
GAME SEMANTICS FOR
GOOD GENERAL REFERENCES

Andrzej S. Murawski
University of Leicester

Nikos Tzevelekos
University of Oxford

ML-LIKE REFERENCES

My talk is about references and in computer science this term is used to de-
scribe mechanisms that enable a program to access an item of data in computer
memory. So, references refer to pieces of data and accessing the data is called
dereferencing the reference.

Most programming languages support some form of references, Languages
differ as to the kind of values permitted in the store.

The most primitive one are references to ground-type values, numbers etc,
known as variables and they support basic imperative programming.

We shall focus on ML-like references.

• Creation
ref(M)

• Assignment
M :=N

• Dereferencing
!M

• Equality
M = N

1

OCAML SESSION

Ground storage

let r0=ref(());;
val r0 : unit ref = {contents = ()}

let r1=ref(3);;
val r1 : int ref = {contents = 3}

Reference storage

let r2=ref(r1);;
val r2 : int ref ref = {contents = {contents = 3}}

2

MORE OCAML

Higher-order storage

let r3=ref(fun(x:int ref) -> x==r1);;
val r3 : (int ref -> bool) ref = {contents = <fun>}

(!r3)(r1);;
- : bool = true

(!r3)(ref(3));;
- : bool = false

3

TYPES

more precisely to their functional parts. Another new technical

ingredient in our work is the notion of composition. Here the

main challenge is to identify conditions ensuring that higher-

order values not accessible to one of the strategies will not be

covertly modified during composition.

On the structural level, our proof of full abstraction follows

the well-established pattern of proving such results. Sound-

ness (Section V) is obtained by showing conformance with

a categorical framework [29], already known to guarantee

soundness. Completeness (Section VI) follows from a defin-

ability result, which is interesting in its own right, as the new

structure of plays enables one to perform rather unexpected

transformations on plays to reduce the problem to simpler

and smaller instances. Altogether we obtain a model in which

program approximation (contextual preorder) corresponds to

inclusion of the induced complete3 plays. This immediately

implies effective presentability, i.e. a decidable presentation

of the compact elements of the model. We believe our model

to provide a definitive game semantics for general references

in absence of polymorphism and recursive types.

Related and future work. As already described, our model

rectifies problems present in a previous game model due to

Abramsky, Honda and McCusker [3]. The structure of their

model was subsequently studied by Levy [20] and Melliès [21]

with the aim of understanding its structure in more abstract

terms.

Otherwise the most closely related work is Laird’s fully

abstract trace semantics of essentially the same language [15].

Our model can be viewed as a game-semantic counterpart

of his work: traces are derived from terms through an op-

erational semantics, whereas our strategies are defined in

a compositional and syntax-free manner. This illustrates a

recent convergence of complementary results in the two fields

(cf. [18] and [17]) that promises to lead, in the long run, to an

operational account of game semantics, which will ultimately

make it possible to move smoothly between (syntax-directed,

non-compositional) labelled transition system semantics and

(syntax-independent, compositional) game semantics.

Another compositional game model for the language consid-

ered in this paper has already been presented by one of us [29].

Grounded in monadic semantics for store, it did not however

offer an explicit characterization of program equivalence due

to reliance on innocent strategies (which had to be quotiented

for full abstraction). The present work can thus also be seen

as a refinement of that work towards a model that captures the

behaviour of the environment more faithfully.

In the wide spectrum of methodologies for references our

work offers a new foundation for compositional analysis of

general references. Modular verification of programs with

general references is a topical problem, which was already

attacked through a variety of approaches, e.g. separation

logic [27]. In future, we hope to apply our model to model-

checking and control-flow analysis in the spirit of algorithmic

game semantics [12, 1]. Although higher-order references are

3A play is complete if any questions occurring in it has been answered.

u,Γ ! () : unit
i ∈ Z

u,Γ ! i : int
a ∈ (u ∩ Aθ)
u,Γ ! a : ref θ

(x : θ) ∈ Γ
u,Γ ! x : θ

u,Γ ! M1 : int u,Γ ! M2 : int
u,Γ ! M1 ⊕M2 : int

u,Γ ! M : int u,Γ ! N0 : θ u,Γ ! N1 : θ
u,Γ ! ifM thenN1 elseN0 : θ

u,Γ ! M : ref θ
u,Γ ! !M : θ

u,Γ ! M : ref θ u,Γ ! N : θ
u,Γ ! M :=N : unit

u,Γ ! M : θ
u,Γ ! refθ(M) : ref θ

u,Γ ! M : ref θ u,Γ ! N : ref θ
u,Γ ! M = N : int

u,Γ ! M : θ → θ′ u,Γ ! N : θ
u,Γ ! MN : θ′

u,Γ ∪ {x : θ} ! M : θ′

u,Γ ! λxθ .M : θ → θ′

Fig. 1. Syntax of RefML.

an expressive paradigm, quickly resulting in undecidability,

decidable properties can sometimes be identified [9] and

we will be in a good position to approach such from a

new perspective. We would also like to make an impact on

the automated or machine-checkable verification of program

equivalences and understand the relationship between game

semantics and other methods used to the same end, such as

step-indexing [5] and bisimulation-based techniques [25]. On

the semantic front, as a next step, we would like to extend

our work to polymorphism, so as to eliminate the bad-variable

problem in [17].

II. THE LANGUAGE REFML

We shall work with types defined by the grammar below.

θ, θ′ ::= unit | int | ref θ | θ → θ′

The language considered, which we shall call RefML, is best

described as the call-by-value λ-calculus over the ground types
unit, int, ref θ augmented with basic commands (termination),
primitives for integer arithmetic (constants, zero-test, binary

integer functions) and higher-order reference manipulation

(reference names, dereferencing, assignment, memory alloca-

tion, reference equality testing). The typing rules are given

in Figure 1, where A =
⊎

θ Aθ stands for a countable set of

reference names (one such set for each type θ), or just names, u
for a finite subset of A, and ⊕ for binary integer functions (e.g.
+, −, ∗, =). Their precise choice is to some extent immaterial:
for the full abstraction argument to hold it suffices to be able

to compare integer variables with integer constants and act

on the result. In the above and in what follows, we write

M ;N for the term (λzθ.N)M , where z does not occur in N
and θ matches the type of M . letx = M inN will stand for

(λxθ .N)M in general. The values of the language are given

by the syntax:

V ::= () | i | a | x | λxθ.M.

To define the operational semantics of RefML, we need to

introduce a notion of store. A store will simply be a function

2

more precisely to their functional parts. Another new technical

ingredient in our work is the notion of composition. Here the

main challenge is to identify conditions ensuring that higher-

order values not accessible to one of the strategies will not be

covertly modified during composition.

On the structural level, our proof of full abstraction follows

the well-established pattern of proving such results. Sound-

ness (Section V) is obtained by showing conformance with

a categorical framework [29], already known to guarantee

soundness. Completeness (Section VI) follows from a defin-

ability result, which is interesting in its own right, as the new

structure of plays enables one to perform rather unexpected

transformations on plays to reduce the problem to simpler

and smaller instances. Altogether we obtain a model in which

program approximation (contextual preorder) corresponds to

inclusion of the induced complete3 plays. This immediately

implies effective presentability, i.e. a decidable presentation

of the compact elements of the model. We believe our model

to provide a definitive game semantics for general references

in absence of polymorphism and recursive types.

Related and future work. As already described, our model

rectifies problems present in a previous game model due to

Abramsky, Honda and McCusker [3]. The structure of their

model was subsequently studied by Levy [20] and Melliès [21]

with the aim of understanding its structure in more abstract

terms.

Otherwise the most closely related work is Laird’s fully

abstract trace semantics of essentially the same language [15].

Our model can be viewed as a game-semantic counterpart

of his work: traces are derived from terms through an op-

erational semantics, whereas our strategies are defined in

a compositional and syntax-free manner. This illustrates a

recent convergence of complementary results in the two fields

(cf. [18] and [17]) that promises to lead, in the long run, to an

operational account of game semantics, which will ultimately

make it possible to move smoothly between (syntax-directed,

non-compositional) labelled transition system semantics and

(syntax-independent, compositional) game semantics.

Another compositional game model for the language consid-

ered in this paper has already been presented by one of us [29].

Grounded in monadic semantics for store, it did not however

offer an explicit characterization of program equivalence due

to reliance on innocent strategies (which had to be quotiented

for full abstraction). The present work can thus also be seen

as a refinement of that work towards a model that captures the

behaviour of the environment more faithfully.

In the wide spectrum of methodologies for references our

work offers a new foundation for compositional analysis of

general references. Modular verification of programs with

general references is a topical problem, which was already

attacked through a variety of approaches, e.g. separation

logic [27]. In future, we hope to apply our model to model-

checking and control-flow analysis in the spirit of algorithmic

game semantics [12, 1]. Although higher-order references are

3A play is complete if any questions occurring in it has been answered.

u,Γ ! () : unit
i ∈ Z

u,Γ ! i : int
a ∈ (u ∩ Aθ)
u,Γ ! a : ref θ

(x : θ) ∈ Γ
u,Γ ! x : θ

u,Γ ! M1 : int u,Γ ! M2 : int
u,Γ ! M1 ⊕M2 : int

u,Γ ! M : int u,Γ ! N0 : θ u,Γ ! N1 : θ
u,Γ ! ifM thenN1 elseN0 : θ

u,Γ ! M : ref θ
u,Γ ! !M : θ

u,Γ ! M : ref θ u,Γ ! N : θ
u,Γ ! M :=N : unit

u,Γ ! M : θ
u,Γ ! refθ(M) : ref θ

u,Γ ! M : ref θ u,Γ ! N : ref θ
u,Γ ! M = N : int

u,Γ ! M : θ → θ′ u,Γ ! N : θ
u,Γ ! MN : θ′

u,Γ ∪ {x : θ} ! M : θ′

u,Γ ! λxθ .M : θ → θ′

Fig. 1. Syntax of RefML.

an expressive paradigm, quickly resulting in undecidability,

decidable properties can sometimes be identified [9] and

we will be in a good position to approach such from a

new perspective. We would also like to make an impact on

the automated or machine-checkable verification of program

equivalences and understand the relationship between game

semantics and other methods used to the same end, such as

step-indexing [5] and bisimulation-based techniques [25]. On

the semantic front, as a next step, we would like to extend

our work to polymorphism, so as to eliminate the bad-variable

problem in [17].

II. THE LANGUAGE REFML

We shall work with types defined by the grammar below.

θ, θ′ ::= unit | int | ref θ | θ → θ′

The language considered, which we shall call RefML, is best

described as the call-by-value λ-calculus over the ground types
unit, int, ref θ augmented with basic commands (termination),
primitives for integer arithmetic (constants, zero-test, binary

integer functions) and higher-order reference manipulation

(reference names, dereferencing, assignment, memory alloca-

tion, reference equality testing). The typing rules are given

in Figure 1, where A =
⊎

θ Aθ stands for a countable set of

reference names (one such set for each type θ), or just names, u
for a finite subset of A, and ⊕ for binary integer functions (e.g.
+, −, ∗, =). Their precise choice is to some extent immaterial:
for the full abstraction argument to hold it suffices to be able

to compare integer variables with integer constants and act

on the result. In the above and in what follows, we write

M ;N for the term (λzθ.N)M , where z does not occur in N
and θ matches the type of M . letx = M inN will stand for

(λxθ .N)M in general. The values of the language are given

by the syntax:

V ::= () | i | a | x | λxθ.M.

To define the operational semantics of RefML, we need to

introduce a notion of store. A store will simply be a function

2

EXPRESSIVITY

• Divergence

• Recursion

• Objects, aspects, ...

λf (θ1→θ2)→(θ1→θ2).let y = refθ1→θ2
(· · ·) in

y := (λzθ1 .f(!y)z); !y

12

let y = refunit→unit(· · ·) in

y := (λzunit.(!y)z); !y

λf (θ1→θ2)→(θ1→θ2).let y = refθ1→θ2
(· · ·) in

y := (λzθ1 .f(!y)z); !y

15

SEMANTICS

Γ ! M1
∼= M2 if and only if !Γ ! M1" = !Γ ! M2"

5

Full Abstraction

Γ ! M1 : θ and Γ ! M2 : θ are equivalent

if and only if
they are not distinguishable by any context.

For all contexts C[−] such that ! C[M1], C[M2]
C[M1] ⇓ if and only if C[M2] ⇓.

9

REYNOLDS’ APPROACH

Issues

• Disconnect between reads and writes.

• Reading and writing can produce unrestricted side-effects.

ref θ = (unit → θ) × (θ → unit)

5

LACK OF FULL ABSTRACTION

Some basic equivalences are not validated by the model.

x : ref θ ! x := !x ∼= ()

x := V ; !x ∼= x :=V ; V

x :=V ; x :=W ∼= x :=W

10

LICS’98

A fully a
bstract

game se
mantics

for gene
ral refer

ences

Samson
Abramsk

y Kohei H
onda

LFCS, U
niversity

of Edinb
urgh

samson
,kohei

@dcs.e
d.ac.u

k

Guy Mc
Cusker

St John’
s Colleg

e, Oxfor
d

mccusk
er@com

lab.ox
.ac.uk

Abstrac
t

A games
model o

f a progr
amming

languag
e with hi

gher-ord
er store

in the sty
le of ML

-referenc
es is intr

oduced.
The cate

gory

used for
the mod

el is obta
ined by r

elaxing
certain b

ehaviou
ral cond

itions on
a catego

ry of gam
es previo

usly use
d to prov

ide

fully ab
stract m

odels of
pure fun

ctional l
anguage

s. The mod
el is sho

wn to b
e fully a

bstract b
y means

of facto
rization

argumen
ts which

reduce t
he quest

ion of de
finability

for the la
nguage

with hig
her-orde

r store to
that for

its purel
y functio

nal

fragmen
t.

Copyrig
ht 1998

IEEE. P
ublished

in the Pr
oceeding

s of LIC
S’98, 21

–24 June
1998 in

Indianap
olis, Ind

iana. Pe
rsonal us

e

of this m
aterial is

permitte
d. Howe

ver, perm
ission to

reprint/r
epublish

this mate
rial for a

dvertisin
g or prom

otional p
urposes

or for cr
eating ne

w collec
tive wor

ks for re
sale or r

edistribu
tion to s

ervers or
lists, or

to reuse
any copy

righted c
ompone

nt of

this wor
k in othe

r works,
must be

obtained
from the

IEEE. C
ontact: M

anager, C
opyright

s and Pe
rmission

s / IEEE
Service

Center /
445 Hoe

s Lane /
P.O. Box

1331 / P
iscatawa

y, NJ 08
855-133

1, USA.
Telepho

ne: + Int
l. 732-56

2-3966.

1

NOMINAL GAME SEMANTICS

!ref θ" = Aθ

11

GAME SEMANTICS

✤ Models programs as strategies in games between programs
and potential contexts.

✤ The plays can be viewed as an abstracted account of
interaction (“only observable behaviour is revealed”).

Full Abstraction

Ultimately, the game framework is supposed to be a faithful model of the programming language in

question.

• Faithfulness is made precise by a number of criteria to be studied later in the course.

• Slogan: equivalent programs should be modelled in the same way (full abstraction).

How does game semantics feel?

q1 q2 02
q2 q3 q2 12 133

O P O P O P O P

14

Example

• Constant (25 ∈ N)

O What is the result?

P 25

q 25
O P

• First-order function (n ∈ N "→ n! ∈ N)

O What is the result?

P What is the argument?

O The argument is 3.
P The result is 6.

q0 q1 31 60

O P O P

15

9

SOME NOMINAL PLAYS

f : ref int → unit " let n = ref int(0) in (fn);n : ref int

f : ref int → unit " let n1 = ref int(0) in

let n2 = ref int(0) in

(fn1); (n2 :=!n1);n2 : ref int

∗ n(n,0) ∗(n,k) n(n,k) ∗ n
(n1,0)
1 ∗(n1,k) n

(n1,k),(n2,k)
2

14

MOVES WITH STORES

mΣ

15

mΣ

What is the content of Σ? Pairs (!, · · ·) of three kinds.

(n1, 3) (n2, n1) (n3, ")

cf. OCAML interpreter

let r=ref(fun (x:int) -> x);;
val r : (int -> int) ref = {contents = <fun>}

15

mΣ

What is the content of Σ? Pairs (!, · · ·) of four kinds.

(n0, ") (n1, 3) (n2, n1) (n3, ")

cf. OCAML interpreter

let r=ref(fun (x:int) -> x);;
val r : (int -> int) ref = {contents = <fun>}

16

HIGHER-ORDER STORE

• We cannot reveal higher-order values in the store. This would
jeopardize full abstraction!

• The properties of stored values will be revealed during play
thanks to the use of special pointers to the store (in previous
game models, pointers could only point at other moves).a(a,!) !(a,!) 1(a,!) 1(a,!) 3(a,!) 3(a,!)

m(a,!)
· · · n(···)

11

HIGHER-ORDER STORE

We also use o and p to stress ownership of moves. Let λA be

the OP-complement of λA. Note that if i !A m then λA(m) =
(O,Q). We call such moves m the initial questions of the

arena A. Given arenas A,B, the arenas A⊗B and A ⇒ B are

constructed as follows, where ĪA = MA\IA, !̄A = (!A! ĪA2)
(and similarly for B).

MA⊗B = (IA × IB) % ĪA % ĪB IA⊗B = IA × IB

λA⊗B = [(iA, iB) &→ PA, λA ! ĪA, λB ! ĪB]

!A⊗B = {((iA, iB),m) | iA !A m ∨ iB !B m} ∪ !̄A ∪ !̄B

MA⇒B = {"} %MA %MB IA⇒B = {"}

λA⇒B = [" &→ PA, λA[iA &→ OQ], λB]

!A⇒B = {(", iA)} ∪ {(iA, iB)}∪ !A ∪ !B

Now for each type θ we define the corresponding arena !θ".

!unit" = 〈{"}, {"}, ∅, ∅〉 !int" = 〈Z,Z, ∅, ∅〉

!ref θ" = 〈Aθ,Aθ, ∅, ∅〉 !θ → θ′" = !θ" ⇒ !θ′"

We write 1 for !unit", Z for !int", and Aθ for !ref θ".
Moreover, we set Mφ =

⊎

θ,θ′ M!θ→θ′". Although types are

interpreted by arenas, the actual games will be played in

prearenas, which are defined in the same way as arenas with

the exception that initial moves are O-questions. Given arenas

A,B we define the prearena A → B as follows.

MA→B = MA %MB λA→B = [λA[iA &→ OQ],λB]

IA→B = IA !A→B = {(iA, iB)}∪ !A ∪ !B

We write Valθ for the set I!θ", that is,

Valunit = Valθ→θ′ = ", Valint = Z, Valref θ = Aθ.

Let Val =
⊎

θ Valθ . A storeΣ is a type-preserving finite partial

function from A to Val, that is, Σ : A ⇀ Val and

|Σ| finite ∧ (a ∈ dom(Σ) ∩ Aθ =⇒ Σ(a) ∈ Valθ) .

We write Sto for the set of all stores. A move-with-store on

a (pre)arena A is a pair mΣ with m ∈ MA and Σ ∈ Sto.

Definition 5: A justified sequence on a prearena A is a

sequence of moves-with-store fromMA%Mφ such that, apart

from the first move which must be of the form iΣ with i ∈ IA,
every move in s is equipped with a pointer to an earlier move,
or to a name inside the store of an earlier move. These pointers

are called justification pointers and are subject to the following

constraints.

• If nT points to mΣ then either m,n ∈ MA and m !A n,
or m,n ∈ Mθ→θ′ for some θ, θ′ and m !!θ→θ′" n. We
say that mΣ justifies nT .

• If nT points to a ∈ dom(Σ) of mΣ then a ∈ Aθ→θ′ for

some θ, θ′, and n must be an initial question inM!θ→θ′".

We say that mΣ a-justifies nT .

An intuitive way to comprehend pointers to a name a ∈
dom(Σ) ∩Aθ→θ′ is to think of them as pointing to the value

" of a stored in Σ. Since the value of a is of function type,
its structure is not revealed at once, but it can be explored

by players by invoking the function, that is, by playing in

!θ → θ′" from that initial ".
Note that a justified sequence on A contains moves from

MA, called A-moves, and moves fromMφ, which hereditarily

point inside stores of other moves. The latter are called φ-
moves. We shall say that mΣ is an ancestor of nT (or that nT

is a descendant of mΣ) if there is a chain of pointers from nT

to m, possibly passing through stores on the way. Similarly,
we say that mΣ is an a-ancestor of nT (or that nT is an a-
descendant of mΣ) if there is a chain of pointers from nT to

a in Σ (the chain may also be visiting other stores). Note that

each φ-move has a unique a-ancestor, which is an A-move.
For each S ⊆ A and Σ we define:

Σ0(S) = S, Σi+1(S) = Σ(Σi(S))∩A, Σ∗(S) =
⋃

i
Σi(S).

The set of available names of a justified sequence is defined

inductively by Av(ε) = ∅ and

Av(snT) =

Av(s) if there is an a-ancestor mΣ

of nT and a /∈ Av(s≤mΣ)

Σ∗(Av(s) ∪ ν(n)) otherwise

where s≤mΣ is the subsequence of s up to mΣ . We shall be

writing s 1 s′ to mean that s is a subsequence of s′.

Definition 6: Let A be a prearena. A justified sequence s
on A is called a legal sequence, written s ∈ LA, if it satisfies

the conditions below.

• No adjacent moves belong to the same player, and no

move points to a move (or the store of a move) of the

same player (Alternation).

• The justifier of each answer is the most recent unan-

swered question (Bracketing).

We call s a play if it additionally satisfies:

• For any s′mΣ 1 s, dom(Σ) = Av(s′mΣ) (Frugality).

We write PA for the set of plays on A.

Example 7: Here are two plays on !ref (int → int)" →
!int → int" (for the sake of clarity, we omit pointers that would
just point at preceding moves). We use double-line pointers to

highlight the justification pointers pointing at stores.

a(a,$) "(a,$) 1(a,$) 1(a,$) 3(a,$) 3(a,$)

a(a,$) "(a,$) 1(a,$) 1(a,$) 3(a,$) 3(a,$)

The plays will be among those used to interpret the terms

x : ref (int → int) ! !x : int → int

x : ref (int → int) ! λhint.(!x)h : int → int

respectively. Note that these terms can be distinguished by the

context

letx = newint→int in (λf
int→int.f(x := λhint.0 ; 0)) [].

4

We also use o and p to stress ownership of moves. Let λA be

the OP-complement of λA. Note that if i !A m then λA(m) =
(O,Q). We call such moves m the initial questions of the

arena A. Given arenas A,B, the arenas A⊗B and A ⇒ B are

constructed as follows, where ĪA = MA\IA, !̄A = (!A! ĪA2)
(and similarly for B).

MA⊗B = (IA × IB) % ĪA % ĪB IA⊗B = IA × IB

λA⊗B = [(iA, iB) &→ PA, λA ! ĪA, λB ! ĪB]

!A⊗B = {((iA, iB),m) | iA !A m ∨ iB !B m} ∪ !̄A ∪ !̄B

MA⇒B = {"} %MA %MB IA⇒B = {"}

λA⇒B = [" &→ PA, λA[iA &→ OQ], λB]

!A⇒B = {(", iA)} ∪ {(iA, iB)}∪ !A ∪ !B

Now for each type θ we define the corresponding arena !θ".

!unit" = 〈{"}, {"}, ∅, ∅〉 !int" = 〈Z,Z, ∅, ∅〉

!ref θ" = 〈Aθ,Aθ, ∅, ∅〉 !θ → θ′" = !θ" ⇒ !θ′"

We write 1 for !unit", Z for !int", and Aθ for !ref θ".
Moreover, we set Mφ =

⊎

θ,θ′ M!θ→θ′". Although types are

interpreted by arenas, the actual games will be played in

prearenas, which are defined in the same way as arenas with

the exception that initial moves are O-questions. Given arenas

A,B we define the prearena A → B as follows.

MA→B = MA %MB λA→B = [λA[iA &→ OQ],λB]

IA→B = IA !A→B = {(iA, iB)}∪ !A ∪ !B

We write Valθ for the set I!θ", that is,

Valunit = Valθ→θ′ = ", Valint = Z, Valref θ = Aθ.

Let Val =
⊎

θ Valθ . A storeΣ is a type-preserving finite partial

function from A to Val, that is, Σ : A ⇀ Val and

|Σ| finite ∧ (a ∈ dom(Σ) ∩ Aθ =⇒ Σ(a) ∈ Valθ) .

We write Sto for the set of all stores. A move-with-store on

a (pre)arena A is a pair mΣ with m ∈ MA and Σ ∈ Sto.

Definition 5: A justified sequence on a prearena A is a

sequence of moves-with-store fromMA%Mφ such that, apart

from the first move which must be of the form iΣ with i ∈ IA,
every move in s is equipped with a pointer to an earlier move,
or to a name inside the store of an earlier move. These pointers

are called justification pointers and are subject to the following

constraints.

• If nT points to mΣ then either m,n ∈ MA and m !A n,
or m,n ∈ Mθ→θ′ for some θ, θ′ and m !!θ→θ′" n. We
say that mΣ justifies nT .

• If nT points to a ∈ dom(Σ) of mΣ then a ∈ Aθ→θ′ for

some θ, θ′, and n must be an initial question inM!θ→θ′".

We say that mΣ a-justifies nT .

An intuitive way to comprehend pointers to a name a ∈
dom(Σ) ∩Aθ→θ′ is to think of them as pointing to the value

" of a stored in Σ. Since the value of a is of function type,
its structure is not revealed at once, but it can be explored

by players by invoking the function, that is, by playing in

!θ → θ′" from that initial ".
Note that a justified sequence on A contains moves from

MA, called A-moves, and moves fromMφ, which hereditarily

point inside stores of other moves. The latter are called φ-
moves. We shall say that mΣ is an ancestor of nT (or that nT

is a descendant of mΣ) if there is a chain of pointers from nT

to m, possibly passing through stores on the way. Similarly,
we say that mΣ is an a-ancestor of nT (or that nT is an a-
descendant of mΣ) if there is a chain of pointers from nT to

a in Σ (the chain may also be visiting other stores). Note that

each φ-move has a unique a-ancestor, which is an A-move.
For each S ⊆ A and Σ we define:

Σ0(S) = S, Σi+1(S) = Σ(Σi(S))∩A, Σ∗(S) =
⋃

i
Σi(S).

The set of available names of a justified sequence is defined

inductively by Av(ε) = ∅ and

Av(snT) =

Av(s) if there is an a-ancestor mΣ

of nT and a /∈ Av(s≤mΣ)

Σ∗(Av(s) ∪ ν(n)) otherwise

where s≤mΣ is the subsequence of s up to mΣ . We shall be

writing s 1 s′ to mean that s is a subsequence of s′.

Definition 6: Let A be a prearena. A justified sequence s
on A is called a legal sequence, written s ∈ LA, if it satisfies

the conditions below.

• No adjacent moves belong to the same player, and no

move points to a move (or the store of a move) of the

same player (Alternation).

• The justifier of each answer is the most recent unan-

swered question (Bracketing).

We call s a play if it additionally satisfies:

• For any s′mΣ 1 s, dom(Σ) = Av(s′mΣ) (Frugality).

We write PA for the set of plays on A.

Example 7: Here are two plays on !ref (int → int)" →
!int → int" (for the sake of clarity, we omit pointers that would
just point at preceding moves). We use double-line pointers to

highlight the justification pointers pointing at stores.

a(a,$) "(a,$) 1(a,$) 1(a,$) 3(a,$) 3(a,$)

a(a,$) "(a,$) 1(a,$) 1(a,$) 3(a,$) 3(a,$)

The plays will be among those used to interpret the terms

x : ref (int → int) ! !x : int → int

x : ref (int → int) ! λhint.(!x)h : int → int

respectively. Note that these terms can be distinguished by the

context

letx = newint→int in (λf
int→int.f(x := λhint.0 ; 0)) [].

4

We also use o and p to stress ownership of moves. Let λA be

the OP-complement of λA. Note that if i !A m then λA(m) =
(O,Q). We call such moves m the initial questions of the

arena A. Given arenas A,B, the arenas A⊗B and A ⇒ B are

constructed as follows, where ĪA = MA\IA, !̄A = (!A! ĪA2)
(and similarly for B).

MA⊗B = (IA × IB) % ĪA % ĪB IA⊗B = IA × IB

λA⊗B = [(iA, iB) &→ PA, λA ! ĪA, λB ! ĪB]

!A⊗B = {((iA, iB),m) | iA !A m ∨ iB !B m} ∪ !̄A ∪ !̄B

MA⇒B = {"} %MA %MB IA⇒B = {"}

λA⇒B = [" &→ PA, λA[iA &→ OQ], λB]

!A⇒B = {(", iA)} ∪ {(iA, iB)}∪ !A ∪ !B

Now for each type θ we define the corresponding arena !θ".

!unit" = 〈{"}, {"}, ∅, ∅〉 !int" = 〈Z,Z, ∅, ∅〉

!ref θ" = 〈Aθ,Aθ, ∅, ∅〉 !θ → θ′" = !θ" ⇒ !θ′"

We write 1 for !unit", Z for !int", and Aθ for !ref θ".
Moreover, we set Mφ =

⊎

θ,θ′ M!θ→θ′". Although types are

interpreted by arenas, the actual games will be played in

prearenas, which are defined in the same way as arenas with

the exception that initial moves are O-questions. Given arenas

A,B we define the prearena A → B as follows.

MA→B = MA %MB λA→B = [λA[iA &→ OQ],λB]

IA→B = IA !A→B = {(iA, iB)}∪ !A ∪ !B

We write Valθ for the set I!θ", that is,

Valunit = Valθ→θ′ = ", Valint = Z, Valref θ = Aθ.

Let Val =
⊎

θ Valθ . A storeΣ is a type-preserving finite partial

function from A to Val, that is, Σ : A ⇀ Val and

|Σ| finite ∧ (a ∈ dom(Σ) ∩ Aθ =⇒ Σ(a) ∈ Valθ) .

We write Sto for the set of all stores. A move-with-store on

a (pre)arena A is a pair mΣ with m ∈ MA and Σ ∈ Sto.

Definition 5: A justified sequence on a prearena A is a

sequence of moves-with-store fromMA%Mφ such that, apart

from the first move which must be of the form iΣ with i ∈ IA,
every move in s is equipped with a pointer to an earlier move,
or to a name inside the store of an earlier move. These pointers

are called justification pointers and are subject to the following

constraints.

• If nT points to mΣ then either m,n ∈ MA and m !A n,
or m,n ∈ Mθ→θ′ for some θ, θ′ and m !!θ→θ′" n. We
say that mΣ justifies nT .

• If nT points to a ∈ dom(Σ) of mΣ then a ∈ Aθ→θ′ for

some θ, θ′, and n must be an initial question inM!θ→θ′".

We say that mΣ a-justifies nT .

An intuitive way to comprehend pointers to a name a ∈
dom(Σ) ∩Aθ→θ′ is to think of them as pointing to the value

" of a stored in Σ. Since the value of a is of function type,
its structure is not revealed at once, but it can be explored

by players by invoking the function, that is, by playing in

!θ → θ′" from that initial ".
Note that a justified sequence on A contains moves from

MA, called A-moves, and moves fromMφ, which hereditarily

point inside stores of other moves. The latter are called φ-
moves. We shall say that mΣ is an ancestor of nT (or that nT

is a descendant of mΣ) if there is a chain of pointers from nT

to m, possibly passing through stores on the way. Similarly,
we say that mΣ is an a-ancestor of nT (or that nT is an a-
descendant of mΣ) if there is a chain of pointers from nT to

a in Σ (the chain may also be visiting other stores). Note that

each φ-move has a unique a-ancestor, which is an A-move.
For each S ⊆ A and Σ we define:

Σ0(S) = S, Σi+1(S) = Σ(Σi(S))∩A, Σ∗(S) =
⋃

i
Σi(S).

The set of available names of a justified sequence is defined

inductively by Av(ε) = ∅ and

Av(snT) =

Av(s) if there is an a-ancestor mΣ

of nT and a /∈ Av(s≤mΣ)

Σ∗(Av(s) ∪ ν(n)) otherwise

where s≤mΣ is the subsequence of s up to mΣ . We shall be

writing s 1 s′ to mean that s is a subsequence of s′.

Definition 6: Let A be a prearena. A justified sequence s
on A is called a legal sequence, written s ∈ LA, if it satisfies

the conditions below.

• No adjacent moves belong to the same player, and no

move points to a move (or the store of a move) of the

same player (Alternation).

• The justifier of each answer is the most recent unan-

swered question (Bracketing).

We call s a play if it additionally satisfies:

• For any s′mΣ 1 s, dom(Σ) = Av(s′mΣ) (Frugality).

We write PA for the set of plays on A.

Example 7: Here are two plays on !ref (int → int)" →
!int → int" (for the sake of clarity, we omit pointers that would
just point at preceding moves). We use double-line pointers to

highlight the justification pointers pointing at stores.

a(a,$) "(a,$) 1(a,$) 1(a,$) 3(a,$) 3(a,$)

a(a,$) "(a,$) 1(a,$) 1(a,$) 3(a,$) 3(a,$)

The plays will be among those used to interpret the terms

x : ref (int → int) ! !x : int → int

x : ref (int → int) ! λhint.(!x)h : int → int

respectively. Note that these terms can be distinguished by the

context

letx = newint→int in (λf
int→int.f(x := λhint.0 ; 0)) [].

4

We also use o and p to stress ownership of moves. Let λA be

the OP-complement of λA. Note that if i !A m then λA(m) =
(O,Q). We call such moves m the initial questions of the

arena A. Given arenas A,B, the arenas A⊗B and A ⇒ B are

constructed as follows, where ĪA = MA\IA, !̄A = (!A! ĪA2)
(and similarly for B).

MA⊗B = (IA × IB) % ĪA % ĪB IA⊗B = IA × IB

λA⊗B = [(iA, iB) &→ PA, λA ! ĪA, λB ! ĪB]

!A⊗B = {((iA, iB),m) | iA !A m ∨ iB !B m} ∪ !̄A ∪ !̄B

MA⇒B = {"} %MA %MB IA⇒B = {"}

λA⇒B = [" &→ PA, λA[iA &→ OQ], λB]

!A⇒B = {(", iA)} ∪ {(iA, iB)}∪ !A ∪ !B

Now for each type θ we define the corresponding arena !θ".

!unit" = 〈{"}, {"}, ∅, ∅〉 !int" = 〈Z,Z, ∅, ∅〉

!ref θ" = 〈Aθ,Aθ, ∅, ∅〉 !θ → θ′" = !θ" ⇒ !θ′"

We write 1 for !unit", Z for !int", and Aθ for !ref θ".
Moreover, we set Mφ =

⊎

θ,θ′ M!θ→θ′". Although types are

interpreted by arenas, the actual games will be played in

prearenas, which are defined in the same way as arenas with

the exception that initial moves are O-questions. Given arenas

A,B we define the prearena A → B as follows.

MA→B = MA %MB λA→B = [λA[iA &→ OQ],λB]

IA→B = IA !A→B = {(iA, iB)}∪ !A ∪ !B

We write Valθ for the set I!θ", that is,

Valunit = Valθ→θ′ = ", Valint = Z, Valref θ = Aθ.

Let Val =
⊎

θ Valθ . A storeΣ is a type-preserving finite partial

function from A to Val, that is, Σ : A ⇀ Val and

|Σ| finite ∧ (a ∈ dom(Σ) ∩ Aθ =⇒ Σ(a) ∈ Valθ) .

We write Sto for the set of all stores. A move-with-store on

a (pre)arena A is a pair mΣ with m ∈ MA and Σ ∈ Sto.

Definition 5: A justified sequence on a prearena A is a

sequence of moves-with-store fromMA%Mφ such that, apart

from the first move which must be of the form iΣ with i ∈ IA,
every move in s is equipped with a pointer to an earlier move,
or to a name inside the store of an earlier move. These pointers

are called justification pointers and are subject to the following

constraints.

• If nT points to mΣ then either m,n ∈ MA and m !A n,
or m,n ∈ Mθ→θ′ for some θ, θ′ and m !!θ→θ′" n. We
say that mΣ justifies nT .

• If nT points to a ∈ dom(Σ) of mΣ then a ∈ Aθ→θ′ for

some θ, θ′, and n must be an initial question inM!θ→θ′".

We say that mΣ a-justifies nT .

An intuitive way to comprehend pointers to a name a ∈
dom(Σ) ∩Aθ→θ′ is to think of them as pointing to the value

" of a stored in Σ. Since the value of a is of function type,
its structure is not revealed at once, but it can be explored

by players by invoking the function, that is, by playing in

!θ → θ′" from that initial ".
Note that a justified sequence on A contains moves from

MA, called A-moves, and moves fromMφ, which hereditarily

point inside stores of other moves. The latter are called φ-
moves. We shall say that mΣ is an ancestor of nT (or that nT

is a descendant of mΣ) if there is a chain of pointers from nT

to m, possibly passing through stores on the way. Similarly,
we say that mΣ is an a-ancestor of nT (or that nT is an a-
descendant of mΣ) if there is a chain of pointers from nT to

a in Σ (the chain may also be visiting other stores). Note that

each φ-move has a unique a-ancestor, which is an A-move.
For each S ⊆ A and Σ we define:

Σ0(S) = S, Σi+1(S) = Σ(Σi(S))∩A, Σ∗(S) =
⋃

i
Σi(S).

The set of available names of a justified sequence is defined

inductively by Av(ε) = ∅ and

Av(snT) =

Av(s) if there is an a-ancestor mΣ

of nT and a /∈ Av(s≤mΣ)

Σ∗(Av(s) ∪ ν(n)) otherwise

where s≤mΣ is the subsequence of s up to mΣ . We shall be

writing s 1 s′ to mean that s is a subsequence of s′.

Definition 6: Let A be a prearena. A justified sequence s
on A is called a legal sequence, written s ∈ LA, if it satisfies

the conditions below.

• No adjacent moves belong to the same player, and no

move points to a move (or the store of a move) of the

same player (Alternation).

• The justifier of each answer is the most recent unan-

swered question (Bracketing).

We call s a play if it additionally satisfies:

• For any s′mΣ 1 s, dom(Σ) = Av(s′mΣ) (Frugality).

We write PA for the set of plays on A.

Example 7: Here are two plays on !ref (int → int)" →
!int → int" (for the sake of clarity, we omit pointers that would
just point at preceding moves). We use double-line pointers to

highlight the justification pointers pointing at stores.

a(a,$) "(a,$) 1(a,$) 1(a,$) 3(a,$) 3(a,$)

a(a,$) "(a,$) 1(a,$) 1(a,$) 3(a,$) 3(a,$)

The plays will be among those used to interpret the terms

x : ref (int → int) ! !x : int → int

x : ref (int → int) ! λhint.(!x)h : int → int

respectively. Note that these terms can be distinguished by the

context

letx = newint→int in (λf
int→int.f(x := λhint.0 ; 0)) [].

4

STANDARD COMPOSITION

Given σ : A → B and τ : B → C,
the strategy σ; τ : A → C is defined to be

(σ ||B τ) \ B.

The two strategies play each other in B.

• Presence of references requires additional healthiness conditions.

16

REFINED COMPOSITION
What if one strategy accesses a location
that the other has no access to? Copycat!We mark polarities for σ on the left of the diagram, and for

τ on the right.

Aunit→int

σ
!! 1 ⇒ Z

τ
!! Z

OQ aa

PA #a OQ

OQ #a PQ (1)

PQ #a OQ

OQ #a PQ (2)

PA 3a OA

OA 3a PA (3)

PA 3a OA

3a PA

Consider point (1) in the interaction. In τ , P plays #a but
a is not available in the composite play at that point, hence
P must copycat from that point on at a-descendants of (that
occurrence of) #a. This is precisely what happens in points
(2) and (3).
Let us now consider the same τ and the strategy σ′ :
Aunit→int → 1 ⇒ Z given by the even prefixes of:

aa #a 3a #a 3a 3a

O P O P O P

The following could seem a possible interaction. Note that
the projection on the right is the play # # 3 3 ∈ τ , as the move
played at (1) and its successor are removed by γ.

Aunit→int

σ
!! 1 ⇒ Z

τ
!! Z

OQ a
PA #a OQ

OQ #a PQ (1)

PA 3a OA

OQ #a PQ

PA 3a OA

3a PA

However, there is a violation of the copycat condition at (1).
Again, a is not available at that point in τ and therefore P
plays #a and starts a copycat triple on a. But #a is justified by
a, thus violating the conditions for a copycat triple. Put simply,
τ interrogates the value of a name which is not available to it.

Next we go on to show that the definition of interaction
sequences is a sound basis for composing strategies. First we
examine the switching discipline implied by it.

Lemma 14: If u ∈ Int(A,B,C) then for all u′mΣnT $ u
the following switching conditions are satisfied.

• n is a P-move in AB (in BC) iff m is an O-move in AB
(resp. BC).

• n is an O-move in AC iff m is a P-move in AC.

Remark 15: Note that the switching conditions allow form
being a P-move in AC from A and its successor, n, being an
O-move in AC from C. These are perfectly legal interactions.

Below by saying that m survives in u !γ AB we mean
that the application of γ on u ! AB does not completely
remove mΣ (and similarly for the other cases). We say that
m introduces a in u′ = u !γ AB if m survives in u′ as, say,

mΣ′

and the latter introduces a in u′ (and similarly for the
other cases).

Lemma 16: Let u ∈ Int(A,B,C) and suppose mΣ intro-
duces the name a in u. If m is a P-move in AB (a P-move
in BC, an O-move in AC) then m introduces a in u !γ AB
(resp. u !γ BC, u !γ AC).

Corollary 17: For all u ∈ Int(A,B,C) we have ν(u) =
P (u !γ AB) % P (u !γ BC) %O(u !γ AC).

Lemma 18: If u ∈ Int(A,B,C) then (u !γ AB) ∈ PA→B ,
(u !γ BC) ∈ PB→C and (u !γ AC) ∈ PA→C .

Definition 19: Given strategies σ : A → B and τ : B → C
we define the composite strategy σ; τ : A → C to be

σ; τ = { s ∈ PA→C | ∃u ∈ σ‖τ. s = u !γ AC }.

Proposition 20: Strategy composition is well-defined,
i.e. for all σ : A → B and τ : B → C, σ; τ is a strategy on
A → C.

Proposition 21: Composition of strategies is associative.

Definition 22: G is the category of arenas and strategies,
in which strategies in the prearena A → B are morphisms
between A and B.

IV. MODEL

In this section we show that G possesses enough structure to
model RefML. Specifically, we shall show that it is (equivalent
to) a νρ-model in the sense of [30, Definition 3.12].
We start off by demonstrating some specific strategies which

constitute the main ingredients of a νρ-model.

Example 23: For each type θ we define a strategy eqθ :
Aθ ⊗ Aθ → Z by:

eqθ = {ε} ∪ {(a, a′)ΣiΣs | i ∈ {0, 1}, a = a′ ⇐⇒ i = 1}

where ((a, a′)ΣiΣs, (a, a′)ΣiΣ , b) is a copycat triple, for any
b ∈ A. That is to say, iΣ leaves the functional values of the
initial Σ unchanged.

Example 24: For each name a there is a unique (up to
name-permutation) store Σa such that dom(Σ) = Σ∗({a}).
More precisely:

Σa = {(a, vθ)} if a ∈ Aθ, θ ∈ {unit, int, θ′ → θ′′}

Σa = {(a, b)} ∪Σb if a ∈ Aref θ, b ∈ Aθ

where vθ = 0 if θ = int, and vA = # otherwise. Then, the
following strategy

nuθ : 1 → Aθ = {ε, #aΣa | a ∈ Aθ}

corresponds to the term newθ (fresh reference creation) from
Example 1.

NEW INGREDIENTS

• Sequences of moves with store that point to
other moves or stores of other moves.

• Composition is parallel composition with
copying plus hiding.

Γ ! M1
∼= M2 if and only if !Γ ! M1" = !Γ ! M2"

5

LICS’07

Full abs
traction

for nomi
nal gene

ral refer
ences

Nikos Tz
evelekos

Oxford U
niversity

Computi
ng Labor

atory

Abstract

Game se
mantics

has been
used wit

h consid
erable su

c-

cess in fo
rmulatin

g fully a
bstract s

emantics
for langu

ages

with high
er-order

procedur
es and a

wide ran
ge of com

puta-

tional eff
ects. Rec

ently, nom
inal gam

es have b
een prop

osed

for mode
ling func

tional la
nguages

with nam
es. Thes

e are

ordinary
games c

ast in th
e theory

of nomin
al sets d

evel-

oped by
Pitts and

Gabbay.
Here we

take nom
inal gam

es

one step
further, b

y develo
ping a fu

lly abstr
act sema

ntics

for a lan
guage wi

th nomin
al genera

l referenc
es.

1 Introduc
tion

Updated
version, 2

3/07/07.

One of t
he most

challengi
ng probl

ems in d
enotation

al

semantic
s of prog

ramming
language

s is that
of mode

ling

language
s with ge

neral refe
rences. G

eneral re
ferences

are

reference
s which c

an store
not only

values of
ground ty

pes

(integers
, boolean

s, etc.)
but also

of highe
r types (

pro-

cedures,
higher-or

der funct
ions, or r

eferences
themselv

es).

The gene
ral refere

nce is a
very use

ful and p
owerful

pro-

grammin
g constru

ct, and it
can be u

sed to en
code a w

ide

range of
computa

tional eff
ects and p

rogramm
ing parad

igms

(e.g. obje
ct-oriente

d program
ming). T

he added
expressiv

e-

ness of g
eneral re

ferences
makes th

eir denot
ational m

odels

complica
ted, main

ly becaus
e of the p

henomen
a of dyna

mic

update an
d interfer

ence pres
ent in the

language
.

Fully abs
tract mod

els for g
eneral re

ferences
have bee

n

achieved
via game

semantic
s in [3],

and via a
bstract c

ate-

gorical s
emantics

in [9]. T
he presen

tation in
[9] does

not

distingui
sh betwe

en λ-abstract
ion and l

ocal fresh
-referenc

e

creation
(ν-abstrac

tion), an
d hence

is distan
ced from

the

common
use of re

ferences
in progra

mming la
nguages.

On

the other
hand, the

calculus
examined

in [3] dis
tinguishe

s

between
λ- and ν-abstracti

ons, yet
encodes

reference
s as

variables
of a read

/write pr
oduct typ

e. This
leads to

the

presence
of bad v

ariables
1, as read

/write-pr
oduct sem

an-

tical obje
cts may

not nece
ssarily d

enote ref
erences.

Bad

1By “bad
variables

” we me
an read/w

rite cons
tructs of

reference
type

which do
not yield

reference
s, like mk

var of [
3].

variables
lead to u

nwanted
behavior

s and pro
hibit the

use

of equali
ty tests fo

r referenc
es.

In this pa
per we ob

tain the fi
rst full-a

bstractio
n result f

or

a statica
lly-scope

d langua
ge with g

eneral re
ferences,

good

variables
and refer

ence-equ
ality test

s, which
faithfully

re-

flects the
practice

of real p
rogramm

ing langu
ages suc

h as

ML. We
follow th

e alterna
tive (nom

inal) app
roach of

treat-

ing refer
ences sep

arately fr
om varia

bles, as n
ames, ex

tend-

ing the ν-calculus
of Pitts a

nd Stark
[14]. The

ν-calculus
is

a paradig
matic λ-calculus

with nam
es, in wh

ich name
s are

constant
terms of

ground ty
pe that “.

..are crea
ted with

local

scope, ca
n be teste

d for equ
ality and

can be pa
ssed arou

nd

via funct
ion appli

cation, bu
t that is a

ll”. Here
we use n

ames

for refere
nces, so n

ames are
of referen

ce types a
nd may a

lso

be derefe
renced an

d update
d, introdu

cing thus
a λ-calculus

with nom
inal gene

ral refere
nces, the

νρ-calculu
s.

Nominal
games w

ere intro
duced in

[2] as th
e basis f

or

the first f
ully abst

ract mod
el of the

ν-calculus
.2 They c

on-

stitute a
version o

f Honda-
Yoshida

CBV-gam
es [6] bu

ilt in

the unive
rse of no

minal se
ts of Pitt

s and Ga
bbay [5,

13].

Nominal
sets are s

ets whos
e elemen

ts entail
a finite n

um-

ber of na
mes, and

which ar
e acted u

pon by fi
nite nam

e-

permutat
ions. Th

us, the n
ominal g

ames of
[2] are C

BV-

games pl
ayed usi

ng move
s-with-na

mes, tha
t is mov

es at-

tached w
ith a fini

te set of
names re

presentin
g the na

mes

introduce
d so far.

Our inten
tion was

to build
a model

for

the νρ-calculu
s using n

ominal g
ames, ye

t we dis
covered

discrepan
cies arisi

ng from
the use o

f name-s
ets in mo

ves:

the unord
ered natu

re of nam
e-creatio

n is incom
patible w

ith

the deter
ministic b

ehavior o
f strategi

es and, in
fact, nom

inal

games do
not form

a categor
y.

Hence, w
e recast

nominal
games us

ing move
s attache

d

with nam
e-lists in

stead of
name-set

s, and re
ctifying

other

discrepan
cies. Mo

reover, si
nce name

s model
reference

s of

several ty
pes, our c

onstructi
on is base

d on nom
inal sets o

ver

countabl
y infinite

ly many s
ets of nam

es –one f
or each ty

pe.
3

From the basic
category

of nomin
al games

we obtai
n an

adequate
model fo

r νρ by usin
g a store

arena, wh
ich is ob

-

tained as
the canon

ical solut
ion to the

domain e
quation (

SE)

2A differe
nt versio

n of nom
inal gam

es was in
troduced

in [8], ye
t it did

not yield
a fully ab

stract mo
del for th

e ν-calculu
s.

3Also, the
use of na

me-lists
allows us

to constr
uct nomi

nal game
s in

nominal
sets with

strongly
supporte

d elemen
ts (v. defi

nition 1).

1

FUTURE WORK

★ Connections with LTS semantics

 [Jeffrey & Rathke, LICS’99]
 [Laird, ICALP’07]

★ Polymorphism and recursive types

★ Algorithmic game semantics

