $\sum_{n=1}^{\infty} \frac{\mu(n)}{n}\{n x\}=-\frac{1}{\pi} \sin (2 \pi x)$ (here $\{t\}=t-\lfloor t\rfloor$ denotes the fractional part)
- This can be used to show that the Fourier Transform of a mean-zero step function such as $f(x)=\sum_{k} \alpha_{k} \chi_{\left[a_{k}, b_{k}\right]}\left(\sum \alpha_{k}\left(b_{k}-a_{k}\right)=0\right)$, when symmetrically extended to the real axis, is given by

A uniqueness theorem
Sequences
Some operators on $L^{2}[0, \infty)$
Proof of uniqueness theorem
Davenport's theorem

Davenport's Theorem

- The equality $\mathcal{F} f=T\left(\mu_{n}\right) S T\left(e_{n}\right) f$ holds in other cases too. For example, consider
- Theorem (Davenport 37') $\sum_{n=1}^{\infty} \frac{\mu(n)}{n}\{n x\}=-\frac{1}{\pi} \sin (2 \pi x)$ (here $\{t\}=t-\lfloor t\rfloor$ denotes the fractional part)
- This can be used to show that the Fourier Transform of a mean-zero step function such as $f(x)=\sum_{k} \alpha_{k} \chi_{\left[a_{k}, b_{k}\right]}\left(\sum \alpha_{k}\left(b_{k}-a_{k}\right)=0\right)$, when symmetrically extended to the real axis, is given by

A uniqueness theorem
Sequences
Some operators on $L^{2}[0, \infty)$ Proof of uniqueness theorem Davenport's theorem

Davenport's Theorem

- The equality $\mathcal{F} f=T\left(\mu_{n}\right) S T\left(e_{n}\right) f$ holds in other cases too. For example, consider
- Theorem (Davenport 37') $\sum_{n=1}^{\infty} \frac{\mu(n)}{n}\{n x\}=-\frac{1}{\pi} \sin (2 \pi x)$ (here $\{t\}=t-\lfloor t\rfloor$ denotes the fractional part)
- This can be used to show that the Fourier Transform of a mean-zero step function such as $f(x)=\sum_{k} \alpha_{k} \chi_{\left[a_{k}, b_{k}\right]}\left(\sum \alpha_{k}\left(b_{k}-a_{k}\right)=0\right)$, when symmetrically extended to the real axis, is given by

$$
\sum_{n=1}^{\infty} \frac{\mu(n)}{n x} \sum_{m=1}^{\infty} f\left(\frac{m}{n x}\right)=\sum_{k} \frac{\alpha_{k}}{\pi x}\left(\sin \left(2 \pi b_{k} x\right)-\sin \left(2 \pi a_{k} x\right)\right)
$$

Generalizing Poisson's summation formula

- We are led naturally to the following

Question. Given a sequence $\left(a_{n}\right)$, does there exist a linear operator $\mathcal{F}\left(a_{n}\right)$ on $L^{2}[0, \infty)$ such that for nice functions f the generalized Poisson formula

$$
T\left(a_{n}\right) \mathcal{F}\left(a_{n}\right) f=S T\left(a_{n}\right) f
$$

holds? Is it unique? Is it unitary?

Bounded operators

- Lemma. Assume

$$
\begin{equation*}
\sum \frac{\left|a_{n}\right|}{\sqrt{n}}<\infty \tag{2}
\end{equation*}
$$

holds. Then
(1) $T\left(a_{n}\right)$ extends to a bounded operator on $L^{2}[0, \infty)$, and
(2) For $f \in C(0, \infty)$ and $f=O\left(x^{-1-\epsilon}\right)$ for some $\epsilon>0$, the formula

is valid

- Note that when condition (2) holds, $L\left(s ; a_{n}\right)$ is absolutely convergent for $\Re s \geq 1 / 2$

Bounded operators

- Lemma. Assume

$$
\begin{equation*}
\sum \frac{\left|a_{n}\right|}{\sqrt{n}}<\infty \tag{2}
\end{equation*}
$$

holds. Then
(1) $T\left(a_{n}\right)$ extends to a bounded operator on $L^{2}[0, \infty)$, and $\left\|T\left(a_{n}\right)\right\| \leq \sum \frac{\left|a_{n}\right|}{\sqrt{n}}$.
(2) For $f \in C(0, \infty)$ and $f=O\left(x^{-1-\epsilon}\right)$ for some $\epsilon>0$, the formula
is valid

- Note that when condition (2) holds, $L\left(s ; a_{n}\right)$ is absolutely convergent for $\Omega s \geq 1 / 2$

Bounded operators

- Lemma. Assume

$$
\begin{equation*}
\sum \frac{\left|a_{n}\right|}{\sqrt{n}}<\infty \tag{2}
\end{equation*}
$$

holds. Then
(1) $T\left(a_{n}\right)$ extends to a bounded operator on $L^{2}[0, \infty)$, and $\left\|T\left(a_{n}\right)\right\| \leq \sum \frac{\left|a_{n}\right|}{\sqrt{n}}$.
(2) For $f \in C(0, \infty)$ and $f=O\left(x^{-1-\epsilon}\right)$ for some $\epsilon>0$, the formula

$$
T\left(a_{n}\right) f(x)=\sum_{n=1}^{\infty} a_{n} f(n x)
$$

is valid.

- Note that when condition (2) holds, $L\left(s ; a_{n}\right)$ is absolutely convergent for $\Re \Omega \geq 1 / 2$

Bounded operators

- Lemma. Assume

$$
\begin{equation*}
\sum \frac{\left|a_{n}\right|}{\sqrt{n}}<\infty \tag{2}
\end{equation*}
$$

holds. Then
(1) $T\left(a_{n}\right)$ extends to a bounded operator on $L^{2}[0, \infty)$, and $\left\|T\left(a_{n}\right)\right\| \leq \sum \frac{\left|a_{n}\right|}{\sqrt{n}}$.
(2) For $f \in C(0, \infty)$ and $f=O\left(x^{-1-\epsilon}\right)$ for some $\epsilon>0$, the formula

$$
T\left(a_{n}\right) f(x)=\sum_{n=1}^{\infty} a_{n} f(n x)
$$

is valid.

- Note that when condition (2) holds, $L\left(s ; a_{n}\right)$ is absolutely convergent for $\Re s \geq 1 / 2$

Generalized operator - direct approach

- Theorem. Assume $\left(a_{n}\right)$ is real, $\sum\left|a_{n}\right| n^{\epsilon}<\infty$ for some $\epsilon>0$, and $\left(b_{n}\right)$ satisfies $\sum\left|b_{n}\right| / \sqrt{n}<\infty$. Then

$$
\mathcal{F}\left(a_{n}\right)=T\left(b_{n}\right) S T\left(a_{n}\right)
$$

is a unitary operator.

- Corollary. Take a continuous f satisfying $f(x)=O\left(x^{-1-\epsilon}\right)$ as $x \rightarrow \infty$ and $f(x)=O\left(x^{\epsilon}\right)$ as $x \rightarrow 0$ for some $\epsilon>0$. Then

Generalized operator - direct approach

- Theorem. Assume $\left(a_{n}\right)$ is real, $\sum\left|a_{n}\right| n^{\epsilon}<\infty$ for some $\epsilon>0$, and $\left(b_{n}\right)$ satisfies $\sum\left|b_{n}\right| / \sqrt{n}<\infty$. Then

$$
\mathcal{F}\left(a_{n}\right)=T\left(b_{n}\right) S T\left(a_{n}\right)
$$

is a unitary operator.

- Corollary. Take a continuous f satisfying $f(x)=O\left(x^{-1-\epsilon}\right)$ as $x \rightarrow \infty$ and $f(x)=O\left(x^{\epsilon}\right)$ as $x \rightarrow 0$ for some $\epsilon>0$. Then

Generalized operator - direct approach

- Theorem. Assume $\left(a_{n}\right)$ is real, $\sum\left|a_{n}\right| n^{\epsilon}<\infty$ for some $\epsilon>0$, and $\left(b_{n}\right)$ satisfies $\sum\left|b_{n}\right| / \sqrt{n}<\infty$. Then

$$
\mathcal{F}\left(a_{n}\right)=T\left(b_{n}\right) S T\left(a_{n}\right)
$$

is a unitary operator.

- Corollary. Take a continuous f satisfying $f(x)=O\left(x^{-1-\epsilon}\right)$ as $x \rightarrow \infty$ and $f(x)=O\left(x^{\epsilon}\right)$ as $x \rightarrow 0$ for some $\epsilon>0$. Then
(1) $\mathcal{F}\left(a_{n}\right) f$ is continuous and $\mathcal{F}\left(a_{n}\right) f(x)=O\left(x^{-1-\epsilon}\right)$.

Generalized operator - direct approach

- Theorem. Assume $\left(a_{n}\right)$ is real, $\sum\left|a_{n}\right| n^{\epsilon}<\infty$ for some $\epsilon>0$, and $\left(b_{n}\right)$ satisfies $\sum\left|b_{n}\right| / \sqrt{n}<\infty$. Then

$$
\mathcal{F}\left(a_{n}\right)=T\left(b_{n}\right) S T\left(a_{n}\right)
$$

is a unitary operator.

- Corollary. Take a continuous f satisfying $f(x)=O\left(x^{-1-\epsilon}\right)$ as $x \rightarrow \infty$ and $f(x)=O\left(x^{\epsilon}\right)$ as $x \rightarrow 0$ for some $\epsilon>0$. Then
(1) $\mathcal{F}\left(a_{n}\right) f$ is continuous and $\mathcal{F}\left(a_{n}\right) f(x)=O\left(x^{-1-\epsilon}\right)$.
(2) The formula $\sum a_{n} \mathcal{F}\left(a_{n}\right) f(n x)=(1 / x) \sum a_{n} f(n / x)$ holds pointwise.

The Poisson summation formula

Change of space

Derivative
A family of unitary operators

Change of space

- By the change of variable $x=e^{y}$, we get the isometric isomorphism $u: L^{2}([0, \infty), d m) \rightarrow L^{2}\left(\mathbb{R}, e^{y} d y\right), f(x) \mapsto g(y)=f\left(e^{y}\right)$.
- How to apply Fourier Transform in such space?
- Suggestion of B. Klartag: Define $w(f)(\omega)=u(f)(\omega+i / 2)$. Then $w: L^{2}\left(\mathbb{R}, e^{y} d y\right) \rightarrow(\mathbb{R}, d m)$ is an isometric isomorphism, where

denotes the Fourier Transform
- Alternatively, define the isometry $v: L^{2}\left(\mathbb{R}, e^{y} d y\right) \rightarrow L^{2}(\mathbb{R}, d m)$ by $v(g)(y)=e^{y / 2} g(y)$. Then $w(f)=v(u(f))$

The Poisson summation formula

Change of space

Derivative
A family of unitary operators

Change of space

- By the change of variable $x=e^{y}$, we get the isometric isomorphism $u: L^{2}([0, \infty), d m) \rightarrow L^{2}\left(\mathbb{R}, e^{y} d y\right), f(x) \mapsto g(y)=f\left(e^{y}\right)$.
- How to apply Fourier Transform in such space?
- Suggestion of B. Klartag: Define $w(f)(\omega)=u(f)(\omega+i / 2)$. Then $w: L^{2}\left(\mathbb{R}, e^{y} d y\right) \rightarrow(\mathbb{R}, d m)$ is an isometric isomorphism, where

denotes the Fourier Transform.
- Alternatively, define the isometry $v: L^{2}\left(\mathbb{R}, e^{y} d y\right) \rightarrow L^{2}(\mathbb{R}, d m)$ by $v(g)(y)=e^{y / 2} g(y)$. Then $w(f)=v(u(f))$

Change of space

A family of unitary operators

Change of space

- By the change of variable $x=e^{y}$, we get the isometric isomorphism $u: L^{2}([0, \infty), d m) \rightarrow L^{2}\left(\mathbb{R}, e^{y} d y\right), f(x) \mapsto g(y)=f\left(e^{y}\right)$.
- How to apply Fourier Transform in such space?
- Suggestion of B. Klartag: Define $w(f)(\omega)=\widehat{u(f)}(\omega+i / 2)$. Then $w: L^{2}\left(\mathbb{R}, e^{y} d y\right) \rightarrow(\mathbb{R}, d m)$ is an isometric isomorphism, where

$$
\widehat{h}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h(t) e^{-i \omega t} d t
$$

denotes the Fourier Transform.

- Alternatively, define the isometry $v: L^{2}\left(\mathbb{R}, e^{y} d y\right) \rightarrow L^{2}(\mathbb{R}, d m)$ by $v(g)(y)=e^{y / 2} g(y)$. Then $w(f)=v(u(f))$

Change of space

Change of space

- By the change of variable $x=e^{y}$, we get the isometric isomorphism $u: L^{2}([0, \infty), d m) \rightarrow L^{2}\left(\mathbb{R}, e^{y} d y\right), f(x) \mapsto g(y)=f\left(e^{y}\right)$.
- How to apply Fourier Transform in such space?
- Suggestion of B. Klartag: Define $w(f)(\omega)=\widehat{u(f)}(\omega+i / 2)$. Then $w: L^{2}\left(\mathbb{R}, e^{y} d y\right) \rightarrow(\mathbb{R}, d m)$ is an isometric isomorphism, where

$$
\widehat{h}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} h(t) e^{-i \omega t} d t
$$

denotes the Fourier Transform.

- Alternatively, define the isometry $v: L^{2}\left(\mathbb{R}, e^{y} d y\right) \rightarrow L^{2}(\mathbb{R}, d m)$ by $v(g)(y)=e^{y / 2} g(y)$. Then $w(f)=\widehat{v(u(f))}$.

The Poisson summation formula

Change of space

Derivative
A family of unitary operators

Some diagonal forms

- For an operator $A: L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$, we write $\tilde{A}=w A w^{-1}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ for its conjugate by w.
- Assuming $\sum \frac{\left|a_{n}\right|}{\sqrt{n}}<\infty$, we get for $g \in L^{2}\left(\mathbb{R}, e^{y} d y\right)$

where $\nu(y)=\sum a_{n} \delta_{-\log n}(y)$

which converges for $\Im z \geq 1 / 2$.
- Thus for $h=\widehat{v g}$, the diagonal form of $T\left(a_{n}\right)$ is

The Poisson summation formula

Change of space

Derivative
A family of unitary operators

Some diagonal forms

- For an operator $A: L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$, we write $\tilde{A}=w A w^{-1}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ for its conjugate by w.
- $S f(x)=\frac{1}{x} f\left(\frac{1}{x}\right)$ becomes $\tilde{S} h(\omega)=h(-\omega)$.
- Assuming $\sum \frac{a_{n}}{\sqrt{n}}<\infty$, we get for $g \in L^{2}\left(\mathbb{R}, e^{y} d y\right)$

$$
\left(u T\left(a_{n}\right) u^{-1} g\right)(y)=\sum a_{n} g(y+\log n)=g * \nu(y)
$$

where $\nu(y)=\sum a_{n} \delta_{-\log n}(y)$.

which converges for $\Im z \geq 1 / 2$.

- Thus for $h=\widehat{v g}$, the diagonal form of $T\left(a_{n}\right)$ is

Change of space

Derivative
A family of unitary operators

Some diagonal forms

- For an operator $A: L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$, we write $\tilde{A}=w A w^{-1}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ for its conjugate by w.
- $S f(x)=\frac{1}{x} f\left(\frac{1}{x}\right)$ becomes $\tilde{S} h(\omega)=h(-\omega)$.
- Assuming $\sum \frac{\left|a_{n}\right|}{\sqrt{n}}<\infty$, we get for $g \in L^{2}\left(\mathbb{R}, e^{y} d y\right)$

$$
\left(u T\left(a_{n}\right) u^{-1} g\right)(y)=\sum a_{n} g(y+\log n)=g * \nu(y)
$$

where $\nu(y)=\sum a_{n} \delta_{-\log n}(y)$.

which converges for $\Im z \geq 1 / 2$.
Thus for $h=\widehat{v g}$, the diagonal form of $T\left(a_{n}\right)$ is

Change of space

Derivative
A family of unitary operators

Some diagonal forms

- For an operator $A: L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$, we write $\tilde{A}=w A w^{-1}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ for its conjugate by w.
- $S f(x)=\frac{1}{x} f\left(\frac{1}{x}\right)$ becomes $\tilde{S} h(\omega)=h(-\omega)$.
- Assuming $\sum \frac{\left|a_{n}\right|}{\sqrt{n}}<\infty$, we get for $g \in L^{2}\left(\mathbb{R}, e^{y} d y\right)$

$$
\left(u T\left(a_{n}\right) u^{-1} g\right)(y)=\sum a_{n} g(y+\log n)=g * \nu(y)
$$

where $\nu(y)=\sum a_{n} \delta_{-\log n}(y)$.

$$
\sqrt{2 \pi} \hat{\nu}(z)=\sum a_{n} e^{i z \log n}=\sum a_{n} n^{i z}=L\left(-i z ; a_{n}\right)
$$

which converges for $\Im z \geq 1 / 2$.

Change of space

Derivative
A family of unitary operators

Some diagonal forms

- For an operator $A: L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$, we write $\tilde{A}=w A w^{-1}: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ for its conjugate by w.
- $S f(x)=\frac{1}{x} f\left(\frac{1}{x}\right)$ becomes $\tilde{S} h(\omega)=h(-\omega)$.
- Assuming $\sum \frac{\left|a_{n}\right|}{\sqrt{n}}<\infty$, we get for $g \in L^{2}\left(\mathbb{R}, e^{y} d y\right)$

$$
\left(u T\left(a_{n}\right) u^{-1} g\right)(y)=\sum a_{n} g(y+\log n)=g * \nu(y)
$$

where $\nu(y)=\sum a_{n} \delta_{-\log n}(y)$.

$$
\sqrt{2 \pi} \hat{\nu}(z)=\sum a_{n} e^{i z \log n}=\sum a_{n} n^{i z}=L\left(-i z ; a_{n}\right)
$$

which converges for $\Im z \geq 1 / 2$.

- Thus for $h=\widehat{v g}$, the diagonal form of $T\left(a_{n}\right)$ is

$$
\widehat{T\left(a_{n}\right)} h(\omega)=\widehat{g * \nu}(\omega+i / 2)=L\left(1 / 2-i \omega ; a_{n}\right) h(\omega)
$$

Change of space

Derivative
A family of unitary operators

Existence and uniqueness theorem

- The generalized Poisson summation formula becomes

$$
L\left(1 / 2-i \omega ; a_{n}\right) \widetilde{\mathcal{F}\left(a_{n}\right)} h(\omega)=L\left(1 / 2+i \omega ; a_{n}\right) h(-\omega)
$$

- Theorem. Assume $\sum\left|a_{n}\right| n$ θ. Then
- $\mathcal{F}\left(a_{n}\right)$ has the skew-diagonal form
\square

Change of space

Derivative
A family of unitary operators

Existence and uniqueness theorem

- The generalized Poisson summation formula becomes

$$
L\left(1 / 2-i \omega ; a_{n}\right) \widetilde{\mathcal{F}\left(a_{n}\right)} h(\omega)=L\left(1 / 2+i \omega ; a_{n}\right) h(-\omega)
$$

- Theorem. Assume $\sum\left|a_{n}\right| n^{-1 / 2}<\infty$, and $a_{n} \in e^{i \theta} \mathbb{R}$ for some fixed θ. Then

- Note that PSF need not hold pointwise (pointed out by F. Nazarov)

Change of space

Derivative
A family of unitary operators

Existence and uniqueness theorem

- The generalized Poisson summation formula becomes

$$
L\left(1 / 2-i \omega ; a_{n}\right) \widetilde{\mathcal{F}\left(a_{n}\right)} h(\omega)=L\left(1 / 2+i \omega ; a_{n}\right) h(-\omega)
$$

- Theorem. Assume $\sum\left|a_{n}\right| n^{-1 / 2}<\infty$, and $a_{n} \in e^{i \theta} \mathbb{R}$ for some fixed θ. Then

- Note that PSF need not hold pointwise (pointed out by F. Nazarov)

Change of space

Derivative
A family of unitary operators

Existence and uniqueness theorem

- The generalized Poisson summation formula becomes

$$
L\left(1 / 2-i \omega ; a_{n}\right) \widetilde{\mathcal{F}\left(a_{n}\right)} h(\omega)=L\left(1 / 2+i \omega ; a_{n}\right) h(-\omega)
$$

- Theorem. Assume $\sum\left|a_{n}\right| n^{-1 / 2}<\infty$, and $a_{n} \in e^{i \theta} \mathbb{R}$ for some fixed θ. Then
(1) There exists a unitary involution $\mathcal{F}\left(a_{n}\right): L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ satisfying the generalized PSF in operator form: $T\left(a_{n}\right) \mathcal{F}\left(a_{n}\right)=S T\left(a_{n}\right)$.
(2) If for some $\epsilon>0, \sum\left|a_{n}\right| n^{-1 / 2+c}<\infty$, then a bounded $F\left(a_{n}\right)$ satisfying $T\left(a_{n}\right) \mathcal{F}\left(a_{n}\right)=S T\left(a_{n}\right)$ is unique.
- $F\left(a_{n}\right)$ has the skew-diagonal form
$\overline{\mathcal{F}\left(a_{n}\right)} h(\omega)=e^{2 i\left(\arg L\left(1 / 2+i \omega ; a_{n}\right)-\theta\right)} h(-\omega)$
- Note that PSF need not hold pointwise (pointed out by F. Nazarov)

Change of space

A family of unitary operators

Existence and uniqueness theorem

- The generalized Poisson summation formula becomes

$$
L\left(1 / 2-i \omega ; a_{n}\right) \widetilde{\mathcal{F}\left(a_{n}\right)} h(\omega)=L\left(1 / 2+i \omega ; a_{n}\right) h(-\omega)
$$

- Theorem. Assume $\sum\left|a_{n}\right| n^{-1 / 2}<\infty$, and $a_{n} \in e^{i \theta} \mathbb{R}$ for some fixed θ. Then
(1) There exists a unitary involution $\mathcal{F}\left(a_{n}\right): L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ satisfying the generalized PSF in operator form: $T\left(a_{n}\right) \mathcal{F}\left(a_{n}\right)=S T\left(a_{n}\right)$.
(2) If for some $\epsilon>0, \sum\left|a_{n}\right| n^{-1 / 2+\epsilon}<\infty$, then a bounded $\mathcal{F}\left(a_{n}\right)$ satisfying $T\left(a_{n}\right) \mathcal{F}\left(a_{n}\right)=S T\left(a_{n}\right)$ is unique.
- $\mathcal{F}\left(a_{n}\right)$ has the skew-diagonal form

- Note that PSF need not hold pointwise (pointed out by F. Nazarov)

Change of space

Existence and uniqueness theorem

- The generalized Poisson summation formula becomes

$$
L\left(1 / 2-i \omega ; a_{n}\right) \widetilde{\mathcal{F}\left(a_{n}\right)} h(\omega)=L\left(1 / 2+i \omega ; a_{n}\right) h(-\omega)
$$

- Theorem. Assume $\sum\left|a_{n}\right| n^{-1 / 2}<\infty$, and $a_{n} \in e^{i \theta} \mathbb{R}$ for some fixed θ. Then
(1) There exists a unitary involution $\mathcal{F}\left(a_{n}\right): L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ satisfying the generalized PSF in operator form: $T\left(a_{n}\right) \mathcal{F}\left(a_{n}\right)=S T\left(a_{n}\right)$.
(2) If for some $\epsilon>0, \sum\left|a_{n}\right| n^{-1 / 2+\epsilon}<\infty$, then a bounded $\mathcal{F}\left(a_{n}\right)$ satisfying $T\left(a_{n}\right) \mathcal{F}\left(a_{n}\right)=S T\left(a_{n}\right)$ is unique.
- $\mathcal{F}\left(a_{n}\right)$ has the skew-diagonal form

$$
\widetilde{\mathcal{F}\left(a_{n}\right)} h(\omega)=e^{2 i\left(\arg L\left(1 / 2+i \omega ; a_{n}\right)-\theta\right)} h(-\omega)
$$

- Note that PSF need not hold pointwise (pointed out by F. Nazarov)

Change of space

Existence and uniqueness theorem

- The generalized Poisson summation formula becomes

$$
L\left(1 / 2-i \omega ; a_{n}\right) \widetilde{\mathcal{F}\left(a_{n}\right)} h(\omega)=L\left(1 / 2+i \omega ; a_{n}\right) h(-\omega)
$$

- Theorem. Assume $\sum\left|a_{n}\right| n^{-1 / 2}<\infty$, and $a_{n} \in e^{i \theta} \mathbb{R}$ for some fixed θ. Then
(1) There exists a unitary involution $\mathcal{F}\left(a_{n}\right): L^{2}[0, \infty) \rightarrow L^{2}[0, \infty)$ satisfying the generalized PSF in operator form: $T\left(a_{n}\right) \mathcal{F}\left(a_{n}\right)=S T\left(a_{n}\right)$.
(2) If for some $\epsilon>0, \sum\left|a_{n}\right| n^{-1 / 2+\epsilon}<\infty$, then a bounded $\mathcal{F}\left(a_{n}\right)$ satisfying $T\left(a_{n}\right) \mathcal{F}\left(a_{n}\right)=S T\left(a_{n}\right)$ is unique.
- $\mathcal{F}\left(a_{n}\right)$ has the skew-diagonal form

$$
\widetilde{\mathcal{F}\left(a_{n}\right)} h(\omega)=e^{2 i\left(\arg L\left(1 / 2+i \omega ; a_{n}\right)-\theta\right)} h(-\omega)
$$

- Note that PSF need not hold pointwise (pointed out by F. Nazarov).

What about differentiation?

- Denote $D f=d f / d x$, and $X f=x \cdot f$. The Fourier transform satisfies for nice functions f the identitiy $\mathcal{F}(D f)=i X \mathcal{F}(f)$.
- For an even $f, D f$ is odd. Thus we shouldn't expect to have such a formula in our setting
- However, for an even function we can also write $\mathcal{F}(X f)=i D F(f)$ Those can be combined together into (*) XDFF $+\mathcal{F} X D+\mathcal{F}=0$, where \mathcal{F} is applied only to even functions.
- Denote $B=i(X D+I d / 2)$ - a symmetric onerator in any reasonable domain. Then (\star) reads $\mathcal{F} B+B \mathcal{F}=0$

What about differentiation?

- Denote $D f=d f / d x$, and $X f=x \cdot f$. The Fourier transform satisfies for nice functions f the identitiy $\mathcal{F}(D f)=i X \mathcal{F}(f)$.
- For an even $f, D f$ is odd. Thus we shouldn't expect to have such a formula in our setting.
- However, for an even function we can also write $\mathcal{F}(X f)=i D \mathcal{F}(f)$ Those can be combined together into (*) XDF$+\mathcal{F} X D+\mathcal{F}=0$, where \mathcal{F} is applied only to even functions.
- Denote $B=i(X D+/ d / 2)$ - a symmetric operator in any reasonable domain. Then (\star) reads $\mathcal{F} B+B \mathcal{F}=0$

What about differentiation?

- Denote $D f=d f / d x$, and $X f=x \cdot f$. The Fourier transform satisfies for nice functions f the identitiy $\mathcal{F}(D f)=i X \mathcal{F}(f)$.
- For an even $f, D f$ is odd. Thus we shouldn't expect to have such a formula in our setting.
- However, for an even function we can also write $\mathcal{F}(X f)=i D \mathcal{F}(f)$. Those can be combined together into $(\star) X D \mathcal{F}+\mathcal{F} X D+\mathcal{F}=0$, where \mathcal{F} is applied only to even functions.
- Denote $B=i(X D+/ d / 2)$ - a symmetric operator in any reasonable domain. Then (\star) reads $\mathcal{F} B+B \mathcal{F}=0$.

What about differentiation?

- Denote $D f=d f / d x$, and $X f=x \cdot f$. The Fourier transform satisfies for nice functions f the identitiy $\mathcal{F}(D f)=i X \mathcal{F}(f)$.
- For an even $f, D f$ is odd. Thus we shouldn't expect to have such a formula in our setting.
- However, for an even function we can also write $\mathcal{F}(X f)=i D \mathcal{F}(f)$. Those can be combined together into $(\star) X D \mathcal{F}+\mathcal{F} X D+\mathcal{F}=0$, where \mathcal{F} is applied only to even functions.
- Denote $B=i(X D+I d / 2)$ - a symmetric operator in any reasonable domain. Then (\star) reads $\mathcal{F} B+B \mathcal{F}=0$.

A general formula involving derivative

- Theorem. Assume $a_{n} \in \mathbb{R}$ satisfies $\sum\left|a_{n}\right| n^{\epsilon}<\infty$ for some $\epsilon>0$, and the convolution inverse (b_{n}) satisfies $\sum\left|b_{n}\right| / \sqrt{n}<\infty$.
- Note that

admits an analytic extension to the strip $-\epsilon<\Re z<1+\epsilon$
- Assume further that there exists N such that
- Let $f \in \mathcal{S}_{0}$, where

- Then $\mathcal{F}\left(a_{n}\right) B f+B \mathcal{F}\left(a_{n}\right) f=0$

A general formula involving derivative

- Theorem. Assume $a_{n} \in \mathbb{R}$ satisfies $\sum\left|a_{n}\right| n^{\epsilon}<\infty$ for some $\epsilon>0$, and the convolution inverse (b_{n}) satisfies $\sum\left|b_{n}\right| / \sqrt{n}<\infty$.
- Note that

$$
\frac{L\left(1-z ; a_{n}\right)}{L\left(z ; a_{n}\right)}
$$

admits an analytic extension to the strip $-\epsilon<\Re z<1+\epsilon$.

- Assume further that there exists N such that
- Let $f \in \mathcal{S}_{0}$, where

- Then $\mathcal{F}\left(a_{n}\right) B f+B \mathcal{F}\left(a_{n}\right) f=0$

A general formula involving derivative

- Theorem. Assume $a_{n} \in \mathbb{R}$ satisfies $\sum\left|a_{n}\right| n^{\epsilon}<\infty$ for some $\epsilon>0$, and the convolution inverse (b_{n}) satisfies $\sum\left|b_{n}\right| / \sqrt{n}<\infty$.
- Note that

$$
\frac{L\left(1-z ; a_{n}\right)}{L\left(z ; a_{n}\right)}
$$

admits an analytic extension to the strip $-\epsilon<\Re z<1+\epsilon$.

- Assume further that there exists N such that

$$
\left|L\left(1-z ; a_{n}\right) / L\left(z ; a_{n}\right)\right| \leq C|y|^{N}
$$

- Let $f \in \mathcal{S}_{0}$, where

- Then $\mathcal{F}\left(a_{n}\right) B f+B \mathcal{F}\left(a_{n}\right) f=0$

A general formula involving derivative

- Theorem. Assume $a_{n} \in \mathbb{R}$ satisfies $\sum\left|a_{n}\right| n^{\epsilon}<\infty$ for some $\epsilon>0$, and the convolution inverse (b_{n}) satisfies $\sum\left|b_{n}\right| / \sqrt{n}<\infty$.
- Note that

$$
\frac{L\left(1-z ; a_{n}\right)}{L\left(z ; a_{n}\right)}
$$

admits an analytic extension to the strip $-\epsilon<\Re z<1+\epsilon$.

- Assume further that there exists N such that

$$
\left|L\left(1-z ; a_{n}\right) / L\left(z ; a_{n}\right)\right| \leq C|y|^{N}
$$

- Let $f \in \mathcal{S}_{0}$, where

$$
\mathcal{S}_{0}=\left\{f \in C^{\infty}: \sup |x|^{n}\left|f^{(k)}(x)\right|<\infty \forall k \geq 0, \forall n \in \mathbb{Z}\right\}
$$

- Then $\mathcal{F}\left(a_{n}\right) B f+B \mathcal{F}\left(a_{n}\right) f=0$

A general formula involving derivative

- Theorem. Assume $a_{n} \in \mathbb{R}$ satisfies $\sum\left|a_{n}\right| n^{\epsilon}<\infty$ for some $\epsilon>0$, and the convolution inverse $\left(b_{n}\right)$ satisfies $\sum\left|b_{n}\right| / \sqrt{n}<\infty$.
- Note that

$$
\frac{L\left(1-z ; a_{n}\right)}{L\left(z ; a_{n}\right)}
$$

admits an analytic extension to the strip $-\epsilon<\Re z<1+\epsilon$.

- Assume further that there exists N such that

$$
\left|L\left(1-z ; a_{n}\right) / L\left(z ; a_{n}\right)\right| \leq C|y|^{N}
$$

- Let $f \in \mathcal{S}_{0}$, where

$$
\mathcal{S}_{0}=\left\{f \in C^{\infty}: \sup |x|^{n}\left|f^{(k)}(x)\right|<\infty \forall k \geq 0, \forall n \in \mathbb{Z}\right\}
$$

- Then $\mathcal{F}\left(a_{n}\right) B f+B \mathcal{F}\left(a_{n}\right) f=0$.

The Poisson summation formula

An integral formula

- It is not hard to see that the general form of $\mathcal{F}\left(a_{n}\right)$ with $\sum\left|a_{n}\right| / \sqrt{n}<\infty$ is given by

$$
\mathcal{F}\left(a_{n}\right) f(x)=\int_{0}^{\infty} A(x s) f(s) d s
$$

Where A is some generalized function depending on a_{n}.

- For example, for $\left(a_{n}\right)=\left(\delta_{n}\right)=1,0,0, \ldots$ we get $A(s)=\delta_{1}(s)$
- Though not fitting into our discussion, the ordinary Fourier transform corresponds to $a_{n}=1,1,1, \ldots$ and $A(s)=2 \cos s$
- Any such operator formally satisfies the identity $\mathcal{F} B+B \mathcal{F}=0$ The difficulty lies in verifying that $\mathcal{F} f$ is sufficiently regular for regular functions f

An integral formula

- It is not hard to see that the general form of $\mathcal{F}\left(a_{n}\right)$ with $\sum\left|a_{n}\right| / \sqrt{n}<\infty$ is given by

$$
\mathcal{F}\left(a_{n}\right) f(x)=\int_{0}^{\infty} A(x s) f(s) d s
$$

Where A is some generalized function depending on a_{n}.

- For example, for $\left(a_{n}\right)=\left(\delta_{n}\right)=1,0,0, \ldots$ we get $A(s)=\delta_{1}(s)$
- Though not fitting into our discussion, the ordinary Fourier transform corresponds to $a_{n}=1,1,1, \ldots$ and $A(s)=2 \cos s$.
- Any such operator formally satisfies the identity $\mathcal{F} B+B \mathcal{F}=0$ The difficulty lies in verifying that $\mathcal{F} f$ is sufficiently regular for regular functions f

An integral formula

- It is not hard to see that the general form of $\mathcal{F}\left(a_{n}\right)$ with $\sum\left|a_{n}\right| / \sqrt{n}<\infty$ is given by

$$
\mathcal{F}\left(a_{n}\right) f(x)=\int_{0}^{\infty} A(x s) f(s) d s
$$

Where A is some generalized function depending on a_{n}.

- For example, for $\left(a_{n}\right)=\left(\delta_{n}\right)=1,0,0, \ldots$ we get $A(s)=\delta_{1}(s)$
- Though not fitting into our discussion, the ordinary Fourier transform corresponds to $a_{n}=1,1,1, \ldots$ and $A(s)=2 \cos s$.
- Any such operator formally satisfies the identity $\mathcal{F} B+B \mathcal{F}=0$. The difficulty lies in verifying that $\mathcal{F} f$ is sufficiently regular for regular functions f

An integral formula

- It is not hard to see that the general form of $\mathcal{F}\left(a_{n}\right)$ with $\sum\left|a_{n}\right| / \sqrt{n}<\infty$ is given by

$$
\mathcal{F}\left(a_{n}\right) f(x)=\int_{0}^{\infty} A(x s) f(s) d s
$$

Where A is some generalized function depending on a_{n}.

- For example, for $\left(a_{n}\right)=\left(\delta_{n}\right)=1,0,0, \ldots$ we get $A(s)=\delta_{1}(s)$
- Though not fitting into our discussion, the ordinary Fourier transform corresponds to $a_{n}=1,1,1, \ldots$ and $A(s)=2 \cos s$.
- Any such operator formally satisfies the identity $\mathcal{F} B+B \mathcal{F}=0$.

The difficulty lies in verifying that $\mathcal{F} f$ is sufficiently regular for regular functions f.

The Poisson summation formula

Change of space

A family of unitary operators

A family of unitary operators

- Let us determine when the operators $T\left(a_{n}\right)$ are unitary.
- Call an operator T C-unitary if $\frac{1}{C} T$ is unitary.
- Corollary. Assume a_{n} satisfies $\sum\left|a_{n}\right| n^{-1 / 2}<\infty$. Then the following are equivalent:
(a) $\left|L\left(1 / 2+i x ; a_{n}\right)\right|=C$
(b) $T\left(a_{n}\right)$ is C-unitary on $L^{2}[0, \infty)$
(c) $\left(a_{n}\right)$ satisfies

Change of space

A family of unitary operators

A family of unitary operators

- Let us determine when the operators $T\left(a_{n}\right)$ are unitary.
- Call an operator $T C$-unitary if $\frac{1}{C} T$ is unitary.
- Corollary. Assume a_{n} satisfies \sum are equivalent:
(a) $\left|L\left(1 / 2+i x ; a_{n}\right)\right|=C$
(b) $T\left(a_{n}\right)$ is C-unitary on $L^{2}[0, \infty)$
(c) $\left(a_{n}\right)$ satisfies

A family of unitary operators

- Let us determine when the operators $T\left(a_{n}\right)$ are unitary.
- Call an operator $T C$-unitary if $\frac{1}{C} T$ is unitary.
- Corollary. Assume a_{n} satisfies $\sum\left|a_{n}\right| n^{-1 / 2}<\infty$. Then the following are equivalent:
(a) $\left|L\left(1 / 2+i x ; a_{n}\right)\right|=C$
(b) $T\left(a_{n}\right)$ is C-unitary on $L^{2}[0, \infty)$
(c) $\left(a_{n}\right)$ satisfies

$$
\sum_{k=1}^{\infty} \frac{a_{m_{0} k} \overline{a_{n 0} k}}{k}= \begin{cases}C^{2}, & \left(m_{0}, n_{0}\right)=(1,1) \tag{3}\\ 0, & \operatorname{gcd}\left(m_{0}, n_{0}\right)=1, m_{0} \neq n_{0}\end{cases}
$$

Change of space

A family of unitary operators

Unitary operators - examples

- A curious example of such an operator is
$T\left(a_{n}\right) f(x)=f(x)+f(2 x)-f(4 x)+f(8 x)-f(16 x)+\ldots$ associated with $a_{n}=1,1,0,-1,0,0,0,1, \ldots$ and $L\left(s ; a_{n}\right)=\frac{2+2^{s}}{1+2^{s}}$. $T\left(a_{n}\right)$ is $\sqrt{2}$-unitary on $L^{2}[0, \infty)$.
- Note that in this case, the convolution-inverse of a_{n} is $\left(b_{n}\right)=\left(a_{n}\right)^{-1}=1,-1,0,2,0,0,0,-4,0,0,0,0,0,0,0,8$, And so the inverse of $T\left(a_{n}\right)$ is not $T\left(b_{n}\right)$ (which is unbounded) but rather $T\left(a_{n}\right)^{-1} f=T\left(a_{n}\right)^{*} f=\sum_{n=1}^{\infty} \frac{a_{n}}{n} f\left(\frac{x}{n}\right)$
- A similar example is

Unitary operators - examples

- A curious example of such an operator is $T\left(a_{n}\right) f(x)=f(x)+f(2 x)-f(4 x)+f(8 x)-f(16 x)+\ldots$ associated with $a_{n}=1,1,0,-1,0,0,0,1, \ldots$ and $L\left(s ; a_{n}\right)=\frac{2+2^{s}}{1+2^{s}}$. $T\left(a_{n}\right)$ is $\sqrt{2}$-unitary on $L^{2}[0, \infty)$.
- Note that in this case, the convolution-inverse of a_{n} is

$$
\left(b_{n}\right)=\left(a_{n}\right)^{-1}=1,-1,0,2,0,0,0,-4,0,0,0,0,0,0,0,8, \ldots
$$

And so the inverse of $T\left(a_{n}\right)$ is not $T\left(b_{n}\right)$ (which is unbounded) but rather $T\left(a_{n}\right)^{-1} f=T\left(a_{n}\right)^{*} f=\sum_{n=1}^{\infty} \frac{a_{n}}{n} f\left(\frac{x}{n}\right)$

- A similar example is
$T f(x)=f(x)-f(2 x)-f(4 x)-f(8 x)$

Unitary operators - examples

- A curious example of such an operator is $T\left(a_{n}\right) f(x)=f(x)+f(2 x)-f(4 x)+f(8 x)-f(16 x)+\ldots$ associated with $a_{n}=1,1,0,-1,0,0,0,1, \ldots$ and $L\left(s ; a_{n}\right)=\frac{2+2^{s}}{1+2^{s}}$. $T\left(a_{n}\right)$ is $\sqrt{2}$-unitary on $L^{2}[0, \infty)$.
- Note that in this case, the convolution-inverse of a_{n} is

$$
\left(b_{n}\right)=\left(a_{n}\right)^{-1}=1,-1,0,2,0,0,0,-4,0,0,0,0,0,0,0,8, \ldots
$$

And so the inverse of $T\left(a_{n}\right)$ is not $T\left(b_{n}\right)$ (which is unbounded) but rather $T\left(a_{n}\right)^{-1} f=T\left(a_{n}\right)^{*} f=\sum_{n=1}^{\infty} \frac{a_{n}}{n} f\left(\frac{x}{n}\right)$

- A similar example is

$$
T f(x)=f(x)-f(2 x)-f(4 x)-f(8 x)-\ldots
$$

Change of space

A family of unitary operators

Unitary operators - more examples

- For a natural number m, take $b_{m^{k}}^{(m)}=\left(\frac{m}{2}\right)^{k / 2} a_{2^{k}}$ and $b_{n}^{(m)}=0$ for $n \neq m^{k}$. Then

$$
T_{m} f(x)=\sum b_{n}^{(m)} f(n x)
$$

is again a $\sqrt{2}$-isometry.

- For unitary $T\left(a_{n}\right), T\left(b_{n}\right)$
we have a new unitary operator $T\left(a_{n} * b_{n}\right)=T\left(a_{n}\right) T\left(b_{n}\right)$. Thus we can construct sequences a_{n} having larger support with $T\left(a_{n}\right)$ C-unitary.

Change of space
A family of unitary operators

Unitary operators - more examples

- For a natural number m, take $b_{m^{k}}^{(m)}=\left(\frac{m}{2}\right)^{k / 2} a_{2^{k}}$ and $b_{n}^{(m)}=0$ for $n \neq m^{k}$. Then

$$
T_{m} f(x)=\sum b_{n}^{(m)} f(n x)
$$

is again a $\sqrt{2}$-isometry.

- For unitary $T\left(a_{n}\right), T\left(b_{n}\right)$, we have a new unitary operator $T\left(a_{n} * b_{n}\right)=T\left(a_{n}\right) T\left(b_{n}\right)$. Thus we can construct sequences a_{n} having larger support with $T\left(a_{n}\right) C$-unitary.

Change of space

Derivative
A family of unitary operators

The end

Thank you!

