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Interval temporal logics

Truth of formulae is defined over
intervals (not points).

ψ

¬ψ

¬ψ

¬ψ

Interval temporal logics are very expressive (compared to point-based
temporal logics).

In particular, formulas of interval logics express properties of pairs of
time points rather than of single time points, and are evaluated as sets
of such pairs, i.e., as binary relations.

Thus, in general there is no reduction of the satisfiability/validity in in-
terval logics to monadic second-order logic, and therefore Rabin’s theo-
rem is not applicable here.



An example: the future fragment of neighborhood logic

Formulas of the logic are recursively defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ∨ϕ | 〈A〉ϕ

〈A〉ψ
ψ

We cannot abstract way from the left endpoint of intervals:
I contradictory formulas can hold over intervals with the same right

endpoint and a different left endpoint.

〈A〉[A]p∧ 〈A〉[A]¬p is satisfiable ([A] = ¬〈A〉¬ as usual):

d0 d1 d2 d3

. . .

〈A〉 [A]p
. . .

〈A〉 [A]¬p
. . .

For any d > d3, p holds over [d2,d] and ¬p holds over [d3,d].



Binary Relations over intervals

The thirteen binary relations between two intervals on a linear
ordering (those below and their inverses) form the set of Allen’s
interval relations:

current interval:

equals:

ends :

during:

begins:

overlaps:

meets:

before:



HS: the modal logic of Allen’s interval relations

Allen’s interval relations give rise to respective unary modal
operators over frames where intervals are primitive entities, thus
defining the multimodal logic HS introduced by Halpern and
Shoham in 1991, interpreted over interval structures.

It suffices to choose as primitive the modalities 〈B〉, 〈E〉, 〈B〉, 〈E〉
corresponding to the relations begins, ends, and their inverses; the
others are definable.

begins:
d0 d2 d1

〈B〉ϕ︷ ︸︸ ︷
︸ ︷︷ ︸

ϕ

ends:
d0 d2 d1

〈E〉ϕ︷ ︸︸ ︷
︸ ︷︷ ︸

ϕ

begun by:
d0 d1 d2

〈B〉ϕ︷ ︸︸ ︷
︸ ︷︷ ︸

ϕ

ended by:
d2 d0 d1

〈E〉ϕ︷ ︸︸ ︷
︸ ︷︷ ︸

ϕ
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Decidability of HS fragments: main parameters

More than four thousands fragments of HS can be identified by
choosing suitable subsets of the set of basic modal operators.



Decidability of HS fragments: main parameters

More than four thousands fragments of HS can be identified by
choosing suitable subsets of the set of basic modal operators.

In principle, decidability of HS fragments depends on two fac-
tors:

I the set of interval modalities;
I the linear order over which the logic is interpreted.



The existing landscape
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A geometrical account of interval logic: intervals

. . .
db

. . . . . .
de

. . . . . . . . .

Every interval can be represented by a point in the second
octant (in general, in the half plane y > x).

(db,de)



A geometrical account of interval logic: interval relations

. . .
db

. . .. . .
d ′
e

. . .
de

. . . . . . . . .

〈B〉ψ

ψ

db < d
′
e < de

(db,de)

(db,d ′
e)

Every interval relation has a spatial counterpart.



A geometrical account of interval logic: models

We can give a spatial interpretation to
models of a formula ϕ as compass struc-
tures:
points of a compass structure are colored
with the set of subformulas of ϕ that are
true over the corresponding intervals

[A]ψ

ψ, 〈B〉θ,χ

ψ, 〈B〉χ

ψ, θ

[A]ψ

ψ, θ

ψ, 〈B〉χ

ψ, 〈B〉θ,χ



What was already known: ABB

〈B〉ψ
ψ

ψ

〈B̄〉ψ

〈A〉ψ
ψ

ABB is EXPSPACE-complete over the natural numbers.



What was already known: AABB

〈B〉ψ
ψ

ψ

〈B̄〉ψ

〈A〉ψ
ψ

AABB is NONPRIMITIVE RECURSIVE-hard over finite linear
orders; undecidable elsewhere.

〈Ā〉ψ
ψ



What is this paper about: ABBL

〈B〉ψ
ψ

ψ

〈B̄〉ψ

〈A〉ψ
ψ

ψ 〈L̄〉ψ



What is this paper about: ABBL

〈B〉ψ
ψ

ψ

〈B̄〉ψ

〈A〉ψ
ψ

L is easily definable in terms of A(〈L〉 = 〈A〉〈A〉)

ψ 〈L̄〉ψ



From Compass Structures to Bounded Compass Structures

Given an input ABB̄L̄-formula
ϕ, we translate it into a formula
ϕ such that ϕ is satisfiable if
and only if ϕ is satisfiable at
the initial point of a (possibly
infinite but) bounded compass
structure.

bounded unbounded in the future

unbounded in the past unbounded



Decidability of ABBL over all linear orders

We prove our decidability result in two steps:

I first, we prove that the satisfiability problem for the simpler
fragment ABB over all linear orders is decidable

I we first define a suitable notion of pseudo-model for a
satisfiable formula of ABB

I then, we prove that the problem of establishing whether or not
such a pseudo-model exists is decidable

I then, we show how to generalize the proof to ABBL



Basic ingredients

Let G be a bounded compass struc-
ture for a formula ϕ
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Basic ingredients

Let G be a bounded compass struc-
ture for a formula ϕ

Shading
The shading of a row y of G
ShadingG(y) is the set of all and
only the atoms associated with
points in y

Matching set
Given two shadings S1 and S2 of
G, a matching set is a finite of set
of pairs of corresponding atoms,
respectively belonging to S1 and
S2, that satisfy suitable matching
properties

Matching graph
A matching graph is the composi-
tion of a sequence of matching sets

ShadingG(y)y

ShadingG(y
′)y ′
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MS = { , , , }



The notion of decomposition tree

Matching set and matching graph allow us to define the key notion of
decomposition tree

S π(S)

T π(T)

S

S1 π(S1)

π(S)

S1 π(S1)

S2 π(S2)

S2

T

π(S2)

π(T)

1

2
3

A decomposition tree for a formula ϕ can be viewed as the unfolding of a finite
graph, which provides a finite representation of a (possibly infinite) bounded
compass structure
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The notion of decomposition tree

Matching set and matching graph allow us to define the key notion of
decomposition tree

S π(S)

T π(T)

S

S1 π(S1)

π(S)

S1 π(S1)

S2 π(S2)

S2

T

π(S2)

π(T)

1

2
3

Matching Graph

A decomposition tree for a formula ϕ can be viewed as the unfolding of a finite
graph, which provides a finite representation of a (possibly infinite) bounded
compass structure



Decidability of ABB

Completeness
Let ϕ be an ABB -formula and G = 〈PO,L〉 be a bounded compass
structure for ϕ. Then, there exists a decomposition tree
Tϕ = 〈T,ν〉 for ϕ with rank 6 4 · |ϕ| · 218|ϕ|+2 + 29|ϕ|+1 + 1.

Soundness
Let ϕ be an ABB -formula and Tϕ = 〈T,ν〉 be a decomposition
tree for ϕ. Then, there exists a bounded compass structure
G = 〈PO,L〉 for ϕ.

Theorem
Let ϕ an ABB -formula. Then, ϕ is satisfiable in the class of all
linear orders if and only if there exists a decomposition tree
Tϕ = 〈T,ν〉 for ϕ with rank 6 4 · |ϕ| · 218|ϕ|+2 + 29|ϕ|+1 + 1.



The addition of L: complications
To deal with ABBL , the notion of decomposition tree must be suitably
generalized.

Given a bounded compass structure G and a formula 〈L〉ψ that occurs in G, we
must distinguish among the following three cases for ψ:

inf(ψ)

ψ

Type 1

inf(ψ)

ψ
...

[B]¬ψ, 〈B〉ψ

〈B〉ψ

Type 2

inf(ψ)

ψ, [B]¬ψ

〈B〉ψ, [B]¬ψ Type 3.a inf(ψ)

ψ, [B]¬ψ

ψ, [B]¬ψ

Type 3.b
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The main result: decidability of ABBL

Theorem
Let ϕ be an ABBL -formula. Then, ϕ is satisfiable in the class of
all linear orders if and only if there exists an extended decomposition
tree Tϕ for ϕ with rank m 6 4 · |ϕ| · 218|ϕ|+2 + 29|ϕ|+1 + |ϕ|+ 1.

We reduced the problem of establishing whether an (ex-
tended) decomposition tree for ϕ exists to the nonemptiness
problem for a suitable regular tree language Tϕ.

Nonemptiness for Tϕ can be checked using exponential-space
in the size of the formula.

By previous results for ABB , we know that the satisfiabil-
ity problem for ABBL is EXPSPACE-hard, and thus EX-
PSPACE-completeness immediately follows.



Dense and discrete linear orders

The decidability of ABBL over the class of dense linear orders
immediately follows, as density can be defined in ABBL by a
constant formula:

an ABBL -formula ϕ is satisfiable over the class of dense linear orders if and
only if the (constant) formula ϕ∧ [G](¬π→ 〈B〉¬π) is satisfiable over the class
of all linear orders

A similar argument cannot be applied to (weakly) discrete linear
orders. However, it is possible to tailor the decidability proof for the
class of all linear orders to them

Thus, we can conclude that the AĀBL̄ is a maximal fragment of
HS with respect to the decidability over the class of all linear
orders, dense orders, and discrete orders.
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