Computing the infinite

Sam Sanders ${ }^{1}$

Tohoku University \& Ghent University

LICS11, June 22, 2011, Fields Institute, Toronto

${ }^{1}$ This research is generously supported by the John Templeton Foundation.

Goal \& Motivation

Goal \& Motivation

Goal: To formalize Computability using Nonstandard Analysis.

Goal \& Motivation

Goal: To formalize Computability using Nonstandard Analysis.

Motivation:

Goal \& Motivation

Goal: To formalize Computability using Nonstandard Analysis.

Motivation: Erret Bishop (and others) have derided NSA for its 'lack of computational content'.

Nonstandard Analysis

Nonstandard Analysis
Nonstandard Analysis formalizes 'calculus with infinitesimals'.

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

x is infinite iff $|x|>q$, for all $q \in \mathbb{R}^{+}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

x is infinite iff $|x|>q$, for all $q \in \mathbb{R}^{+}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

x is infinite iff $|x|>q$, for all $q \in \mathbb{R}^{+}$
x is infinitely small iff $|x|<q$, for all $q \in \mathbb{R}^{+}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

x is infinite iff $|x|>q$, for all $q \in \mathbb{R}^{+}$
x is infinitely small iff $|x|<q$, for all $q \in \mathbb{R}^{+} \quad$ (e.g. $1 / \omega$)

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

x is infinite iff $|x|>q$, for all $q \in \mathbb{R}^{+}$
x is infinitely small iff $|x|<q$, for all $q \in \mathbb{R}^{+} \quad$ (e.g. $1 / \omega$)
(also ' $x \approx 0$ ' or ' x is infinitesimal')

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

x is infinite iff $|x|>q$, for all $q \in \mathbb{R}^{+}$
x is infinitely small iff $|x|<q$, for all $q \in \mathbb{R}^{+} \quad$ (e.g. $1 / \omega$)
(also ' $x \approx 0$ ' or ' x is infinitesimal')

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

x is infinite iff $|x|>q$, for all $q \in \mathbb{R}^{+}$
x is infinitely small iff $|x|<q$, for all $q \in \mathbb{R}^{+} \quad$ (e.g. $1 / \omega$)
(also ' $x \approx 0$ ' or ' x is infinitesimal')
The set \mathbb{N} is extended to ${ }^{*} \mathbb{N}$

Nonstandard Analysis

Nonstandard Analysis formalizes 'calculus with infinitesimals'.
The field \mathbb{R} is extended to ${ }^{*} \mathbb{R}$

x is infinite iff $|x|>q$, for all $q \in \mathbb{R}^{+}$
x is infinitely small iff $|x|<q$, for all $q \in \mathbb{R}^{+} \quad$ (e.g. $1 / \omega$)
(also ' $x \approx 0$ ' or ' x is infinitesimal')
The set \mathbb{N} is extended to $* \mathbb{N}=\{\underbrace{0,1,2,3, \ldots}_{\mathbb{N}}, \ldots, \omega-1, \omega, \omega+1, \ldots\}$

Turing Computability

We always assume that $A \subset \mathbb{N} \subset{ }^{*} \mathbb{N}$ and that ω is infinite.

Turing Computability

We always assume that $A \subset \mathbb{N} \subset{ }^{*} \mathbb{N}$ and that ω is infinite.
Definition
The set A is ω-invariant if there is $\psi \in \Delta_{0}$ s.t. for all infinite ω,

$$
A=\{k \in \mathbb{N}: \psi(k, \omega)\} .
$$

Turing Computability

We always assume that $A \subset \mathbb{N} \subset{ }^{*} \mathbb{N}$ and that ω is infinite.
Definition
The set A is ω-invariant if there is $\psi \in \Delta_{0}$ s.t. for all infinite ω,

$$
A=\{k \in \mathbb{N}: \psi(k, \omega)\} .
$$

The set A depends on ω, but not on the choice of ω.

Turing Computability

We always assume that $A \subset \mathbb{N} \subset{ }^{*} \mathbb{N}$ and that ω is infinite.

Definition

The set A is ω-invariant if there is $\psi \in \Delta_{0}$ s.t. for all infinite ω,

$$
A=\{k \in \mathbb{N}: \psi(k, \omega)\} .
$$

The set A depends on ω, but not on the choice of ω.

Theorem

The Δ_{1}-sets (=Turing computable) are exactly the ω-invariant sets.

The Limit Lemma

The Limit Lemma

Theorem (Limit lemma)

$$
f \leq_{T} 0^{\prime} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=\lim _{n \rightarrow \infty} f_{n} \quad\left(f_{n} \text { is computable }\right)
$$

The Limit Lemma

Theorem (Limit lemma)

$$
f \leq_{T} 0^{\prime} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=\lim _{n \rightarrow \infty} f_{n} \quad\left(f_{n} \text { is computable }\right)
$$

Theorem (Hyperlimit Lemma) $f \leq_{T} \Pi_{1} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=f_{\omega} \quad\left(f_{n}\right.$ is computable)

The Limit Lemma

Theorem (Limit lemma)
$f \leq_{T} \mathbf{0}^{\prime} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=\lim _{n \rightarrow \infty} f_{n} \quad\left(f_{n}\right.$ is computable $)$
Theorem (Hyperlimit Lemma) $f \leq_{T} \Pi_{1} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=f_{\omega} \quad\left(f_{n}\right.$ is computable)

Here, f_{ω} is ω-invariant

The Limit Lemma

> Theorem (Limit lemma)
> $f \leq_{T} \mathbf{0}^{\prime} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=\lim _{n \rightarrow \infty} f_{n} \quad\left(f_{n}\right.$ is computable)

Theorem (Hyperlimit Lemma)
$f \leq_{T} \Pi_{1} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=f_{\omega} \quad\left(f_{n}\right.$ is computable)
Here, f_{ω} is ω-invariant and Π_{1} is a decision procedure for Σ_{1}-formulas, given by:

The Limit Lemma

> Theorem (Limit lemma)
> $f \leq T \mathbf{0}^{\prime} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=\lim _{n \rightarrow \infty} f_{n} \quad\left(f_{n}\right.$ is computable)

Theorem (Hyperlimit Lemma)

$f \leq_{T} \Pi_{1} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=f_{\omega} \quad\left(f_{n}\right.$ is computable)
Here, f_{ω} is ω-invariant and Π_{1} is a decision procedure for Σ_{1}-formulas, given by:

Theorem (\square_{1})

For every $\varphi \in \Delta_{0}$, we have $(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)$.

The Limit Lemma

> Theorem (Limit lemma)
> $f \leq T \mathbf{0}^{\prime} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=\lim _{n \rightarrow \infty} f_{n} \quad\left(f_{n}\right.$ is computable)

Theorem (Hyperlimit Lemma)

$f \leq_{T} \Pi_{1} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=f_{\omega} \quad\left(f_{n}\right.$ is computable)
Here, f_{ω} is ω-invariant and Π_{1} is a decision procedure for Σ_{1}-formulas, given by:

Theorem (\square_{1})

For every $\varphi \in \Delta_{0}$, we have $(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)$.
Also called 'Transfer principle for Π_{1}-formulas' or ' Π_{1}-transfer'.

The Limit Lemma

> Theorem (Limit lemma)
> $f \leq_{T} \mathbf{0}^{\prime} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=\lim _{n \rightarrow \infty} f_{n} \quad\left(f_{n}\right.$ is computable)

Theorem (Hyperlimit Lemma)

$f \leq_{T} \Pi_{1} \Longleftrightarrow f \in \Delta_{2} \Longleftrightarrow f=f_{\omega} \quad\left(f_{n}\right.$ is computable)
Here, f_{ω} is ω-invariant and Π_{1} is a decision procedure for Σ_{1}-formulas, given by:

Theorem (\square_{1})

For every $\varphi \in \Delta_{0}$, we have $(\forall n \in \mathbb{N}) \varphi(n) \rightarrow\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)$.
Also called 'Transfer principle for Π_{1}-formulas' or ' Π_{1}-transfer'.
Generalizes to any finite Turing degree. Comes from RM.

Constructive Reverse Mathematics

$C R M=R M$ in Bishop's 'constructive analysis'.

Constructive Reverse Mathematics

CRM $=$ RM in Bishop's 'constructive analysis'.
An important principle is:

Principle (Σ_{1}-excluded middle or LPO)

For every q.f. formula φ, we have $(\exists n \in \mathbb{N}) \varphi(n) \vee(\forall n \in \mathbb{N}) \neg \varphi(n)$.

Constructive Reverse Mathematics

CRM $=$ RM in Bishop's 'constructive analysis'.
An important principle is:

Principle (Σ_{1}-excluded middle or LPO)

For every q.f. formula φ, we have $(\exists n \in \mathbb{N}) \varphi(n) \vee(\forall n \in \mathbb{N}) \neg \varphi(n)$.
The previous principle states: There is a finite procedure that decides whether $(\exists n \in \mathbb{N}) \varphi(n)$ or not.

Constructive Reverse Mathematics

CRM $=$ RM in Bishop's 'constructive analysis'.
An important principle is:

Principle (Σ_{1}-excluded middle or LPO)

For every q.f. formula φ, we have $(\exists n \in \mathbb{N}) \varphi(n) \vee(\forall n \in \mathbb{N}) \neg \varphi(n)$.
The previous principle states: There is a finite procedure that decides whether $(\exists n \in \mathbb{N}) \varphi(n)$ or not.

Principle (Π_{1}-Transfer)

For every q.f. formula φ, we have $(\exists n \in \mathbb{N}) \varphi(n) \vee\left(\forall n \in{ }^{*} \mathbb{N}\right) \neg \varphi(n)$.

Constructive Reverse Mathematics

CRM $=$ RM in Bishop's 'constructive analysis'.
An important principle is:

Principle (Σ_{1}-excluded middle or LPO)

For every q.f. formula φ, we have $(\exists n \in \mathbb{N}) \varphi(n) \vee(\forall n \in \mathbb{N}) \neg \varphi(n)$.
The previous principle states: There is a finite procedure that decides whether $(\exists n \in \mathbb{N}) \varphi(n)$ or not.

Principle ($\boldsymbol{\Pi}_{1}$-Transfer)

For every q.f. formula φ, we have $(\exists n \in \mathbb{N}) \varphi(n) \vee\left(\forall n \in{ }^{*} \mathbb{N}\right) \neg \varphi(n)$.
The previous principle is equivalent to: There is an ω-invariant procedure that decides whether $(\exists n \in \mathbb{N}) \varphi(n)$ or not.

Constructive Reverse Mathematics

Constructive Reverse Mathematics

In CRM, LPO is equivalent to MCT and to

Constructive Reverse Mathematics

In CRM, LPO is equivalent to MCT and to
Principle
$(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$

Constructive Reverse Mathematics

In CRM, LPO is equivalent to MCT and to
Principle
$(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$
The previous principle should be read: For $x \in \mathbb{R}$, there is a finite procedure that decides if $x>0$.

Constructive Reverse Mathematics

In CRM, LPO is equivalent to MCT and to
Principle
$(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$
The previous principle should be read: For $x \in \mathbb{R}$, there is a finite procedure that decides if $x>0$.
In NSA, Π_{1}-TRANS is equivalent to $\mathrm{MCT}(\approx)$ and to

Constructive Reverse Mathematics

In CRM, LPO is equivalent to MCT and to
Principle
$(\forall x \in \mathbb{R})(x>0 \vee \neg(x>0))$
The previous principle should be read: For $x \in \mathbb{R}$, there is a finite procedure that decides if $x>0$.

In NSA, Π_{1}-TRANS is equivalent to $\mathrm{MCT}(\approx)$ and to

Principle

For $x \in \mathbb{R}$, there is an ω-invariant procedure that decides if $x>0$.

Lost in translation

How to translate between NSA and CRM?

Lost in translation

How to translate between NSA and CRM?
Introduce 'hypernegation' ~.

Lost in translation

How to translate between NSA and CRM?
Introduce 'hypernegation' ~.

- $\sim[(\exists n \in \mathbb{N}) \varphi(n)]$

Lost in translation

How to translate between NSA and CRM?
Introduce 'hypernegation' \sim.

$$
\text { - } \sim[(\exists n \in \mathbb{N}) \varphi(n)] \equiv\left(\forall n \in{ }^{*} \mathbb{N}\right) \neg \varphi(n)
$$

Lost in translation

How to translate between NSA and CRM?
Introduce 'hypernegation' \sim.

$$
\begin{aligned}
& -\sim[(\exists n \in \mathbb{N}) \varphi(n)] \equiv\left(\forall n \in{ }^{*} \mathbb{N}\right) \neg \varphi(n) . \\
& -\sim\left[\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right]
\end{aligned}
$$

Lost in translation

How to translate between NSA and CRM?
Introduce 'hypernegation' \sim.

$$
\begin{aligned}
& \text { - } \sim[(\exists n \in \mathbb{N}) \varphi(n)] \equiv\left(\forall n \in{ }^{*} \mathbb{N}\right) \neg \varphi(n) \\
& \bullet \sim\left[\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right] \equiv(\exists n \leq \omega) \neg \varphi(n)
\end{aligned}
$$

Lost in translation

How to translate between NSA and CRM?
Introduce 'hypernegation' \sim.

- $\sim[(\exists n \in \mathbb{N}) \varphi(n)] \equiv\left(\forall n \in{ }^{*} \mathbb{N}\right) \neg \varphi(n)$.
- $\sim\left[\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right] \equiv(\exists n \leq \omega) \neg \varphi(n)$. $(\omega$ is independent of parameters in φ)

Lost in translation

How to translate between NSA and CRM?
Introduce 'hypernegation' \sim.

- $\sim[(\exists n \in \mathbb{N}) \varphi(n)] \equiv\left(\forall n \in{ }^{*} \mathbb{N}\right) \neg \varphi(n)$.
- $\sim\left[\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right] \equiv(\exists n \leq \omega) \neg \varphi(n)$. $(\omega$ is independent of parameters in φ)

With the hypernegation \sim, we get the usual results from CRM:

Lost in translation

How to translate between NSA and CRM?
Introduce 'hypernegation' \sim.

- $\sim[(\exists n \in \mathbb{N}) \varphi(n)] \equiv\left(\forall n \in{ }^{*} \mathbb{N}\right) \neg \varphi(n)$.
- $\sim\left[\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right] \equiv(\exists n \leq \omega) \neg \varphi(n)$. $(\omega$ is independent of parameters in φ)

With the hypernegation \sim, we get the usual results from CRM:

Theorem

In NSA, LPO is equivalent to MP plus LLPO

Lost in translation

How to translate between NSA and CRM?
Introduce 'hypernegation' \sim.

$$
\begin{aligned}
\text { - } & \sim[(\exists n \in \mathbb{N}) \varphi(n)] \equiv\left(\forall n \in{ }^{*} \mathbb{N}\right) \neg \varphi(n) . \\
\bullet & \sim\left[\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right] \equiv(\exists n \leq \omega) \neg \varphi(n) .(\omega \text { is independent of parameters in } \varphi)
\end{aligned}
$$

With the hypernegation \sim, we get the usual results from CRM:

Theorem

In NSA, LPO is equivalent to MP plus LLPO
LPO: $P \vee \sim P, \mathrm{MP}: \sim \sim P \rightarrow P$, LLPO: $\sim(P \wedge Q) \rightarrow \sim P \vee \sim Q\left(P, Q \in \Sigma_{1}\right)$

Lost in translation

How to translate between NSA and CRM?
Introduce 'hypernegation' \sim.

$$
\begin{aligned}
& \text { - } \sim[(\exists n \in \mathbb{N}) \varphi(n)] \equiv\left(\forall n \in{ }^{*} \mathbb{N}\right) \neg \varphi(n) . \\
& \text { - } \sim\left[\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right] \equiv(\exists n \leq \omega) \neg \varphi(n) .(\omega \text { is independent of parameters in } \varphi)
\end{aligned}
$$

With the hypernegation \sim, we get the usual results from CRM:

Theorem

In NSA, LPO is equivalent to MP plus LLPO
LPO: $P \vee \sim P$, MP: $\sim \sim P \rightarrow P$, LLPO: $\sim(P \wedge Q) \rightarrow \sim P \vee \sim Q\left(P, Q \in \Sigma_{1}\right)$
Why does this connection exist?

Lost in translation

How to translate between NSA and CRM?
Introduce 'hypernegation' \sim.

$$
\begin{aligned}
& \text { - } \sim[(\exists n \in \mathbb{N}) \varphi(n)] \equiv\left(\forall n \in{ }^{*} \mathbb{N}\right) \neg \varphi(n) . \\
& \text { - } \sim\left[\left(\forall n \in{ }^{*} \mathbb{N}\right) \varphi(n)\right] \equiv(\exists n \leq \omega) \neg \varphi(n) .(\omega \text { is independent of parameters in } \varphi)
\end{aligned}
$$

With the hypernegation \sim, we get the usual results from CRM:

Theorem

In NSA, LPO is equivalent to MP plus LLPO
LPO: $P \vee \sim P, \mathrm{MP}: \sim \sim P \rightarrow P$, LLPO: $\sim(P \wedge Q) \rightarrow \sim P \vee \sim Q\left(P, Q \in \Sigma_{1}\right)$
Why does this connection exist?
Compare \mathbb{N} and \mathcal{N}.

Final Thoughts

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.
Augustus De Morgan

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.
Augustus De Morgan
...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future.

Kurt Gödel

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.
Augustus De Morgan
...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future.

Kurt Gödel

Thank you for your attention!

Final Thoughts

The two eyes of exact science are mathematics and logic, the mathematical sect puts out the logical eye, the logical sect puts out the mathematical eye; each believing that it sees better with one eye than with two.
Augustus De Morgan
...there are good reasons to believe that Nonstandard Analysis, in some version or other, will be the analysis of the future.

Kurt Gödel

Thank you for your attention!
 Any questions?

