Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema

(joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

University of Tampere

June 23, 2011

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is undecidable
SAT / FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Outline

Jonni Virtema (joint work with
Juha Kontinen,
Antti Kuusisto,
Peter Lohmann)

1. Backround
2. Motivation

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Background

- The semantics of first order logic can be defined game theoretically by a two player game with perfect information.
- In FO the order in which quantifiers are written determines dependence relations between variables, e.g., in

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} \psi\left(x_{1}, x_{2}, y_{1}, y_{2}\right)
$$

the value chosen for y_{1} depends on the value of x_{1} and y_{2} depends on both x_{1} and x_{2}.

- A natural question that arises is what happens if we allow a richer structure of dependence.

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT $\left(\mathrm{D}^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

- Leon Henkin (1959) introduced formulas (called Henkin quantifier or Branching quantifier) of the form

$$
\left(\begin{array}{ll}
\forall x_{1} & \exists y_{1} \tag{1}\\
\forall x_{2} & \exists y_{2}
\end{array}\right) \psi\left(x_{1}, x_{2}, y_{1}, y_{2}\right)
$$

Outline
Backround
Motivation
where y_{1} depends on x_{1} and y_{2} only depends on x_{2}.
Formula (1) is equivalent to the formula

$$
\exists f \exists g \forall x_{1} \forall x_{2} \psi\left(x_{1}, x_{2}, f\left(x_{1}\right), g\left(x_{2}\right)\right)
$$

of existential second-order logic ESO.

Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

- It was soon observed that the expressive power of branching quantifiers goes beyond FO. Infact it's equi-expressive to the full existential second order logic.
- The idea of Henkin was developed further by Jaakko Hintikka and Gabriel Sandu (80's) with their Independence Friendly Logic (IF). In IF-logic the branching quantifier can be expressed as:

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2} /\left\{x_{1}, y_{1}\right\} \psi\left(x_{1}, x_{2}, y_{1}, y_{2}\right),
$$

where $\exists y_{2} /\left\{x_{1}, y_{1}\right\}$ means that the choice for the value of y_{2} has to be independent of the values of x_{1} and y_{1}.

Outline

Backround
Motivation
Introduction
Introducing D and IF Expressive power of D^{2} and IF^{2}
Other relevant logics Satisfiability problem

Results

Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT $\left(\mathrm{D}^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

- The semantics of IF-logic was first defined game theoretically with a two party game of imperfect information.
- In the 90 's, Wilfrid Hodges gave a Tarski style truth definition for IF where the basic notion used to define satisfaction is not assignment s satisfying a formula as in FO, but a set X of assignments satisfying a formula.
- Dependence logic of Jouko Väänänen (2007) adds the concept of dependence to FO in terms of new atomic dependence formulas. In Dependence logic the branching quantififier can be expressed as

$$
\forall x_{1} \exists y_{1} \forall x_{2} \exists y_{2}\left(=\left(x_{2}, y_{2}\right) \wedge \psi\left(x_{1}, x_{2}, y_{1}, y_{2}\right)\right)
$$

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT /FINSAT $\left(\mathrm{D}^{2}\right)$ is decidable
Separation of D^{2} and

Motivation

Outline

Backround

- Extensions of FO^{2}.
- Differences in D and IF.

Motivation
Introduction
Introducing D and IF
Expressive power of D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Dependence Logic and IF-logic

Definition (IF-logic)

The syntax of IF extends the syntax of FO defined in negation normal form by adding quantifiers of the form

$$
\begin{aligned}
& (\exists x / W) \phi \\
& (\forall x / W) \phi
\end{aligned}
$$

called slashed quantifiers. Here W is a finite set of first order variables.

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\right.$ IF $\left.^{2}\right)$ is
undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Dependence logic

Definition

The syntax of D extends the syntax of FO defined in negation normal form by new atomic (dependence) formulas of the form

$$
=\left(x_{1}, \ldots, x_{n}\right)
$$

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Team semantics

The semantics of D and IF are defined in terms of Teams (sets of assignments):

Definition

Let A be a set and $\left\{x_{1}, \ldots, x_{k}\right\}$ a set of variables. A team X of A with domain $\left\{x_{1}, \ldots, x_{k}\right\}$ is a set of assignments s from $\left\{x_{1}, \ldots, x_{k}\right\}$ into A.

Outline

Backround
Motivation
Introduction
Introducing D and IF Expressive power of D^{2} and IF^{2}
Other relevant logics Satisfiability problem

Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT (D^{2}) is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Semantics for D and IF

Definition

Let \mathfrak{A} be a model and X a team of A. The satisfaction relation $\mathfrak{A} \vDash x \phi$ is defined as follows:

1. If ϕ is a first-order literal, then $\mathfrak{A} \models x \phi$ iff for all $s \in X$:

$$
\mathfrak{A}, s=\text { FO } \phi .
$$

Outline

Backround
Motivation
2. $\mathfrak{A} \models x \psi \wedge \phi$ iff $\mathfrak{A} \models x \psi$ and $\mathfrak{A} \models x \phi$.
3. $\mathfrak{A}=x \psi \vee \phi$ iff there exist teams Y and Z such that $X=Y \cup Z, \mathfrak{A} \models_{\gamma} \psi$ and $\mathfrak{A} \models z \phi$.
4. $\mathfrak{A} \vDash x \exists y \psi$ iff $\mathfrak{A} \vDash x(F / y) \psi$ for some $F: X \rightarrow A$.
5. $\mathfrak{A} \models x \forall y \psi$ iff $\mathfrak{A} \vDash x(A / y) \psi$.

Here $X(F / y)=\{s(F(s) / y) \mid s \in X\}$ and $X(A / y)=\{s(a / y) \mid a \in A, s \in X\}$.

Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT (D^{2}) is decidable
Separation of D^{2} and IF^{2}

Conclusion

Semantics of D

Definition

Outline

Backround

6. $\mathfrak{A} \mid=x=\left(x_{1}, \ldots, x_{n}\right)$ iff for all $s, s^{\prime} \in X$ such that $s\left(x_{1}\right)=s^{\prime}\left(x_{1}\right), \ldots, s\left(x_{n-1}\right)=s^{\prime}\left(x_{n-1}\right)$, we have that $s\left(x_{n}\right)=s^{\prime}\left(x_{n}\right)$.
7. $\mathfrak{A} \models x \neg=\left(x_{1}, \ldots, x_{n}\right)$ iff $X=\emptyset$.

Motivation
Introduction
Introducing D and IF Expressive power of D^{2} and IF^{2}
Other relevant logics
Satisfiability problem

Results

Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and $I F^{2}$

Conclusion
Bibliography

Semantics of IF

Definition

8. $\mathfrak{A} \models x \exists y / W \phi$ iff $\mathfrak{A} \models x(F / y) \phi$ for some W-independent function $F: X \rightarrow A$.
9. $\mathfrak{A} \models x \forall y / W \phi$ iff $\mathfrak{A} \models_{x(A / y)} \phi$.

We say that a function $F: X \rightarrow A$ is W-independent if for all $s, s^{\prime} \in X$ with $s(x)=s^{\prime}(x)$ for all $x \in \operatorname{dom}(X) \backslash W$ we have that $F(s)=F\left(s^{\prime}\right)$.

Outline

Backround
Motivation
Introduction
Introducing D and IF Expressive power of D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT FINSAT (D^{2}) is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Properties expressible in D^{2} and IF^{2}

Proposition

The following properties can be expressed in D^{2} :

1. For unary relation symbols P and Q, D^{2} can express $|P|=|Q|$. This shows that $\mathrm{D}^{2} \not \leq \mathrm{FO}$.
2. If the vocabulary of \mathfrak{A} contains a constant c, then D^{2} can express that A is infinite.
3. $|A| \leq k$ can be already expressed in D^{1}.

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and

Comparison of D^{2} and IF^{2}

Theorem

$\mathrm{D}^{2} \leq \mathrm{IF}^{2} \leq \mathrm{D}^{3}$

Proof.

The claim follows by relatively straightforward translations.

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Other relevant logics

1. FO^{2}, two-variable first order logic,
2. FOC^{2}, two-variable first order logic with counting,
3. $\mathrm{FO}^{2}(\mathrm{I})$, two-variable first order logic with the Härtig quantifier $\operatorname{Ixy}(\phi(x), \psi(y))$
4. ESO, existential second order logic.

Outline

Backround

Motivation

Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem

Results

Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Satisfiability problem

Definition

Let \mathcal{L} be a logic. The satisfiability problem $\operatorname{SAT}[\mathcal{L}]$ is the following problem:
Input: a sentence $\phi \in \mathcal{L}$.
Output: Yes, if there is a model \mathfrak{A} such that $\mathfrak{A} \models \phi$, and No otherwise.

The finite satisfiability problem FINSAT $[\mathcal{L}]$ is the version of the above question in which \mathfrak{A} must also be finite.

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT FINSAT (D^{2}) is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Some complexity results

Logic FO, FO ESO, D, IF FO^{2} FOC^{2} $\mathrm{FO}^{2}(\mathrm{I})$ D^{2} IF^{2}

Complexity of SAT / FINSAT
$\Pi_{1}^{0} / \Sigma_{1}^{0}$
$\Pi_{1}^{0} / \Sigma_{1}^{0}$
NEXPTIME
NEXPTIME
Σ_{1}^{1}-hard $/$ in Σ_{1}^{0}
NEXPTIME
$\Pi_{1}^{0} / \Sigma_{1}^{0}$
References
[Chu36, Tur36]
[Chu36, Tur36]
$[$ GKV97]
$[$ PH05]
$[$ GOR97]
$[$ LICS 2011]
$[$ LICS 2011]

Outline
Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Complexity of $\operatorname{SAT}\left(\mathrm{IF}^{2}\right)$ and $\operatorname{FINSAT}\left(\mathrm{IF}^{2}\right)$

Theorem (LICS 2011)
$\operatorname{SAT}\left(\mathrm{IF}^{2}\right)$ is Π_{1}^{0}-complete.

Theorem (LICS 2011)

$\operatorname{FINSAT}\left(\mathrm{F}^{2}\right)$ is Σ_{1}^{0}-complete.

Outline

Backround

Motivation

Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem

Results

Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Tiling

- A tile is a square whose each side is assigned a color, i.e., it is a square that has four colors (up, right, down, left).
- A set of tiles T can tile a model $\mathfrak{A}=(A, V, H)$ with two binary relations V and H if a tile can be placed on every point in the domain A s.t

1. for all pairs of points $(a, b) \in H$ the right color of the tile on a is the same as the left color on the tile on b and
2. for all pairs of points $(a, b) \in V$ the top color of the tile on a is the same as the bottom color on the tile on b.

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics Satisfiability problem

Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

The grid

where $H(\rightarrow), V(\rightarrow)$.

Undecidability of tiling problems

Tiling problem for a fixed model \mathfrak{A} is the following problem: Given a set of tiles T can T tile the model \mathfrak{A}. We denote this problem as Tiling(\mathfrak{A}).

Theorem ([Ber66])

Tiling (\mathfrak{G}), where \mathfrak{G} is the $\mathbb{N} \times \mathbb{N}$ grid is Π_{1}^{0}-complete problem.

Outline

Backround

Motivation

Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is undecidable
SAT/FINSAT (D^{2}) is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Hardness

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with
Juha Kontinen,
Antti Kuusisto,
Peter Lohmann)
Π_{1}^{0} hardness follows from the following lemma:

Lemma

For every set of tiles T we have IF^{2} formula γ_{T} s.t γ_{T} is satisfiable iff T can tile the $\mathbb{N} \times \mathbb{N}$ grid.

Outline

Backround

Motivation

Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is undecidable
SAT/FINSAT (D^{2}) is decidable
Separation of D^{2} and $I^{\prime}{ }^{2}$

Conclusion
Bibliography

Expressing tiling (the easy part)

Given a set of tiles T it easy to write an FO^{2} sentence ϕ_{T} s.t T tiles a model $\mathfrak{A}=(A, V, H)$ iff there exists \mathfrak{A}^{*}, an extension of \mathfrak{A} with some unary relation symbols, s.t $\mathfrak{A}^{*} \models \phi_{T}$.

Outline

Backround

Motivation

Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is undecidable
SAT / FINSAT (D^{2}) is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Expressing grid-likeness (a bit harder part)

Outline

Backround
The problem lies in expressing that a model is an infinite grid or something close enough.

Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is undecidable
SAT/FINSAT (D^{2}) is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Grid-likeness

We use the following properties to say that a structure (A, V, H) is grid-like:

1. V and H are graphs of injective functions.
2. There exists a root of the grid.
3. $V \cap H=\emptyset$
4. Borders of the grid are constructed correctly.
5. Amalgamation property for V and H hold.
6. The grid is infinite.

Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

The grid

where $H(\rightarrow), V(\rightarrow)$.

Expressing amalgamation

In the formula $\phi_{\text {grid }}$ the key ingredient is to express the following property:

Property

Jonni Virtema
(joint work with
Juha Kontinen,
Antti Kuusisto,
Peter Lohmann)

For all points x there exists a point y s.t.

$$
x(V \circ H) y \text { and } x(H \circ V) y .
$$

Sentence

We use the following IF^{2} sentence to mimic the above property, note that they are not equivalent

$$
\forall x \forall y((V(x, y) \vee H(x, y)) \rightarrow \exists x /\{y\}(V(y, x) \vee H(y, x)))
$$

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is undecidable
SAT/FINSAT (D^{2}) is decidable
Separation of D^{2} and IF^{2}

Conclusion

Lemma

Peter Lohmann)

For every set of tiles T we have IF^{2} formula γ_{T} s.t γ_{T} is satisfiable iff T can tile the $\mathbb{N} \times \mathbb{N}$ grid.

Outline
Backround
Motivation
Introduction
Theorem
$\operatorname{SAT}\left(\mathrm{IF}^{2}\right)$ is Π_{1}^{0}-hard.

Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(I^{2}\right)$ is undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Since SAT(ESO) is Π_{1}^{0}-complete and there is a polynomial translation from IF into ESO, it follows that $\operatorname{SAT}\left(\mathrm{IF}^{2}\right)$ is in Π_{1}^{0}.

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\right.$ IF $\left.^{2}\right)$ is undecidable
SAT/FINSAT (D^{2}) is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

SAT/FINSAT $\left(\mathrm{D}^{2}\right)$ is decidable

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Theorem ([GKV97])
SAT $\left(\mathrm{FO}^{2}\right)$ and $\operatorname{FINSAT}\left(\mathrm{FO}^{2}\right)$ are NEXPTIME-complete.
Theorem ([PH05])
SAT (FOC^{2}) and FINSAT (FOC ${ }^{2}$) are NEXPTIME-complete.
Hence $\operatorname{SAT}\left(\Sigma_{1}^{1}\left(\operatorname{FOC}^{2}\right)\right)$ and $\operatorname{FINSAT}\left(\Sigma_{1}^{1}\left(\operatorname{FOC}^{2}\right)\right)$ are NEXPTIME-complete.

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT (D^{2}) is decidable
Separation of D^{2} and

SAT/FINSAT $\left(\mathrm{D}^{2}\right)$ is decidable

Since D^{2} is a conservative extension of FO^{2}. And there exists a polynomial translation from D^{2} to $\Sigma_{1}^{1}\left(\mathrm{FOC}^{2}\right)$ [LICS 2011] it follows.

Outline

Backround
Motivation
Introduction

Theorem (LICS 2011)

$\operatorname{SAT}\left(\mathrm{D}^{2}\right)$ and FINSAT $\left(\mathrm{D}^{2}\right)$ are NEXPTIME-complete.

Introducing D and IF
Expressive power of D^{2} and IF^{2}
Other relevant logics
Satisfiability problem

Results

Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Expressing functionality

The key ingredient in translating D^{2} into $\Sigma_{1}^{1}\left(\mathrm{FOC}^{2}\right)$ is to express the dependence atom with two variables using counting quantifiers. We use the following translation:

$$
=(x, y) \longmapsto \forall x \exists \leq 1 y R(x, y)
$$

where R is binary relation correspoding to a team.

Outline

Backround

Motivation

Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT (D ${ }^{2}$) is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Separation of D^{2} and IF^{2}

As a by-product of the complexity results we obtain the following result concerning expressivity of the finite variable logics:

Outline

Backround

Motivation

Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT / FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Clonclusion

Open questions:

- Complexity of the validity problem for the logics D^{2} and $I F^{2}$.
- Is it possible to define NP-complete problems in D^{2} or $I F^{2}$?

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT / FINSAT (D^{2}) is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

Clonclusion

Open questions:

- Complexity of the validity problem for the logics D^{2} and I^{2}.
- Is it possible to define NP-complete problems in D^{2} or $I F^{2}$?
- Yes, the dominating set problem is quite easy to express already in D^{2}.

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics
Satisfiability problem
Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT (D^{2}) is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

围 Robert Berger.
The undecidability of the domino problem.
Number 66 in Memoirs of the American Mathematical
Society. American Mathematical Society, 1966.
目 Alonzo Church.
A note on the entscheidungsproblem.
Journal of Symbolic Logic, 1(1):40-41, 1936.
E Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi.
On the decision problem for two-variable first-order logic.
The Bulletin of Symbolic Logic, 3(1):53-69, 1997.
E Erich Grädel, Martin Otto, and Eric Rosen.
Undecidability results on two-variable logics.
In STACS '97: Proceedings of the 14th Annual
Symposium on Theoretical Aspects of Computer
Science, pages 249-260, London, UK, 1997.
Springer-Verlag.

Outline

Backround
Motivation
Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics Satisfiability problem

Results

Overview
SAT/FINSAT $\left(I^{2}\right)$ is
undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

冨 Ian Pratt-Hartmann.
Complexity of the two-variable fragment with counting quantifiers.
J. of Logic, Lang. and Inf., 14:369-395, June 2005.

囯 Alan Turing.
Complexity of two-variable
Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto,
Peter Lohmann)
On computable numbers, with an application to the entscheidungsproblem.
Proceedings of the London Mathematical Society, Series 2, 42:230-265, 1936.

Outline

Backround

Motivation

Introduction
Introducing D and IF
Expressive power of
D^{2} and IF^{2}
Other relevant logics Satisfiability problem

Results
Overview
SAT/FINSAT $\left(\mathrm{IF}^{2}\right)$ is
undecidable
SAT/FINSAT $\left(D^{2}\right)$ is decidable
Separation of D^{2} and IF^{2}

Conclusion
Bibliography

