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Goal & Motivation

Goal: To formalize Computability using Nonstandard Analysis.

Motivation: Erret Bishop (and others) have derided NSA for its
‘lack of computational content’.
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Nonstandard Analysis

Nonstandard Analysis formalizes ‘calculus with infinitesimals’.
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(also ‘x ≈ 0’ or ‘x is infinitesimal’)

The set N is extended to ∗N = {0, 1, 2, 3, . . .︸ ︷︷ ︸
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Turing Computability

We always assume that A ⊂ N ⊂ ∗N and that ω is infinite.
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The set A is ω-invariant if there is ψ ∈ ∆0 s.t. for all infinite ω ,

A = {k ∈ N : ψ(k , ω)}.

The set A depends on ω, but not on the choice of ω.

Theorem

The ∆1-sets (=Turing computable) are exactly the ω-invariant sets.
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The Limit Lemma

Theorem (Limit lemma)

f ≤T 0′ ⇐⇒ f ∈ ∆2 ⇐⇒ f = limn→∞ fn (fn is computable)

Theorem (Hyperlimit Lemma)

f ≤T Π1 ⇐⇒ f ∈ ∆2 ⇐⇒ f = fω (fn is computable)

Here, fω is ω-invariant and Π1 is a decision procedure for
Σ1-formulas, given by:

Theorem (Π1)

For every ϕ ∈ ∆0, we have (∀n ∈ N)ϕ(n)→ (∀n ∈ ∗N)ϕ(n).

Also called ‘Transfer principle for Π1-formulas’ or ‘Π1-transfer’.

Generalizes to any finite Turing degree. Comes from RM.
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Constructive Reverse Mathematics

CRM = RM in Bishop’s ‘constructive analysis’.
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Principle (Σ1-excluded middle or LPO)

For every q.f. formula ϕ, we have (∃n ∈ N)ϕ(n) ∨ (∀n ∈ N)¬ϕ(n).

The previous principle states: There is a finite procedure that
decides whether (∃n ∈ N)ϕ(n) or not.
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Constructive Reverse Mathematics

In CRM, LPO is equivalent to MCT and to

Principle

(∀x ∈ R)(x > 0 ∨ ¬(x > 0))

The previous principle should be read: For x ∈ R, there is a finite
procedure that decides if x > 0.

In NSA, Π1-TRANS is equivalent to MCT(≈) and to

Principle

For x ∈ R, there is an ω-invariant procedure that decides if x > 0.
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Lost in translation

How to translate between NSA and CRM?

Introduce ‘hypernegation’ ∼.

∼ [(∃n ∈ N)ϕ(n)] ≡ (∀n ∈ ∗N)¬ϕ(n).

∼ [(∀n ∈ ∗N)ϕ(n)] ≡ (∃n ≤ ω)¬ϕ(n). (ω is independent of parameters in ϕ)

With the hypernegation ∼, we get the usual results from CRM:

Theorem

In NSA, LPO is equivalent to MP plus LLPO

LPO: P ∨ ∼P, MP: ∼∼P → P, LLPO: ∼(P ∧ Q)→ ∼P ∨ ∼Q (P,Q ∈ Σ1)

Why does this connection exist?

Compare N and N .
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Final Thoughts

The two eyes of exact science are mathematics and logic, the

mathematical sect puts out the logical eye, the logical sect puts out the

mathematical eye; each believing that it sees better with one eye than

with two.

Augustus De Morgan

...there are good reasons to believe that Nonstandard Analysis,
in some version or other, will be the analysis of the future.

Kurt Gödel

Thank you for your attention!
Any questions?
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