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Outline

Part 1: Compatibly split subschemes of Hilbn(Ak
2)

I A brief introduction to Hilbn(Ak
2)

I Stratifying Hilb2(Ak
2) by reduced subschemes

I A little bit of Frobenius splitting and an algorithm of Knutson,
Lam and Speyer

I Compatibly split subschemes of Hilbn(Ak
2) for n = 2, 3, 4

Part 2: Restricting to an open affine patch

I A description of the affine patch Uλ, λ = 〈x , yn〉
I Compatibly split subschemes of Uλ
I Gröbner degeneration and some combinatorics

Note: For the purposes of this talk, let k be an algebraically
closed field of characteristic p.



Hilbn(A2
k): Some Basics

Definition: As a set, Hilbn(A2
k) is:

{I ⊂ k[x , y ] : dim(k[x , y ]/I ) = n as a vector space over k}.

Each element I ∈ Hilbn(A2
k) corresponds to “n points in the affine

plane”.



Hilbn(A2
k): Some Basics (continued)

More precisely, the following is true:

I If I is a radical colength n ideal, then Spec(k[x , y ]/I ) consists
of n distinct points in the plane.

I If k[x , y ]/I is a local ring then Spec(k[x , y ]/I ) is non-reduced
and supported at a single point (a, b).
For example, each of 〈x3, y〉, 〈x2, xy , y2〉, 〈x2 + y , xy , y2〉 is
an element of Hilb3(A2

k) corresponding to a triple point at the
origin. There are many more ideals of this sort.
In fact, the family of all colength n ideals supported at a given
point (a, b) ∈ A2

k is a subscheme of dimension n − 1.

I In general, k[x , y ]/I ∼= k[x , y ]/I1 × · · · × k[x , y ]/Ir where each
k[x , y ]/Ij is a local ring and the (vector space) dimensions of
k[x , y ]/I1, . . . , k[x , y ]/Ir sum to n.



Properties of Hilbn(A2
k)

Theorem: (Fogarty) Hilbn(A2
k) is a non-singular, connected, integral

scheme of dimension 2n.
(The scheme structure is obtained by realizing Hilbn(A2

k) as a locally
closed subscheme of a Grassmannian.)

In other words, (unlike arbitrary Hilbert schemes of points) Hilbn(A2
k) is

very nice!

The torus T 2 = (k∗)2 acts on Hilbn(A2
k) by scaling x and y. That is, if

I ∈ Hilbn(A2
k) and I = 〈f1(x , y), . . . , fd(x , y)〉 then

(t1, t2) · 〈f1(x , y), . . . , fd(x , y)〉 = 〈f1(t1x , t2y), . . . , fd(t1x , t2y)〉. The
colength n monomial ideals are the fixed points of this action.

In this talk, we will be concerned with stratifying Hilbn(A2
k) in a

particular way. Doing so will yield finitely many (locally closed) strata

which are, for example, reduced, regular in codimension 1 and stable

under the T 2 action. We begin with a small example.



A stratification of Hilb2(A2
k)

Consider Hilb2(A2
k) and the reduced, T 2-invariant divisor D.

D =“at least one point is on a coordinate axis”

The two components of D will be the codimension 1 subvarieties
in our stratification.

We can intersect the irreducible components of this divisor and
decompose the intersection to obtain some new subschemes.
These subschemes are reduced!



Hilb2(A2
k) continued

Neither irreducible component of D is regular in codimension 1.
So, we include the non-R1 loci in the union of codimension 2
subvarieties to appear in the stratification of Hilb2(A2

k).

Intersecting each one of these (R1) subvarieties with the union of
the others and then decomposing each intersection yields the
following codimension 3 subvarieties:

Repeating this procedure once more produces the T 2-fixed points.



Hilb2(A2
k) continued

This sequence of intersecting, decomposing and including non-R1 loci
produces the following stratification:

All of the subschemes appearing above turn out to be reduced – indeed,

this collection of subvarieties is precisely the set of “compatibly Frobenius

split” subvarieties of Hilb2(A2
k).



A question

More generally, Hilbn(A2
k) is Frobenius split, compatibly with the

divisor, D =“at least one point is on the x-axis or at least one
point is on the y-axis”. This allows us to ask:

What are all of the compatibly split subvarieties?

To study this question, we’ll use an algorithm of Allen Knutson,
Thomas Lam and David Speyer. (This algorithm makes precise the
“intersect, decompose, include the non-R1 locus” procedure used
above.)

Before proceeding to describe the algorithm and to investigate the
above question, we should discuss some basic notions of Frobenius
splitting.



Some Frobenius splitting basics

Definition: Let R be a (commutative) k-algebra and let X = Spec(R). Say
that R (or X ) is Frobenius split by φ : R → R if:

φ(a + b) = φ(a) + φ(b), φ(apb) = aφ(b), φ(1) = 1

for any a, b ∈ R.
(Notice that φ is an R-module map which “splits” the Frobenius
endomorphism F : R → R, r 7→ rp. That is, φ ◦ F = Id.)

It immediately follows from the definition that if R is Frobenius split then R
has no nilpotents. So, X = Spec(R) is reduced.

Definition: Let I ⊂ R be an ideal. We say that I (or V (I )) is compatibly
Frobenius split if φ(I ) ⊂ I .
In this case, there is an induced splitting, φ : R/I → R/I and we get that I is a
radical ideal.

The following are some consequences which we have already used:

I Intersections, unions and components of compatibly split subschemes are
compatibly split.

I The non-R1 locus of any compatibly split subvariety is compatibly split.



Frobenius splittings and divisors

The definitions and results on the previous slide can be generalized to an
arbitrary scheme (X ,OX ). (See Brion-Kumar.) We won’t discuss this.
However, it is necessary for us to consider the following situation:

Let X be a non-singular (or normal) scheme.

Recall that an anticanonical divisor of X is the divisor associated to a
section of

∧dim(X )(TX ).

These divisors are important to us for the following reason:

Fact: Certain anticanonical divisors D induce (in a specific way) a
Frobenius splitting on X such that the compatibly split codimension 1
subvarieties are the components of the divisor’s support.

In fact, all compatibly split subvarieties are contained inside of D or
inside of the singular locus of X \ D. (Kumar-Mehta)



Some divisors that induce splittings

Theorem: (Lakshmibai-Mehta-Parameswaran)
Let f ∈ k[x1, . . . , xn]. If there is a term order on k[x1, . . . , xn] such
that init(f ) = x1x2 · · · xn then V (f ) induces a splitting on An that
compatibly splits V (f ).

Example: Affine space is Frobenius split compatibly with
V (x1x2 . . . xn). This splitting of An is called the standard splitting.
By decomposing the components of the divisor, intersecting the
pieces, decomposing the intersections, etc., we see that the
collection of coordinate subspaces is precisely the set of compatibly
split subvarieties.

Theorem: (Kumar-Thomsen) The anticanonical divisor described
by “at least one point is on an axis” induces a Frobenius splitting
on Hilbn(A2

k).

We are now ready to describe the Knutson-Lam-Speyer algorithm.



An algorithm

Algorithm(Knutson-Lam-Speyer)
Input: (X , ∂X ) where X is Frobenius split and ∂X is the anticanonical
divisor which induces the splitting.
Output: Suppose that ∂X = D1 ∪ · · · ∪ Dr . Let
Ei = D1 ∪ · · · ∪ D̂i ∪ · · · ∪ Dn. There are two cases.

1. If X is regular in codimension 1, then return
(D1,D1 ∩ E1),. . . ,(Dn,Dn ∩ En).

2. If X is not R1, return (X̃ , ν−1(∂X ∪ Xnon-R1)) where ν : X̃ → X is
the normalization of X .

Repeat until neither 1. nor 2. can be applied. When finished, map all
subvarieties back to the original Frobenius split variety to obtain a list of
many (for large p) compatibly split subvarieties.
At each stage of the algorithm, check if ∃ a component of the singular
locus that is both compatibly split and of codimension ≥ 2. (Hard!)
If so, add it (and its compatibly split subvarieties) to the list. The final
list consists of all compatibly split subvarieties of (X , ∂X ).



Back to Hilb2(A2
k)

As an example of the algorithm, we consider (again) the case of
Hilb2(A2

k).
Start with (Hilb2(A2

k),D) where D is as before.

Apply 1.

Due to the symmetry, continue with just the first of the two pairs.

Next, recall that the components of D are not regular in
codimension 1. Apply 2.



Continued

Apply 1.

Applying 1. once more obtains the preimage of the T 2-fixed points
under the normalization map ν : Xn → Hilb2(A2

k) where Xn

denotes the isospectral Hilbert scheme (i.e. the scheme of labelled
points in the affine plane).



The compatibly split subvarieties of Hilb2(A2
k)



A remark

In the case of Hilb2(A2
k), repeatedly applying steps 1. and 2. was

enough to find all compatibly split subvarieties. This is not always
the case; it is necessary to check for compatibly split subvarieties
inside of the singular locus at each stage of the algorithm.

Example: Let p ≡ 1 (mod 3) and let {x3 + y3 + z3 = 0} be the
divisor that determines the splitting of A3

k . In this case,
(X , ∂X ) = (A3

k , {x3 + y3 + z3 = 0}). Neither 1. nor 2. can be
applied. However, the origin is compatibly split.



The compatibly split subvarieties of Hilb2(A2
k)



The compatibly split subvarieties of Hilb3(A2
k)



The compatibly split subvarieties of Hilb4(A2
k)



More generally

I Notice that the poset of compatibly split subvarieties for
Hilbn1(A2

k) appears inside the poset for Hilbn2(A2
k) (n1 < n2)

by adding some more points.

I Also, we can see from the algorithm that the subvariety of
Hilbn(A2

k) corresponding to “q points on the x-axis and r
points on the y-axis” for q + r ≤ n is compatibly split.

I It is difficult to say much more about the general case. It is
even hard to guess which monomial ideals are compatibly split
for arbitrary n. Recall that for each of Hilb2(A2

k) and
Hilb3(A2

k), all of the monomial ideals are compatibly split.
However, this doesn’t happen in Hilb4(A2

k); that is, the
variety consisting of the point 〈x2, y2〉 is not split.

For the rest of the talk, we restrict to an open affine patch of the
Hilbert scheme and see that things are more understandable.



An open affine patch of Hilbn(A2
k)

Let λ be a monomial ideal in Hilbn(A2
k). Let Uλ denote the set of all

I ∈ Hilbn(A2
k) such that the monomials outside λ form a vector space

basis of k[x , y ]/I .

Example: Let λ = 〈y2, x〉 ∈ Hilb2(A2
k). Then I = 〈y2 + y , x + 2〉 ∈ Uλ

as {1, y} spans the vector space k[x , y ]/I .

Set λ = 〈yn, x〉 for the remainder of the talk.

Fix the Lex term order with x � y . The elements of Uλ are ideals
generated by polynomials of the form

yn − b1yn−1 − b2yn−2 − · · · − bn−1y − bn
xyn−1 − a1yn−1 − c12yn−2 − · · · − c1(n−1)y − c1n

xyn−2 − a2yn−1 − c22yn−2 − · · · − c2(n−1)y − c2n

...

xy − an−1yn−1 − c(n−1)2y
n−2 − · · · − c(n−1)(n−1)y − c(n−1)n

x − anyn−1 − cn2yn−2 − · · · − cn(n−1)y − cnn

where each cij is a polynomial in a1, . . . , an, b1, . . . , bn.

Thus, Uλ ∼= A2n = Spec(k[a1, b1, . . . , an, bn]).



The splitting of Uλ

Let X be a (normal) scheme that is Frobenius split compatibly
with an anticanonical divisor D. Let V be an open subscheme of
X . Then, D ∩ V induces a splitting of V and the compatibly split
subvarieties of V are the Y ∩ V where Y is a compatibly split
subvariety of X .

In our situation, this says that there is a Frobenius splitting of Uλ
induced by the Frobenius splitting of Hilbn(A2

k). We may therefore
ask the (hopefully easier) question,

“What are all of the compatibly split subvarieties of Uλ
with this induced splitting?”



Compatibly split subschemes of Uλ ⊂ Hilb2(A2
k)

The subvarieties to the left of the red curve have non-trivial
intersection with Uλ ⊂ Hilb2(A2

k).

Notice that the poset of compatibly split subvarieties of Uλ is a
square.



Compatibly split subschemes of Uλ ⊂ Hilb3(A2
k)

Again, we get a square.



Compatibly split subschemes of Uλ ⊂ Hilb4(A2
k)



Compatibly split subvarieties of Uλ ⊂ Hilbn(A2
k)

More generally, we get (at least) the following types of compatibly split
subvarieties:

It can be checked, by counting dimensions, that the stratification of Uλ by
these subvarieties again has the shape of a square.

To better understand the compatibly split subvarieties of Uλ, it is useful to

understand the anticanonical that determines the splitting. We do this next.



The divisor that determines the splitting of Uλ ∼= A2n
k

Recall that Hilbn(A2
k) is Frobenius split compatibly with the divisor

D =“at least one point is on an axis”. This has two components and so,
D ∩ Uλ should be defined by the product of two irreducible polynomials.

Example: Consider Uλ ⊂ Hilb2(A2
k). Then, every ideal in Uλ can be

written as:

I =

〈 y2 − b1y − b2

xy − a1y − a2b2

x − a2y − (a1 − b1a2)

〉

If there is at least one point on the x-axis, then I + 〈y〉 6= 〈1〉. Thus,
−b2 = 0. Similarly, if there is a point on the y -axis then I + 〈x〉 6= 〈1〉
and ∣∣∣∣ −a1 −a2b2

−a2 −(a1 − b1a2)

∣∣∣∣ = 0

So, V (a1b1a2b2 − a2
1b2 + a2

2b
2
2) determines the splitting of Uλ.



Compatibly split subvarieties of Uλ ⊂ Hilb2(A2
k)

We may apply the Knutson-Lam-Speyer algorithm to obtain:



Initial ideals and simplicial complexes
With respect to the term order

revlexb2 , lexa2 , revlexb1 , lexa1 ,

init(I ), for I compatibly split, is a squarefree monomial ideal. We can therefore
associate a simplicial complex to each init(I ).

Note that the picture on the right is a 3-simplex that has been “unfolded” to

better see all of the faces.



Squarefree monomial ideals

There is a one-to-one correspondence between squarefree monomial
ideals and simplicial complexes.

Example:
Let ∆ be the following simplicial complex on the vertex set {v1, . . . , v6}.

The squarefree monomial ideal (or “Stanley-Reisner” ideal) of ∆ is the
ideal I∆ generated by the minimal non-faces of ∆.
In the example, I∆ = 〈v6, v1v4, v1v5, v2v4, v4v5, v1v2v3〉.

On the other hand, given I∆, we can decompose to obtain

〈v1, v2, v5, v6〉 ∩ 〈v3, v4, v5, v6〉 ∩ 〈v2, v4, v5, v6〉 ∩ 〈v1, v4, v6〉. The

(maximal dimensional) faces of ∆ are then v3v4, v1v2, v1v3, v2v3v5.



Back to our example

Notice that all compatibly split subvarieties degenerate to the

Stanley-Reisner scheme of a ball. This is interesting to note; we’ll come

back to this later.



More generally

Theorem: (Knutson, building on LMP) Fix a term order on
k[x1, . . . , xn]. Let f ∈ k[x1, . . . , xn] be a degree n polynomial such
that init(f ) =

∏
i xi . (Thus f induces a splitting on An

k .)
If I is compatibly split with respect to this splitting, then init(I ) is
compatibly split with respect to the standard splitting.
Thus, for each compatibly split ideal I , init(I ) is a squarefree
monomial ideal.

This theorem applies in our situation.



A polynomial and a term order

More generally, recall that elements of Uλ are ideals generated by
polynomials of the form

yn − b1yn−1 − b2yn−2 − · · · − bn−1y − bn
xyn−1 − a1yn−1 − c12yn−2 − · · · − c1(n−1)y − c1n

xyn−2 − a2yn−1 − c22yn−2 − · · · − c2(n−1)y − c2n

...

xy − an−1yn−1 − c(n−1)2y
n−2 − · · · − c(n−1)(n−1)y − c(n−1)n

x − anyn−1 − cn2yn−2 − · · · − cn(n−1)y − cnn

where each cij is a polynomial in a1, . . . , an, b1, . . . , bn.
Let Mn be the matrix of coefficients (−cij)1≤i,j≤n where ci1 = ai .

Then, the divisor that determines the splitting on Uλ is given by V (fn)
where fn = −bn(detMn). Furthermore, the term order

revlexbn , lexan , . . . , revlexb1 , lexa1 ,

is such that init(fn) = bnan · · · b1a1.



An example
We have:

M2 =

(
−a1 −a2b2
−a2 −(a1 − b1a2)

)
, M3 =

−a1 −(a2b2 + a3b3) −a2b3
−a2 −(a1 − b1a2) −a3b3
−a3 −(a2 − b1a3) −(a1 − b1a2 − b2a3)



M4 =


−a1 −(a2b2 + a3b3 + a4b4) −(a2b3 + a3b4) −a2b4
−a2 −(a1 − b1a2) −(a3b3 + a4b4) −a3b4
−a3 −(a2 − b1a3) −(a1 − b1a2 − b2a3) −a4b4
−a4 −(a3 − b1a4) −(a2 − b1a3 − b2a4) −(a1 − b1a2 − b2a3 − b3a4)


Computing the determinant of M4 using cofactors along the last column,
we get:

det M4 = (M4)44(det M3) + b4(· · · ).

Taking the terms with the smallest power of b4 (i.e. computing
initrevlexb4

(det M4)) yields:

(M4)44(det M3).

Taking initlexa4
of this polynomial yields:

a4b3(det M3).



An example (continued)

We have: initlexa4
initrevlexb4

(det M4) = a4b3(det M3).
Recall also that:

M2 =

(
−a1 −a2b2
−a2 −(a1 − b1a2)

)
, M3 =

−a1 −(a2b2 + a3b3) −a2b3
−a2 −(a1 − b1a2) −a3b3
−a3 −(a2 − b1a3) −(a1 − b1a2 − b2a3)

 .
Taking initrevlexb3

and then initlexa3
of a4b3(det M3) produces:

a4b3a3b2(det M2)

Doing this once more with with b2 and a2 yields:

a4b3a3b2a2b1(−a1)

Thus, under the term order

revlexb4 , lexa4 , revlexb3 , lexa3 , revlexb2 , lexa2 , revlexb1 , lexa1 ,

we get that init(f4) = init(−b4(det M4)) = b4a4b3a3b2a2b1a1.



Associating simplicial complexes to subvarieties

Because we have a term order such that init(fn) = bnan · · · b1a1,
Knutson’s theorem tell us that we can associate a simplicial
complex to each compatibly split subvariety.

We’ve seen that we can do this as follows:

Take the ideal defining the subvariety, compute a Gröbner basis
with respect to our term order, read off the initial ideal and then
associate a simplicial complex.

Doing this each time would be somewhat difficult/annoying.
Luckily, this work isn’t necessary. Rather, we can do everything
combinatorially.



Associating “words” to subvarieties
To each compatibly split subvariety we associate “words” in the following “letters”:

(1) ab, (2) âb, (3) aab, (4) aa, (5) â

Let X be a compatibly split subvariety of Uλ ⊂ Hilbn(A2
k ). Suppose that X has L free

points, K points freely on the y -axis and R points “vertically stacked” at the origin.
For example:

Then, X is associated to the collection of words of the form

(word in (1), (2), (3)) | (word in (4), (5)) | (a iff “R + 1” at origin)

such that

#(1) + #(3) + #(4) = L, #(2) + #(3) = K , #(4) + #(5) = R.

Point: These words are in one-to-one correspondence with the facets of the simpicial
complex associated to X .

Note: I am missing some details in the proof of the above assertion.



Combinatorial (and thus geometric) properties

Using the above recipe to associate a simplicial complex to a compatibly
split subvariety X ⊂ Uλ, we obtain the following:

Suppose that X has no free points:
In this case, init(X ) is the Stanley-Reisner scheme of a simplex. Thus,
init(X ) is affine space. By semicontinuity, X is non-singular.

Suppose that X has at least one free point:

1. If X has no points freely on the y -axis, then init(X ) is the
Stanley-Reisner scheme of a (vertex decomposable) ball. And,
∂(X ), the union of codimension 1 compatibly split subvarieties of
X , degenerates onto the boundary sphere.

2. If X has exactly one point freely on the y -axis, then init(X ) is the
Stanley-Reisner scheme of a (vertex decomposable) ball.

In each of the above two cases, we get that init(X ) is Cohen-Macaulay.

Therefore, so is X .



The remaining case

If X has K ≥ 2 points freely on the y axis then things aren’t as nice. In
particular, the non-R1 locus of X degenerates to a simplicial complex that is
contained in precisely K + 1 facets of the complex associated to X .

Example:

Note that the cone on the red edge is the simplicial complex associated to the
subvariety “3 points are on the y -axis”. This is the non-R1 locus of X .



Thank You.


