Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

University of Tampere

June 23, 2011

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backrounc

Motivation

ntroduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Results

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and μ^2

Conclusion

Outline

- 1. Backround
- 2. Motivation
- 3. Introducing IF and D
- 4. Introducing other relevant logics
- 5. Undecidability of IF²
- 6. Decidability of D^2
- 7. Summary

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

Overview $SAT/FINSAT(IF^2)$ is undecidable $SAT/FINSAT(D^2)$ is decidable Separation of D^2 and uF^2

Conclusior

(日本)(同本)(日本)(日本)(日本)

Background

- The semantics of first order logic can be defined game theoretically by a two player game with perfect information.
- In FO the order in which quantifiers are written determines dependence relations between variables, e.g., in

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 \psi(x_1, x_2, y_1, y_2)$

the value chosen for y_1 depends on the value of x_1 and y_2 depends on both x_1 and x_2 .

 A natural question that arises is what happens if we allow a richer structure of dependence. Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Results

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and IF²

Conclusion

 Leon Henkin (1959) introduced formulas (called Henkin quantifier or Branching quantifier) of the form

$$\begin{pmatrix} \forall x_1 & \exists y_1 \\ \forall x_2 & \exists y_2 \end{pmatrix} \psi(x_1, x_2, y_1, y_2)$$
(1)

- 日本 - 1 日本 - 日本 - 日本 - 日本

where y_1 depends on x_1 and y_2 only depends on x_2 . Formula (1) is equivalent to the formula

 $\exists f \exists g \forall x_1 \forall x_2 \psi(x_1, x_2, f(x_1), g(x_2))$

of existential second-order logic ESO.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

```
Introduction
Introducing D and IF
Expressive power of
D^2 and IF^2
Other relevant logics
Satisfiability problem
```

Results

Overview $SAT/FINSAT(IF^2)$ is undecidable $SAT/FINSAT(D^2)$ is decidable Separation of D^2 and IF^2

Conclusion

- It was soon observed that the expressive power of branching quantifiers goes beyond FO. Infact it's equi-expressive to the full existential second order logic.
- The idea of Henkin was developed further by Jaakko Hintikka and Gabriel Sandu (80's) with their Independence Friendly Logic (IF). In IF-logic the branching quantifier can be expressed as:

 $\forall x_1 \exists y_1 \forall x_2 \exists y_2 / \{x_1, y_1\} \psi(x_1, x_2, y_1, y_2),$

where $\exists y_2 / \{x_1, y_1\}$ means that the choice for the value of y_2 has to be independent of the values of x_1 and y_1 .

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

Overview SAT/FINSAT(IF^2) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and IF^2

Conclusior

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- The semantics of IF-logic was first defined game theoretically with a two party game of imperfect information.
- In the 90's, Wilfrid Hodges gave a Tarski style truth definition for IF where the basic notion used to define satisfaction is not assignment s satisfying a formula as in FO, but a set X of assignments satisfying a formula.
- Dependence logic of Jouko Väänänen (2007) adds the concept of dependence to FO in terms of new atomic dependence formulas. In Dependence logic the branching quantififier can be expressed as

$$\forall x_1 \exists y_1 \forall x_2 \exists y_2 (=(x_2, y_2) \land \psi(x_1, x_2, y_1, y_2)).$$

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Results

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and IF²

Conclusior

Motivation

- Extensions of FO².
- Differences in D and IF.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

SAT/FINSAT(IF^2) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and IF^2

Conclusior

Dependence Logic and IF-logic

Definition (IF-logic)

The syntax of IF extends the syntax of FO defined in negation normal form by adding quantifiers of the form

$$(\exists x/W)\phi$$

 $(\forall x/W)\phi$

called slashed quantifiers. Here W is a finite set of first order variables.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introduction D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and IF^2

Conclusior

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Dependence logic

Definition

The syntax of D extends the syntax of FO defined in negation normal form by new atomic (dependence) formulas of the form

$$=(x_1,\ldots,x_n).$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

Overview $SAT/FINSAT(IF^2)$ is undecidable $SAT/FINSAT(D^2)$ is decidable Separation of D^2 and IF^2

Conclusion

The semantics of D and IF are defined in terms of *Teams* (sets of assignments):

Definition

Let A be a set and $\{x_1, \ldots, x_k\}$ a set of variables. A *team* X of A with domain $\{x_1, \ldots, x_k\}$ is a set of assignments s from $\{x_1, \ldots, x_k\}$ into A.

- 日本 - 4 日本 - 4 日本 - 日本

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D² and IF² Other relevant logics Satisfiability problem

Results

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D²) is decidable Separation of D² and IF²

Conclusior

Semantics for D and IF

Definition

Let \mathfrak{A} be a model and X a team of A. The satisfaction relation $\mathfrak{A} \models_X \phi$ is defined as follows:

1. If ϕ is a first-order literal, then $\mathfrak{A} \models_X \phi$ iff for all $s \in X$: $\mathfrak{A}, s \models_{\mathsf{FO}} \phi$.

2.
$$\mathfrak{A} \models_X \psi \land \phi$$
 iff $\mathfrak{A} \models_X \psi$ and $\mathfrak{A} \models_X \phi$.

- 3. $\mathfrak{A} \models_X \psi \lor \phi$ iff there exist teams Y and Z such that $X = Y \cup Z$, $\mathfrak{A} \models_Y \psi$ and $\mathfrak{A} \models_Z \phi$.
- 4. $\mathfrak{A} \models_X \exists y \psi \text{ iff } \mathfrak{A} \models_{X(F/y)} \psi \text{ for some } F \colon X \to A.$

5. $\mathfrak{A} \models_X \forall y \psi$ iff $\mathfrak{A} \models_{X(A/y)} \psi$.

Here $X(F/y) = \{s(F(s)/y) \mid s \in X\}$ and $X(A/y) = \{s(a/y) \mid a \in A, s \in X\}.$

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF² Other relevant logics Satisfiability problem

Results

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and IF²

Conclusior

Semantics of D

Definition

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction

Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

Overview $SAT/FINSAT(IF^2)$ is undecidable $SAT/FINSAT(D^2)$ is decidable Separation of D^2 and UF^2

Conclusion

イロト イポト イモト イモト 二日

Semantics of IF

Definition

8. $\mathfrak{A} \models_X \exists y / W \phi$ iff $\mathfrak{A} \models_{X(F/y)} \phi$ for some *W*-independent function $F : X \to A$.

9.
$$\mathfrak{A} \models_X \forall y / W \phi$$
 iff $\mathfrak{A} \models_{X(A/y)} \phi$.

We say that a function $F: X \to A$ is *W*-independent if for all $s, s' \in X$ with s(x) = s'(x) for all $x \in \text{dom}(X) \setminus W$ we have that F(s) = F(s').

・ロット (雪) ・ (日) ・ (日) ・ (日)

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics

Results

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and μ^2

Conclusior

Properties expressible in D^2 and IF^2

Proposition

The following properties can be expressed in D^2 :

- 1. For unary relation symbols P and Q, D² can express |P| = |Q|. This shows that D² \leq FO.
- 3. $|A| \leq k$ can be already expressed in D¹.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D² and IF²

Other relevant logics Satisfiability problem

Results

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and μ^2

Conclusior

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Comparison of D^2 and IF^2

Theorem

 $\mathsf{D}^2 \leq \mathsf{IF}^2 \leq \mathsf{D}^3$

Proof.

The claim follows by relatively straightforward translations.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics

Other relevant logics Satisfiability problem

Result

Overview SAT/FINSAT(IF^2) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and IF^2

Conclusior

Bibliography

▲ロト ▲園ト ▲ヨト ▲ヨト 三ヨ - のへの

Other relevant logics

- 1. FO^2 , two-variable first order logic,
- 2. FOC², two-variable first order logic with counting,
- FO²(I), two-variable first order logic with the Härtig quantifier Ixy(φ(x), ψ(y))

4. ESO, existential second order logic.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF² Other relevant logics

Results Overview SAT/FINSAT(IF²) is undecidable Separation of D^2 and

Conclusior

Satisfiability problem

Definition

Let \mathcal{L} be a logic. The satisfiability problem SAT[\mathcal{L}] is the following problem: **Input**: a sentence $\phi \in \mathcal{L}$. **Output**: Yes, if there is a model \mathfrak{A} such that $\mathfrak{A} \models \phi$, and **No** otherwise.

The finite satisfiability problem $\mathsf{FINSAT}[\mathcal{L}\]$ is the version of the above question in which $\mathfrak A$ must also be finite.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Results

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and IF²

Conclusior

Some complexity results

 $\begin{array}{c} Logic & Co\\ FO, FO^{3}\\ ESO, D, IF\\ FO^{2}\\ FOC^{2}\\ FOC^{2}(I)\\ D^{2}\\ IF^{2} \end{array}$

 $\begin{array}{c} \textit{Complexity of SAT / FINSAT} \\ \Pi_{1}^{0} / \Sigma_{1}^{0} \\ \Pi_{1}^{0} / \Sigma_{1}^{0} \\ \textit{NEXPTIME} \\ \textit{NEXPTIME} \\ \Sigma_{1}^{1}\text{-hard / in } \Sigma_{1}^{0} \\ \textit{NEXPTIME} \\ \Pi_{1}^{0} / \Sigma_{1}^{0} \end{array}$

References [Chu36, Tur36] [Chu36, Tur36] [GKV97] [PH05] [GOR97] [LICS 2011] [LICS 2011] Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction Introducing D and IF Expressive power of D² and IF² Other relevant logics Satisfiability problem

Results

Overview

 $\begin{array}{l} \mathsf{SAT}/\mathsf{FINSAT}(\mathsf{IF}^2) \text{ is}\\ \mathsf{undecidable}\\ \mathsf{SAT}/\mathsf{FINSAT}(\mathsf{D}^2) \text{ is}\\ \mathsf{decidable}\\ \mathsf{Separation of } \mathsf{D}^2 \text{ and}\\ \mathsf{IF}^2 \end{array}$

Conclusior

Bibliography

Complexity of SAT(IF^2) and FINSAT(IF^2)

Theorem (LICS 2011)

 $SAT(IF^2)$ is Π_1^0 -complete.

Theorem (LICS 2011)

FINSAT(IF^2) is Σ_1^0 -complete.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D²) is

decidable Separation of D² and IF²

Conclusion

Bibliography

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Tiling

- A tile is a square whose each side is assigned a color, i.e., it is a square that has four colors (up, right, down, left).
- A set of tiles T can tile a model 𝔅 = (A, V, H) with two binary relations V and H if a tile can be placed on every point in the domain A s.t
 - 1. for all pairs of points $(a, b) \in H$ the right color of the tile on a is the same as the left color on the tile on b and
 - 2. for all pairs of points $(a, b) \in V$ the top color of the tile on a is the same as the bottom color on the tile on b.

- 日本 - 1 日本 - 日本 - 日本 - 日本

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction Introducing D and IF Expressive power of D² and IF² Other relevant logics Satisfiability problem

Results

SAT/FINSAT(IF^2) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and

Conclusion

The grid

where $H(\rightarrow)$, $V(\rightarrow)$.

(日) (個) (目) (目) (日) (の)

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D²) is

Separation of D^2 and IF^2

Conclusion

Undecidability of tiling problems

Tiling problem for a fixed model \mathfrak{A} is the following problem: Given a set of tiles T can T tile the model \mathfrak{A} . We denote this problem as Tiling(\mathfrak{A}).

Theorem ([Ber66])

Tiling(\mathfrak{G}), where \mathfrak{G} is the $\mathbb{N} \times \mathbb{N}$ grid is Π_1^0 -complete problem.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backrounc

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Results

SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D²) is decidable

Separation of D^2 and IF^2

Conclusion

- 日本 - 4 日本 - 4 日本 - 日本

Hardness

 Π_1^0 hardness follows from the following lemma:

Lemma

For every set of tiles T we have IF^2 formula γ_T s.t γ_T is satisfiable iff T can tile the $\mathbb{N} \times \mathbb{N}$ grid.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

Overview

 $\begin{array}{l} \mathsf{SAT}/\mathsf{FINSAT}(\mathsf{IF}^2) \text{ is} \\ \mathsf{undecidable} \\ \mathsf{SAT}/\mathsf{FINSAT}(\mathsf{D}^2) \text{ is} \\ \mathsf{decidable} \end{array}$

Separation of D^2 and IF^2

Conclusion

Expressing tiling (the easy part)

Given a set of tiles T it easy to write an FO² sentence ϕ_T s.t T tiles a model $\mathfrak{A} = (A, V, H)$ iff there exists \mathfrak{A}^* , an extension of \mathfrak{A} with some unary relation symbols, s.t $\mathfrak{A}^* \models \phi_T$.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Results

Overview

SAT/FINSAT(IF^2) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and

Conclusion

< 由 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Expressing grid-likeness (a bit harder part)

The problem lies in expressing that a model is an infinite grid or something close enough.

イロト 不得 トイヨト イヨト

э

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Results

SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D²) is

decidable Separation of D² and IF²

Conclusion

Grid-likeness

We use the following properties to say that a structure (A, V, H) is grid-like:

- 1. V and H are graphs of injective functions.
- 2. There exists a root of the grid.
- 3. $V \cap H = \emptyset$
- 4. Borders of the grid are constructed correctly.
- 5. Amalgamation property for V and H hold.
- 6. The grid is infinite.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

 $\begin{array}{l} \text{SAT/FINSAT(IF^2) is} \\ \text{undecidable} \\ \text{SAT/FINSAT(D^2) is} \\ \text{decidable} \\ \text{Separation of } D^2 \text{ and} \end{array}$

Conclusior

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

The grid

where $H(\rightarrow)$, $V(\rightarrow)$.

(日) (個) (目) (目) (日) (の)

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D²) is

Separation of D^2 and IF^2

Conclusion

Expressing amalgamation

In the formula ϕ_{grid} the key ingredient is to express the following property:

Property

For all points x there exists a point y s.t.

 $x(V \circ H)y$ and $x(H \circ V)y$.

Sentence

We use the following IF^2 sentence to mimic the above property, note that they are not equivalent

$$\forall x \forall y \Big(\big(V(x,y) \lor H(x,y) \big) \to \exists x / \{y\} \big(V(y,x) \lor H(y,x) \big) \Big).$$

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Results

SAT/FINSAT(IF^2) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and IF^2

Conclusior

Bibliography

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

Lemma

For every set of tiles T we have IF^2 formula γ_T s.t γ_T is satisfiable iff T can tile the $\mathbb{N} \times \mathbb{N}$ grid.

Theorem

 $SAT(IF^2)$ is Π_1^0 -hard.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D²) is decidable

Separation of D^2 and IF^2

Conclusion

Since SAT(ESO) is Π_1^0 -complete and there is a polynomial translation from IF into ESO, it follows that SAT(IF²) is in Π_1^0 .

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

Overview SAT/FINSAT(IF²) is

undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and

Conclusion

$SAT/FINSAT(D^2)$ is decidable

Theorem ([GKV97])

SAT(FO²) and FINSAT(FO²) are NEXPTIME-complete.

Theorem ([PH05])

SAT(FOC²) and FINSAT(FOC²) are NEXPTIME-complete.

Hence SAT(Σ_1^1 (FOC²)) and FINSAT(Σ_1^1 (FOC²)) are *NEXPTIME*-complete.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backrounc

Motivation

ntroduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Results

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D²) is decidable Separation of D² and urc²

Conclusior

$SAT/FINSAT(D^2)$ is decidable

Since D² is a conservative extension of FO². And there exists a polynomial translation from D² to Σ_1^1 (FOC²) [LICS 2011] it follows.

Theorem (LICS 2011)

$SAT(D^2)$ and $FINSAT(D^2)$ are NEXPTIME-complete.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction Introducing D and IF Expressive power of D² and IF² Other relevant logics Satisfiability problem

Result

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D²) is decidable Separation of D² and

Conclusion

Bibliography

・ロット (雪) ・ (日) ・ (日) ・ (日)

Expressing functionality

The key ingredient in translating D² into Σ_1^1 (FOC²) is to express the dependence atom with two variables using counting quantifiers. We use the following translation:

$$=(x,y)\longmapsto \forall x\exists^{\leq 1}yR(x,y)$$

where R is binary relation correspoding to a team.

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backrounc

Motivation

Introduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Results

SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D²) is decidable Separation of D² and

Conclusion

Separation of D^2 and IF^2

As a by-product of the complexity results we obtain the following result concerning expressivity of the finite variable logics:

Theorem (LICS 2011)

 $\mathsf{D}^2 < \mathsf{IF}^2 \le \mathsf{D}^3$

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction Introducing D and IF Expressive power of D² and IF² Other relevant logics Satisfiability problem

Result

 $\begin{array}{l} Overview\\ SAT/FINSAT(IF^2) \text{ is}\\ undecidable\\ SAT/FINSAT(D^2) \text{ is}\\ decidable\\ \textbf{Separation of } D^2 \text{ and } \\ IF^2 \end{array}$

Conclusion

Bibliography

Clonclusion

Open questions:

- Complexity of the validity problem for the logics D² and IF².
- Is it possible to define NP-complete problems in D² or IF²?

イロト 不得 トイヨト イヨト

3

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction Introducing D and IF Expressive power of D² and IF² Other relevant logics Satisfiability problem

Result

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D^2) is decidable Separation of D^2 and μ^2

Conclusion

Clonclusion

Open questions:

- Complexity of the validity problem for the logics D² and IF².
- Is it possible to define NP-complete problems in D² or IF²?
 - Yes, the dominating set problem is quite easy to express already in D².

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

Overview SAT/FINSAT(IF²) is undecidable SAT/FINSAT(D²) is decidable Separation of D² and IF²

Conclusion

Robert Berger.

The undecidability of the domino problem. Number 66 in Memoirs of the American Mathematical Society. American Mathematical Society, 1966.

Alonzo Church.

A note on the entscheidungsproblem. Journal of Symbolic Logic, 1(1):40–41, 1936.

Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for two-variable first-order logic.

The Bulletin of Symbolic Logic, 3(1):53–69, 1997.

Erich Grädel, Martin Otto, and Eric Rosen. Undecidability results on two-variable logics. In *STACS '97: Proceedings of the 14th Annual Symposium on Theoretical Aspects of Computer Science*, pages 249–260, London, UK, 1997. Springer-Verlag. Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backrounc

Motivation

ntroduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Results

Overview $SAT/FINSAT(IF^2)$ is undecidable $SAT/FINSAT(D^2)$ is decidable Separation of D^2 and IF^2

Conclusion

lan Pratt-Hartmann.

Complexity of the two-variable fragment with counting quantifiers.

J. of Logic, Lang. and Inf., 14:369–395, June 2005.

Alan Turing.

On computable numbers, with an application to the entscheidungsproblem.

Proceedings of the London Mathematical Society, Series 2, 42:230–265, 1936.

◆□▶ ◆◎▶ ◆□▶ ◆□▶ ● □

Complexity of two-variable Dependence Logic and IF-Logic

Jonni Virtema (joint work with Juha Kontinen, Antti Kuusisto, Peter Lohmann)

Outline

Backround

Motivation

ntroduction Introducing D and IF Expressive power of D^2 and IF^2 Other relevant logics Satisfiability problem

Result

Overview $SAT/FINSAT(IF^2)$ is undecidable $SAT/FINSAT(D^2)$ is decidable Separation of D^2 and IF^2

Conclusior