Integral functionals
 verifying a Brunn-Minkowski type inequality

Andrea Colesanti in collaboration with

 Daniel Hug and Eugenia Saorín-GomezAsymptotic Geometric Analysis and Convexity
Toronto, 13-17 September 2010

The functional

The functional

- $\mathcal{K}^{n}=$ family of convex bodies in \mathbb{R}^{n},

The functional

- $\mathcal{K}^{n}=$ family of convex bodies in \mathbb{R}^{n},
- $f \in C\left(\mathbb{S}^{n-1}\right)$.

The functional

- $\mathcal{K}^{n}=$ family of convex bodies in \mathbb{R}^{n},
- $f \in C\left(\mathbb{S}^{n-1}\right)$.

$$
\mathcal{M}: \mathcal{K}^{n} \rightarrow \mathbb{R}
$$

The functional

- $\mathcal{K}^{n}=$ family of convex bodies in \mathbb{R}^{n},
- $f \in C\left(\mathbb{S}^{n-1}\right)$.

$$
\begin{gather*}
\mathcal{M}: \mathcal{K}^{n} \rightarrow \mathbb{R} \\
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x), \tag{1}
\end{gather*}
$$

where $S(K, \cdot)$ is the area measure of K.

The functional

- $\mathcal{K}^{n}=$ family of convex bodies in \mathbb{R}^{n},
- $f \in C\left(\mathbb{S}^{n-1}\right)$.

$$
\begin{gather*}
\mathcal{M}: \mathcal{K}^{n} \rightarrow \mathbb{R} \\
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x), \tag{1}
\end{gather*}
$$

where $S(K, \cdot)$ is the area measure of K.

$$
\mathcal{M} \text { is }\left\{\begin{array}{l}
\text { continuous, } \\
\end{array}\right.
$$

The functional

- $\mathcal{K}^{n}=$ family of convex bodies in \mathbb{R}^{n},
- $f \in C\left(\mathbb{S}^{n-1}\right)$.

$$
\begin{gather*}
\mathcal{M}: \mathcal{K}^{n} \rightarrow \mathbb{R} \\
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x), \tag{1}
\end{gather*}
$$

where $S(K, \cdot)$ is the area measure of K.

$$
\mathcal{M} \text { is }\left\{\begin{array}{l}
\text { continuous, } \\
\text { translation invariant, }
\end{array}\right.
$$

The functional

- $\mathcal{K}^{n}=$ family of convex bodies in \mathbb{R}^{n},
- $f \in C\left(\mathbb{S}^{n-1}\right)$.

$$
\begin{gather*}
\mathcal{M}: \mathcal{K}^{n} \rightarrow \mathbb{R} \\
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x), \tag{1}
\end{gather*}
$$

where $S(K, \cdot)$ is the area measure of K.
\mathcal{M} is $\left\{\begin{array}{l}\text { continuous, } \\ \text { translation invariant }, \\ (n-1) \text {-homogeneous },\end{array}\right.$

The functional

- $\mathcal{K}^{n}=$ family of convex bodies in \mathbb{R}^{n},
- $f \in C\left(\mathbb{S}^{n-1}\right)$.

$$
\begin{gather*}
\mathcal{M}: \mathcal{K}^{n} \rightarrow \mathbb{R} \\
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x), \tag{1}
\end{gather*}
$$

where $S(K, \cdot)$ is the area measure of K.

$$
\mathcal{M} \text { is }\left\{\begin{array}{l}
\text { continuous, } \tag{2}\\
\text { translation invariant }, \\
(n-1) \text {-homogeneous }, \\
\text { a valuation. }
\end{array}\right.
$$

The functional

- $\mathcal{K}^{n}=$ family of convex bodies in \mathbb{R}^{n},
- $f \in C\left(\mathbb{S}^{n-1}\right)$.

$$
\begin{gather*}
\mathcal{M}: \mathcal{K}^{n} \rightarrow \mathbb{R} \\
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x), \tag{1}
\end{gather*}
$$

where $S(K, \cdot)$ is the area measure of K.

$$
\mathcal{M} \text { is }\left\{\begin{array}{l}
\text { continuous, } \tag{2}\\
\text { translation invariant }, \\
(n-1) \text {-homogeneous }, \\
\text { a valuation. }
\end{array}\right.
$$

By a result of McMullen (1980), (1) $\Leftrightarrow(2)$.

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n}-1} f(x) d S(K, x)
$$

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x)
$$

If f is the support function of a convex body L, then \mathcal{M} is a mixed volume:

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x)
$$

If f is the support function of a convex body L, then \mathcal{M} is a mixed volume:

$$
\mathcal{M}(K)=V(n L, K, \ldots, K), \quad \forall K \in \mathcal{K}^{n} .
$$

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x)
$$

If f is the support function of a convex body L, then \mathcal{M} is a mixed volume:

$$
\mathcal{M}(K)=V(n L, K, \ldots, K), \quad \forall K \in \mathcal{K}^{n} .
$$

In this case \mathcal{M} has many additional properties. Among them we mention that:

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x)
$$

If f is the support function of a convex body L, then \mathcal{M} is a mixed volume:

$$
\mathcal{M}(K)=V(n L, K, \ldots, K), \quad \forall K \in \mathcal{K}^{n} .
$$

In this case \mathcal{M} has many additional properties. Among them we mention that:

- \mathcal{M} is non-negative;

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x)
$$

If f is the support function of a convex body L, then \mathcal{M} is a mixed volume:

$$
\mathcal{M}(K)=V(n L, K, \ldots, K), \quad \forall K \in \mathcal{K}^{n} .
$$

In this case \mathcal{M} has many additional properties. Among them we mention that:

- \mathcal{M} is non-negative;
- \mathcal{M} verifies an inequality of Brunn-Minkowski type:

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x)
$$

If f is the support function of a convex body L, then \mathcal{M} is a mixed volume:

$$
\mathcal{M}(K)=V(n L, K, \ldots, K), \quad \forall K \in \mathcal{K}^{n}
$$

In this case \mathcal{M} has many additional properties. Among them we mention that:

- \mathcal{M} is non-negative;
- \mathcal{M} verifies an inequality of Brunn-Minkowski type:

$$
\left[\mathcal{M}\left((1-t) K_{0}+t K_{1}\right)\right]^{\frac{1}{n-1}} \geq(1-t)\left[\mathcal{M}\left(K_{0}\right)\right]^{\frac{1}{n-1}}+t\left[\mathcal{M}\left(K_{1}\right)\right]^{\frac{1}{n-1}}
$$

for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$.

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f(x) d S(K, x)
$$

If f is the support function of a convex body L, then \mathcal{M} is a mixed volume:

$$
\mathcal{M}(K)=V(n L, K, \ldots, K), \quad \forall K \in \mathcal{K}^{n}
$$

In this case \mathcal{M} has many additional properties. Among them we mention that:

- \mathcal{M} is non-negative;
- \mathcal{M} verifies an inequality of Brunn-Minkowski type:

$$
\left[\mathcal{M}\left((1-t) K_{0}+t K_{1}\right)\right]^{\frac{1}{n-1}} \geq(1-t)\left[\mathcal{M}\left(K_{0}\right)\right]^{\frac{1}{n-1}}+t\left[\mathcal{M}\left(K_{1}\right)\right]^{\frac{1}{n-1}}
$$

for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$.

Note that in dimension two \mathcal{M} is linear and the Brunn-Minkowski inequality becomes an equality, for every choice of f.

The problem

The problem

Let $n \geq 3$. Assume that the functional

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n}-1} f(x) d S(K, x)
$$

with $f \in C\left(\mathbb{S}^{n-1}\right)$,

The problem

Let $n \geq 3$. Assume that the functional

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n}-1} f(x) d S(K, x)
$$

with $f \in C\left(\mathbb{S}^{n-1}\right)$, verifies $\mathcal{M} \geq 0$ and

$$
\left[\mathcal{M}\left((1-t) K_{0}+t K_{1}\right)\right]^{\frac{1}{n-1}} \geq(1-t)\left[\mathcal{M}\left(K_{0}\right)\right]^{\frac{1}{n-1}}+t\left[\mathcal{M}\left(K_{1}\right)\right]^{\frac{1}{n-1}}
$$

for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$.

The problem

Let $n \geq 3$. Assume that the functional

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n}-1} f(x) d S(K, x)
$$

with $f \in C\left(\mathbb{S}^{n-1}\right)$, verifies $\mathcal{M} \geq 0$ and
$\left[\mathcal{M}\left((1-t) K_{0}+t K_{1}\right)\right]^{\frac{1}{n-1}} \geq(1-t)\left[\mathcal{M}\left(K_{0}\right)\right]^{\frac{1}{n-1}}+t\left[\mathcal{M}\left(K_{1}\right)\right]^{\frac{1}{n-1}}$,
for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$.
Then what can be said about f ?

The problem

Let $n \geq 3$. Assume that the functional

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n}-1} f(x) d S(K, x)
$$

with $f \in C\left(\mathbb{S}^{n-1}\right)$, verifies $\mathcal{M} \geq 0$ and
$\left[\mathcal{M}\left((1-t) K_{0}+t K_{1}\right)\right]^{\frac{1}{n-1}} \geq(1-t)\left[\mathcal{M}\left(K_{0}\right)\right]^{\frac{1}{n-1}}+t\left[\mathcal{M}\left(K_{1}\right)\right]^{\frac{1}{n-1}}$,
for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$.
Then what can be said about f ? In particular, does it follow that f is a support function?

The symmetric case

The symmetric case

Theorem A. Let $n \geq 3$. Assume that $f \in C\left(\mathbb{S}^{n-1}\right)$ is even

The symmetric case

Theorem A. Let $n \geq 3$. Assume that $f \in C\left(\mathbb{S}^{n-1}\right)$ is even and the functional

$$
\mathcal{M}: K \longrightarrow \int_{\mathbb{S}^{n-1}} f(x) d S(K, x)
$$

is non-negative

The symmetric case

Theorem A. Let $n \geq 3$. Assume that $f \in C\left(\mathbb{S}^{n-1}\right)$ is even and the functional

$$
\mathcal{M}: K \longrightarrow \int_{\mathbb{S}^{n-1}} f(x) d S(K, x)
$$

is non-negative and verifies
$\left[\mathcal{M}\left((1-t) K_{0}+t K_{1}\right)\right]^{\frac{1}{n-1}} \geq(1-t)\left[\mathcal{M}\left(K_{0}\right)\right]^{\frac{1}{n-1}}+t\left[\mathcal{M}\left(K_{1}\right)\right]^{\frac{1}{n-1}}$, for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$.

The symmetric case

Theorem A. Let $n \geq 3$. Assume that $f \in C\left(\mathbb{S}^{n-1}\right)$ is even and the functional

$$
\mathcal{M}: K \longrightarrow \int_{\mathbb{S}^{n}-1} f(x) d S(K, x)
$$

is non-negative and verifies

$$
\left[\mathcal{M}\left((1-t) K_{0}+t K_{1}\right)\right]^{\frac{1}{n-1}} \geq(1-t)\left[\mathcal{M}\left(K_{0}\right)\right]^{\frac{1}{n-1}}+t\left[\mathcal{M}\left(K_{1}\right)\right]^{\frac{1}{n-1}},
$$

for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$. Then there exists a convex body L such that f is the support function of L.

Remarks

Remarks

- f even implies \mathcal{M} symmetric: $\mathcal{M}(K)=\mathcal{M}(-K), \forall K$.

Remarks

- f even implies \mathcal{M} symmetric: $\mathcal{M}(K)=\mathcal{M}(-K), \forall K$. Viceversa, \mathcal{M} symmetric implies

$$
f=f_{e}+\Lambda,
$$

where f_{e} is even and Λ is the restriction of a linear function to \mathbb{S}^{n-1}.

Remarks

- f even implies \mathcal{M} symmetric: $\mathcal{M}(K)=\mathcal{M}(-K), \forall K$. Viceversa, \mathcal{M} symmetric implies

$$
f=f_{e}+\Lambda,
$$

where f_{e} is even and Λ is the restriction of a linear function to \mathbb{S}^{n-1}. Since

$$
\int_{\mathbb{S}^{n-1}} \Lambda(x) d S(K, x)=0, \quad \forall K \in \mathcal{K}^{n}
$$

Remarks

- f even implies \mathcal{M} symmetric: $\mathcal{M}(K)=\mathcal{M}(-K), \forall K$. Viceversa, \mathcal{M} symmetric implies

$$
f=f_{e}+\Lambda,
$$

where f_{e} is even and Λ is the restriction of a linear function to \mathbb{S}^{n-1}. Since

$$
\int_{\mathbb{S}^{n-1}} \Lambda(x) d S(K, x)=0, \quad \forall K \in \mathcal{K}^{n}
$$

if \mathcal{M} is symmetric, then f may assumed to be even.

Remarks

- f even implies \mathcal{M} symmetric: $\mathcal{M}(K)=\mathcal{M}(-K), \forall K$. Viceversa, \mathcal{M} symmetric implies

$$
f=f_{e}+\Lambda
$$

where f_{e} is even and Λ is the restriction of a linear function to \mathbb{S}^{n-1}. Since

$$
\int_{\mathbb{S}^{n-1}} \Lambda(x) d S(K, x)=0, \quad \forall K \in \mathcal{K}^{n}
$$

if \mathcal{M} is symmetric, then f may assumed to be even.

- In Theorem A, the Brunn-Minkowski inequality in its standard form can be replaced by the weaker version

$$
\mathcal{M}\left((1-t) K_{0}+t K_{1}\right) \geq \min \left\{\mathcal{M}\left(K_{0}\right), \mathcal{M}\left(K_{1}\right)\right\}
$$

for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$.

Remarks

- f even implies \mathcal{M} symmetric: $\mathcal{M}(K)=\mathcal{M}(-K), \forall K$. Viceversa, \mathcal{M} symmetric implies

$$
f=f_{e}+\Lambda
$$

where f_{e} is even and Λ is the restriction of a linear function to \mathbb{S}^{n-1}. Since

$$
\int_{\mathbb{S}^{n-1}} \Lambda(x) d S(K, x)=0, \quad \forall K \in \mathcal{K}^{n}
$$

if \mathcal{M} is symmetric, then f may assumed to be even.

- In Theorem A, the Brunn-Minkowski inequality in its standard form can be replaced by the weaker version

$$
\mathcal{M}\left((1-t) K_{0}+t K_{1}\right) \geq \min \left\{\mathcal{M}\left(K_{0}\right), \mathcal{M}\left(K_{1}\right)\right\}
$$

for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$. This allows to remove the assumption $\mathcal{M} \geq 0$.

Corollary. Let $n \geq 3$ and

$$
\Phi: \mathcal{K}^{n} \longrightarrow \mathbb{R}
$$

be a continuous, translation invariant, symmetric and ($n-1$)-homogeneous valuation.

Corollary. Let $n \geq 3$ and

$$
\Phi: \mathcal{K}^{n} \longrightarrow \mathbb{R}
$$

be a continuous, translation invariant, symmetric and ($n-1$)-homogeneous valuation. Assume that

$$
\begin{equation*}
\Phi\left((1-t) K_{0}+t K_{1}\right) \geq \min \left\{\Phi\left(K_{0}\right), \Phi\left(K_{1}\right)\right\} \tag{3}
\end{equation*}
$$

for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$.

Corollary. Let $n \geq 3$ and

$$
\Phi: \mathcal{K}^{n} \longrightarrow \mathbb{R}
$$

be a continuous, translation invariant, symmetric and ($n-1$)-homogeneous valuation. Assume that

$$
\begin{equation*}
\Phi\left((1-t) K_{0}+t K_{1}\right) \geq \min \left\{\Phi\left(K_{0}\right), \Phi\left(K_{1}\right)\right\} \tag{3}
\end{equation*}
$$

for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$. Then there exists $L \in \mathcal{K}^{n}$ such that

$$
\Phi(K)=V(L, K, \ldots, K), \quad \forall K \in \mathcal{K}^{n} .
$$

Corollary. Let $n \geq 3$ and

$$
\Phi: \mathcal{K}^{n} \longrightarrow \mathbb{R}
$$

be a continuous, translation invariant, symmetric and ($n-1$)-homogeneous valuation. Assume that

$$
\begin{equation*}
\Phi\left((1-t) K_{0}+t K_{1}\right) \geq \min \left\{\Phi\left(K_{0}\right), \Phi\left(K_{1}\right)\right\} \tag{3}
\end{equation*}
$$

for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$. Then there exists $L \in \mathcal{K}^{n}$ such that

$$
\Phi(K)=V(L, K, \ldots, K), \quad \forall K \in \mathcal{K}^{n} .
$$

As proved by McMullen (1990), the same result holds, without symmetry assumption, if (3) is replaced by monotonicity w.r.t. inclusion.

The non-symmetric case

The non-symmetric case

Theorem B. Let $n \geq 3$. Assume that

$$
f \in C\left(\mathbb{S}^{n-1}\right) \cap W^{2,2}\left(\mathbb{S}^{n-1}\right)
$$

The non-symmetric case

Theorem B. Let $n \geq 3$. Assume that

$$
f \in C\left(\mathbb{S}^{n-1}\right) \cap W^{2,2}\left(\mathbb{S}^{n-1}\right),
$$

and the functional

$$
\mathcal{M}: K \longrightarrow \int_{\mathbb{S}^{n-1}} f(x) d S(K, x)
$$

verifies

$$
\mathcal{M}\left((1-t) K_{0}+t K_{1}\right) \geq \min \left\{\mathcal{M}\left(K_{0}\right), \mathcal{M}\left(K_{1}\right)\right\}
$$

for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$.

The non-symmetric case

Theorem B. Let $n \geq 3$. Assume that

$$
f \in C\left(\mathbb{S}^{n-1}\right) \cap W^{2,2}\left(\mathbb{S}^{n-1}\right)
$$

and the functional

$$
\mathcal{M}: K \longrightarrow \int_{\mathbb{S}^{n}-1} f(x) d S(K, x)
$$

verifies

$$
\mathcal{M}\left((1-t) K_{0}+t K_{1}\right) \geq \min \left\{\mathcal{M}\left(K_{0}\right), \mathcal{M}\left(K_{1}\right)\right\}
$$

for every $K_{0}, K_{1} \in \mathcal{K}^{n}$ and $t \in[0,1]$. Then there exists a convex body L such that f is the support function of L.

About the proof

About the proof

- $K \in \mathcal{K}^{n}$ of class $C_{+}^{2} ; h$ support function of K.

About the proof

- $K \in \mathcal{K}^{n}$ of class $C_{+}^{2} ; h$ support function of K.

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left(h_{i j}+h \delta_{i j}\right) d \mathcal{H}^{n-1}
$$

About the proof

- $K \in \mathcal{K}^{n}$ of class $C_{+}^{2} ; h$ support function of K.

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left(h_{i j}+h \delta_{i j}\right) d \mathcal{H}^{n-1}
$$

- $\phi \in C^{\infty}\left(\mathbb{S}^{n-1}\right)$,

About the proof

- $K \in \mathcal{K}^{n}$ of class $C_{+}^{2} ; h$ support function of K.

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left(h_{i j}+h \delta_{i j}\right) d \mathcal{H}^{n-1}
$$

- $\phi \in C^{\infty}\left(\mathbb{S}^{n-1}\right), s \in \mathbb{R},|s|$ sufficiently small;

About the proof

- $K \in \mathcal{K}^{n}$ of class $C_{+}^{2} ; h$ support function of K.

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left(h_{i j}+h \delta_{i j}\right) d \mathcal{H}^{n-1}
$$

- $\phi \in C^{\infty}\left(\mathbb{S}^{n-1}\right), s \in \mathbb{R},|s|$ sufficiently small;

$$
h+s \phi
$$

About the proof

- $K \in \mathcal{K}^{n}$ of class $C_{+}^{2} ; h$ support function of K.

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left(h_{i j}+h \delta_{i j}\right) d \mathcal{H}^{n-1}
$$

- $\phi \in C^{\infty}\left(\mathbb{S}^{n-1}\right), s \in \mathbb{R},|s|$ sufficiently small; $h+s \phi$ is the support function of a C_{+}^{2} convex body K_{s}.

About the proof

- $K \in \mathcal{K}^{n}$ of class $C_{+}^{2} ; h$ support function of K.

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left(h_{i j}+h \delta_{i j}\right) d \mathcal{H}^{n-1}
$$

- $\phi \in C^{\infty}\left(\mathbb{S}^{n-1}\right), s \in \mathbb{R},|s|$ sufficiently small; $h+s \phi$ is the support function of a C_{+}^{2} convex body K_{s}.

$$
s \longrightarrow g(s)=\mathcal{M}\left(K_{s}\right)
$$

About the proof

- $K \in \mathcal{K}^{n}$ of class $C_{+}^{2} ; h$ support function of K.

$$
\mathcal{M}(K)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left(h_{i j}+h \delta_{i j}\right) d \mathcal{H}^{n-1}
$$

- $\phi \in C^{\infty}\left(\mathbb{S}^{n-1}\right), s \in \mathbb{R},|s|$ sufficiently small; $h+s \phi$ is the support function of a C_{+}^{2} convex body K_{s}.

$$
s \longrightarrow g(s)=\mathcal{M}\left(K_{s}\right) .
$$

Brunn-Minkowski inequality for $\mathcal{M} \Rightarrow g^{1 /(n-1)}$ concave.

$$
\left.\frac{d^{2}}{d s^{2}}\left(g^{1 /(n-1)}\right)\right|_{s=0} \leq 0
$$

$$
\begin{gather*}
\left.\frac{d^{2}}{d s^{2}}\left(g^{1 /(n-1)}\right)\right|_{s=0} \leq 0 \\
\Longrightarrow(n-1) g(0) g^{\prime \prime}(0) \leq(n-2)\left(g^{\prime}(0)\right)^{2} \tag{4}
\end{gather*}
$$

$$
\begin{gather*}
\left.\frac{d^{2}}{d s^{2}}\left(g^{1 /(n-1)}\right)\right|_{s=0} \leq 0 \\
\Longrightarrow(n-1) g(0) g^{\prime \prime}(0) \leq(n-2)\left(g^{\prime}(0)\right)^{2} \tag{4}\\
g(s)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left((h+s \phi)_{i j}+(h+s \phi) \delta_{i j}\right) d \mathcal{H}^{n-1} .
\end{gather*}
$$

$$
\begin{gather*}
\left.\frac{d^{2}}{d s^{2}}\left(g^{1 /(n-1)}\right)\right|_{s=0} \leq 0 \\
\Longrightarrow(n-1) g(0) g^{\prime \prime}(0) \leq(n-2)\left(g^{\prime}(0)\right)^{2} \tag{4}\\
g(s)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left((h+s \phi)_{i j}+(h+s \phi) \delta_{i j}\right) d \mathcal{H}^{n-1}
\end{gather*}
$$

- Starting from the last expression, $g(0), g^{\prime}(0)$ and $g^{\prime \prime}(0)$ can explicitly be computed, and replaced in (4);

$$
\begin{gather*}
\left.\frac{d^{2}}{d s^{2}}\left(g^{1 /(n-1)}\right)\right|_{s=0} \leq 0 \\
\Longrightarrow(n-1) g(0) g^{\prime \prime}(0) \leq(n-2)\left(g^{\prime}(0)\right)^{2} \tag{4}\\
g(s)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left((h+s \phi)_{i j}+(h+s \phi) \delta_{i j}\right) d \mathcal{H}^{n-1}
\end{gather*}
$$

- Starting from the last expression, $g(0), g^{\prime}(0)$ and $g^{\prime \prime}(0)$ can explicitly be computed, and replaced in (4);
- (4) becomes a functional inequality involving f, h and ϕ;

$$
\begin{gather*}
\left.\frac{d^{2}}{d s^{2}}\left(g^{1 /(n-1)}\right)\right|_{s=0} \leq 0 \\
\Longrightarrow(n-1) g(0) g^{\prime \prime}(0) \leq(n-2)\left(g^{\prime}(0)\right)^{2} \tag{4}\\
g(s)=\int_{\mathbb{S}^{n-1}} f \operatorname{det}\left((h+s \phi)_{i j}+(h+s \phi) \delta_{i j}\right) d \mathcal{H}^{n-1} .
\end{gather*}
$$

- Starting from the last expression, $g(0), g^{\prime}(0)$ and $g^{\prime \prime}(0)$ can explicitly be computed, and replaced in (4);
- (4) becomes a functional inequality involving f, h and ϕ;
- in particular, its validity for every choice of h and ϕ reveals to be a powerful condition, from which one can deduce that f is a support function.

A special case

A special case

- $n=3, f$ even and smooth.

A special case

- $n=3, f$ even and smooth.
- Choose $h \equiv 1$ (i.e. K is the unit ball of \mathbb{R}^{3});

A special case

- $n=3, f$ even and smooth.
- Choose $h \equiv 1$ (i.e. K is the unit ball of \mathbb{R}^{3}); inequality (4) implies

$$
\begin{equation*}
\int_{\mathbb{S}^{2}} f \phi^{2} d \mathcal{H}^{2} \leq \int_{\mathbb{S}^{2}}\langle H \nabla \phi, \nabla \phi\rangle d \mathcal{H}^{2} \tag{5}
\end{equation*}
$$

for every $\phi \in C^{\infty}\left(\mathbb{S}^{2}\right)$, supported in a hemisphere,

A special case

- $n=3, f$ even and smooth.
- Choose $h \equiv 1$ (i.e. K is the unit ball of \mathbb{R}^{3}); inequality (4) implies

$$
\begin{equation*}
\int_{\mathbb{S}^{2}} f \phi^{2} d \mathcal{H}^{2} \leq \int_{\mathbb{S}^{2}}\langle H \nabla \phi, \nabla \phi\rangle d \mathcal{H}^{2} \tag{5}
\end{equation*}
$$

for every $\phi \in C^{\infty}\left(\mathbb{S}^{2}\right)$, supported in a hemisphere, where

$$
H=\text { cofactor matrix of }\left(f_{i j}+f \delta_{i j}\right) .
$$

A special case

- $n=3, f$ even and smooth.
- Choose $h \equiv 1$ (i.e. K is the unit ball of \mathbb{R}^{3}); inequality (4) implies

$$
\begin{equation*}
\int_{\mathbb{S}^{2}} f \phi^{2} d \mathcal{H}^{2} \leq \int_{\mathbb{S}^{2}}\langle H \nabla \phi, \nabla \phi\rangle d \mathcal{H}^{2} \tag{5}
\end{equation*}
$$

for every $\phi \in C^{\infty}\left(\mathbb{S}^{2}\right)$, supported in a hemisphere, where

$$
H=\text { cofactor matrix of }\left(f_{i j}+f \delta_{i j}\right) .
$$

- (5) forces $H \geq 0$ on \mathbb{S}^{2};

A special case

- $n=3, f$ even and smooth.
- Choose $h \equiv 1$ (i.e. K is the unit ball of \mathbb{R}^{3}); inequality (4) implies

$$
\begin{equation*}
\int_{\mathbb{S}^{2}} f \phi^{2} d \mathcal{H}^{2} \leq \int_{\mathbb{S}^{2}}\langle H \nabla \phi, \nabla \phi\rangle d \mathcal{H}^{2} \tag{5}
\end{equation*}
$$

for every $\phi \in C^{\infty}\left(\mathbb{S}^{2}\right)$, supported in a hemisphere, where

$$
H=\text { cofactor matrix of }\left(f_{i j}+f \delta_{i j}\right)
$$

-(5) forces $H \geq 0$ on \mathbb{S}^{2};

$$
H \geq 0 \Rightarrow\left(f_{i j}+f \delta_{i j}\right) \geq 0
$$

A special case

- $n=3, f$ even and smooth.
- Choose $h \equiv 1$ (i.e. K is the unit ball of \mathbb{R}^{3}); inequality (4) implies

$$
\begin{equation*}
\int_{\mathbb{S}^{2}} f \phi^{2} d \mathcal{H}^{2} \leq \int_{\mathbb{S}^{2}}\langle H \nabla \phi, \nabla \phi\rangle d \mathcal{H}^{2} \tag{5}
\end{equation*}
$$

for every $\phi \in C^{\infty}\left(\mathbb{S}^{2}\right)$, supported in a hemisphere, where

$$
H=\text { cofactor matrix of }\left(f_{i j}+f \delta_{i j}\right)
$$

-(5) forces $H \geq 0$ on \mathbb{S}^{2};

$$
H \geq 0 \Rightarrow\left(f_{i j}+f \delta_{i j}\right) \geq 0
$$

- The last condition is equivalent to say that f is a support function.

