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continuous,
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By a result of McMullen (1980), (1) < (2).
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If f is the support function of a convex body L, then M is a mixed
volume:

M(K)=V(nLK,....K), VKeK".
In this case M has many additional properties. Among them we
mention that:
» M is non—negative;
» M verifies an inequality of Brunn—Minkowski type:
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M((L = )Ko + tKL)] 7T > (1—t) [M(Ko)] 7T+t [M(Ky)] 71

for every Ko, K1 € K" and t € [0, 1].

Note that in dimension two M is linear and the Brunn—Minkowski
inequality becomes an equality, for every choice of f.
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Then what can be said about 7 In particular, does it follow that f
is a support function?
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for every Ko, K1 € K" and t € [0,1]. Then there exists a convex
body L such that f is the support function of L.
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» In Theorem A, the Brunn—Minkowski inequality in its standard
form can be replaced by the weaker version

M((]. — t)KO + tKl) > min {M(Kg),M(Kl)} ,

for every Ko, K1 € K" and t € [0, 1]. This allows to remove
the assumption M > 0.



Corollary. Let n > 3 and
¢ : K" —R

be a continuous, translation invariant, symmetric and
(n — 1)—homogeneous valuation.



Corollary. Let n > 3 and
¢ : K" —R

be a continuous, translation invariant, symmetric and
(n — 1)—homogeneous valuation. Assume that

(D((]_ — t)KO + t'Kl) > min {q)(Ko),d)(Kl)} ,

for every Ko, K1 € K" and t € [0,1].



Corollary. Let n > 3 and
¢ : K" —R

be a continuous, translation invariant, symmetric and
(n — 1)—homogeneous valuation. Assume that

O((1 — t)Ko + tK1) > min {®(Kp), (K1)}, (3)

for every Ko, K1 € K" and t € [0,1]. Then there exists L € K"
such that

O(K)= V(L K,...,K), VYKek".



Corollary. Let n > 3 and
¢ : K" —R
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(n — 1)—homogeneous valuation. Assume that

O((1 — t)Ko + tK1) > min {®(Kp), (K1)}, (3)

for every Ko, K1 € K" and t € [0,1]. Then there exists L € K"
such that
oK)= V(L,K,...,K), YKek".

As proved by McMullen (1990), the same result holds, without
symmetry assumption, if (3) is replaced by monotonicity w.r.t.
inclusion.
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for every Ko, K1 € K" and t € [0,1]. Then there exists a convex
body L such that f is the support function of L.
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About the proof

» K € K" of class Cer; h support function of K.

M(K) = /Snl f det(h; + hd;;) dH™ L.

> ¢ € C®(S"1), s € R, |s| sufficiently small;

h + s¢ is the support function of a CEL convex body K.

s — g(s) = M(K;).

Brunn—Minkowski inequality for M = g'/("=1) concave.
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s=0

g(s) = /SM f det((h+ s¢)ij + (h+ s¢)d;) dH" .

» Starting from the last expression, g(0), g’(0) and g”(0) can
explicitly be computed, and replaced in (4);

> (4) becomes a functional inequality involving f, h and ¢;

» in particular, its validity for every choice of h and ¢ reveals to
be a powerful condition, from which one can deduce that f is
a support function.
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A special case

» n =3, f even and smooth.

» Choose h =1 (i.e. K is the unit ball of R3); inequality (4)
implies

[ fear < [ (V6. ve) an2, (5)
§? S2
for every ¢ € C*(S?), supported in a hemisphere, where

H = cofactor matrix of (f;j + fdj;).

> (5) forces H > 0 on S?;
>
H>0 = (f,-j+f5,-j)20.

» The last condition is equivalent to say that f is a support
function.



