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The functional

I Kn = family of convex bodies in Rn,

I f ∈ C (Sn−1).

M : Kn → R ,

M(K ) =

∫
Sn−1

f (x) dS(K , x) , (1)

where S(K , ·) is the area measure of K .

M is


continuous,
translation invariant,
(n − 1)–homogeneous,
a valuation.

(2)

By a result of McMullen (1980), (1) ⇔ (2).



The functional

I Kn = family of convex bodies in Rn,

I f ∈ C (Sn−1).

M : Kn → R ,

M(K ) =

∫
Sn−1

f (x) dS(K , x) , (1)

where S(K , ·) is the area measure of K .

M is


continuous,
translation invariant,
(n − 1)–homogeneous,
a valuation.

(2)

By a result of McMullen (1980), (1) ⇔ (2).



The functional

I Kn = family of convex bodies in Rn,

I f ∈ C (Sn−1).

M : Kn → R ,

M(K ) =

∫
Sn−1

f (x) dS(K , x) , (1)

where S(K , ·) is the area measure of K .

M is


continuous,
translation invariant,
(n − 1)–homogeneous,
a valuation.

(2)

By a result of McMullen (1980), (1) ⇔ (2).



The functional

I Kn = family of convex bodies in Rn,

I f ∈ C (Sn−1).

M : Kn → R ,

M(K ) =

∫
Sn−1

f (x) dS(K , x) , (1)

where S(K , ·) is the area measure of K .

M is


continuous,
translation invariant,
(n − 1)–homogeneous,
a valuation.

(2)

By a result of McMullen (1980), (1) ⇔ (2).



The functional

I Kn = family of convex bodies in Rn,

I f ∈ C (Sn−1).

M : Kn → R ,

M(K ) =

∫
Sn−1

f (x) dS(K , x) , (1)

where S(K , ·) is the area measure of K .

M is


continuous,
translation invariant,
(n − 1)–homogeneous,
a valuation.

(2)

By a result of McMullen (1980), (1) ⇔ (2).



The functional

I Kn = family of convex bodies in Rn,

I f ∈ C (Sn−1).

M : Kn → R ,

M(K ) =

∫
Sn−1

f (x) dS(K , x) , (1)

where S(K , ·) is the area measure of K .

M is


continuous,

translation invariant,
(n − 1)–homogeneous,
a valuation.

(2)

By a result of McMullen (1980), (1) ⇔ (2).



The functional

I Kn = family of convex bodies in Rn,

I f ∈ C (Sn−1).

M : Kn → R ,

M(K ) =

∫
Sn−1

f (x) dS(K , x) , (1)

where S(K , ·) is the area measure of K .

M is


continuous,
translation invariant,

(n − 1)–homogeneous,
a valuation.

(2)

By a result of McMullen (1980), (1) ⇔ (2).



The functional

I Kn = family of convex bodies in Rn,

I f ∈ C (Sn−1).

M : Kn → R ,

M(K ) =

∫
Sn−1

f (x) dS(K , x) , (1)

where S(K , ·) is the area measure of K .

M is


continuous,
translation invariant,
(n − 1)–homogeneous,

a valuation.

(2)

By a result of McMullen (1980), (1) ⇔ (2).



The functional

I Kn = family of convex bodies in Rn,

I f ∈ C (Sn−1).

M : Kn → R ,

M(K ) =

∫
Sn−1

f (x) dS(K , x) , (1)

where S(K , ·) is the area measure of K .

M is


continuous,
translation invariant,
(n − 1)–homogeneous,
a valuation.

(2)

By a result of McMullen (1980), (1) ⇔ (2).



The functional

I Kn = family of convex bodies in Rn,

I f ∈ C (Sn−1).

M : Kn → R ,

M(K ) =

∫
Sn−1

f (x) dS(K , x) , (1)

where S(K , ·) is the area measure of K .

M is


continuous,
translation invariant,
(n − 1)–homogeneous,
a valuation.

(2)

By a result of McMullen (1980), (1) ⇔ (2).



M(K ) =

∫
Sn−1

f (x) dS(K , x)

If f is the support function of a convex body L, then M is a mixed
volume:

M(K ) = V (n L,K , . . . ,K ) , ∀K ∈ Kn .

In this case M has many additional properties. Among them we
mention that:

I M is non–negative;

I M verifies an inequality of Brunn–Minkowski type:

[M((1− t)K0 + tK1)]
1

n−1 ≥ (1−t) [M(K0)]
1

n−1 +t [M(K1)]
1

n−1 ,

for every K0,K1 ∈ Kn and t ∈ [0, 1].

Note that in dimension two M is linear and the Brunn–Minkowski
inequality becomes an equality, for every choice of f .
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The problem

Let n ≥ 3. Assume that the functional

M(K ) =

∫
Sn−1

f (x) dS(K , x) ,

with f ∈ C (Sn−1), verifies M≥ 0 and
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1

n−1 + t [M(K1)]
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for every K0,K1 ∈ Kn and t ∈ [0, 1].

Then what can be said about f ? In particular, does it follow that f
is a support function?
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The symmetric case

Theorem A. Let n ≥ 3. Assume that f ∈ C (Sn−1) is even and the
functional

M : K −→
∫

Sn−1

f (x) dS(K , x) ,

is non–negative and verifies

[M((1− t)K0 + tK1)]
1

n−1 ≥ (1− t) [M(K0)]
1

n−1 + t [M(K1)]
1

n−1 ,

for every K0,K1 ∈ Kn and t ∈ [0, 1]. Then there exists a convex
body L such that f is the support function of L.
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Remarks

I f even implies M symmetric: M(K ) =M(−K ), ∀K .
Viceversa, M symmetric implies

f = fe + Λ ,

where fe is even and Λ is the restriction of a linear function to
Sn−1. Since∫

Sn−1

Λ(x) dS(K , x) = 0 , ∀K ∈ Kn ,

if M is symmetric, then f may assumed to be even.

I In Theorem A, the Brunn–Minkowski inequality in its standard
form can be replaced by the weaker version

M((1− t)K0 + tK1) ≥ min {M(K0),M(K1)} ,

for every K0,K1 ∈ Kn and t ∈ [0, 1]. This allows to remove
the assumption M≥ 0.
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Corollary. Let n ≥ 3 and

Φ : Kn −→ R

be a continuous, translation invariant, symmetric and
(n − 1)–homogeneous valuation.

Assume that

Φ((1− t)K0 + tK1) ≥ min {Φ(K0),Φ(K1)} , (3)

for every K0,K1 ∈ Kn and t ∈ [0, 1]. Then there exists L ∈ Kn

such that
Φ(K ) = V (L,K , . . . ,K ) , ∀K ∈ Kn .

As proved by McMullen (1990), the same result holds, without
symmetry assumption, if (3) is replaced by monotonicity w.r.t.
inclusion.
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The non–symmetric case

Theorem B. Let n ≥ 3. Assume that

f ∈ C (Sn−1) ∩W 2,2(Sn−1) ,

and the functional

M : K −→
∫

Sn−1

f (x) dS(K , x) ,

verifies

M((1− t)K0 + tK1) ≥ min {M(K0),M(K1)} ,

for every K0,K1 ∈ Kn and t ∈ [0, 1]. Then there exists a convex
body L such that f is the support function of L.
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About the proof

I K ∈ Kn of class C 2
+; h support function of K .

M(K ) =

∫
Sn−1

f det(hij + hδij) dHn−1 .

I φ ∈ C∞(Sn−1), s ∈ R, |s| sufficiently small;

h + sφ is the support function of a C 2
+ convex body Ks .

s −→ g(s) =M(Ks) .

Brunn–Minkowski inequality for M⇒ g1/(n−1) concave.
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d2

ds2

(
g1/(n−1)

)∣∣∣∣
s=0

≤ 0 .

=⇒ (n − 1)g(0)g ′′(0) ≤ (n − 2)(g ′(0))2 . (4)

g(s) =

∫
Sn−1

f det((h + sφ)ij + (h + sφ)δij) dHn−1 .

I Starting from the last expression, g(0), g ′(0) and g ′′(0) can
explicitly be computed, and replaced in (4);

I (4) becomes a functional inequality involving f , h and φ;

I in particular, its validity for every choice of h and φ reveals to
be a powerful condition, from which one can deduce that f is
a support function.
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A special case

I n = 3, f even and smooth.

I Choose h ≡ 1 (i.e. K is the unit ball of R3); inequality (4)
implies ∫

S2

f φ2 dH2 ≤
∫

S2

〈H∇φ,∇φ〉 dH2 , (5)

for every φ ∈ C∞(S2), supported in a hemisphere, where

H = cofactor matrix of (fij + f δij).

I (5) forces H ≥ 0 on S2;

I

H ≥ 0 ⇒ (fij + f δij) ≥ 0 .

I The last condition is equivalent to say that f is a support
function.
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