Example 0.1. Here are three equivalent SNST with their external V- and W-arcs drawn.

T₁ T_2 T_3 There is one 3-2-1 W-arc in T_1, T_2, T_3 , and there are no pure k-l V- or W-arcs in T_1, T_2 , or T_3 .

Figure 1: The upper canonical basis of $V^{\otimes 3}$ for $d_V = 2$. The pairs of tableaux are of the form $(P(\mathbf{k}), Q(\mathbf{k}))$. The arrows and their coefficients give the action of F on the upper canonical basis.

Figure 2: Nonstandard columns of height r are identified with NSC^r. These are a basis of $\Lambda^r \bar{X}$.

Figure 3: The basis $NST(\triangleright(1,1))$ of $\overline{Y}_{\triangleright(1,1)}$, which consists of graded and non-integral $\triangleright NST$.

Figure 4: The basis $NST(\triangleright(2, 1))$ of $\overline{Y}_{\triangleright(2,1)}$, which consists of degree-preserving and integral $\triangleright NST$.

Figure 5: The graded elements of the basis $NST(\triangleright(2,2))$ of $\overline{Y}_{\triangleright(2,2)}$, which are all non-integral.

Figure 6: Some of the degree-preserving elements of the basis $NST(\triangleright(2,2))$ of $\bar{Y}_{\triangleright(2,2)}$, which are all integral.

Figure 7: A degree-preserving and integral element of the basis $NST(\triangleright(2,2))$ of $\bar{Y}_{\triangleright(2,2)}$.

Figure 8: The element of the basis $NST(\triangleright(3,1))$ of $\overline{Y}_{\triangleright(3,1)}$, which is graded and integral.

Figure 9: The basis $NST(\triangleright(3,2))$ of $\overline{Y}_{\triangleright(3,2)}$, which consists of degree-preserving and integral $\triangleright NST$.

Figure 10: The basis $NST(\triangleright(3,3))$ of $\bar{Y}_{\triangleright(3,3)}$, which consists of graded and non-integral $\triangleright NST$.

Figure 11: The elements of NST($\triangleright(1, 1, 1)$), which span a \bar{U}_{τ} -submodule of $\bar{Y}_{\triangleright(1,1,1)}$ and are all degree-preserving and integral. This shows that height-1 invariants commute with height-1 columns in $\bar{X}_{(1,1,1)}$.

Figure 12: The elements of NST($\triangleright(3,3,3)$), which span a \bar{U}_{τ} -submodule of $\bar{Y}_{\triangleright(3,3,3)}$ and are all degree-preserving and integral. This shows that height-3 invariants commute with height-3 columns in $\bar{X}_{(3,3,3)}$.

Figure 13: The graph $\mathcal{TG}((3,2,2,1)')$ restricted to highest weight SNST of weight ((5,3), (5,3)). Also, for each pair $\{T, -T\}$ of SNST, we have only drawn one of the pair. Edges without arrows indicate a directed edge in both directions and are degree-preserving moves; edges with arrows are graded moves. There are two strong components that are nonzero NSTC-the one of size 6 and the one of size 2, corresponding to the fact that the Kronecker coefficient $g_{(5,3),(5,3),(3,2,2,1)'} = 2$.

Figure 14: A \overline{U}_{τ} -cell of +NSTC((3, 2, 1)); all SNST belonging to each +NSTC in this cell are shown.

Figure 15: Straightened highest weight NST of shape (3, 2, 2, 2, 2, 1). The position of an NST of weight $(\lambda, \mu) = ([l_2, l_1], [m_2, m_1])$ is (l_1, m_1) . The bold borders and numbers make it easier to read off the NST of fixed degree.

 $\begin{array}{c}
 1 & 1 & 1 & 1 & 1 & 1 \\
 3 & 3 & 3 & 3 & 3 \\
 4
 \end{array}$

 $\begin{array}{c}
 1 & 1 & 1 & 1 & 1 \\
 2 & 3 & 3 & 3 \\
 3 & 3 & 3
 \end{array}$

Figure 16: The Kronecker graphical calculus for straightened highest weight invariant-free NST. The labels indicate which type of invariant-free Kronecker coefficient each NST contributes to.

Figure 17: Polytopes for the five types of invariant-free Kronecker coefficients.