
First steps in synthetic guarded domain theory:
step-indexing in the topos of trees

Lars Birkedal 1 Rasmus Ejlers Møgelberg 1

Kristian Støvring 2 Jan Schwinghammer 3

1IT University of Copenhagen

2DIKU, University of Copenhagen

3Saarland University

June 21, 2011

Overview

• A higher order dependent type theory with guarded recursion

• Model: the topos of trees
• Combining dependent and guarded recursive types in the topos

of trees

• Example: modeling higher order store

• Relations to metric spaces and step-indexing
• Extending complete bisected ultrametric spaces with useful

type constructors
• Guarded recursion as the principle that makes step-indexing

work

The topos of trees

• S = Setω
op

• Objects

X (1) �
r1

X (2) �
r2

X (3) � . . .

• Morphism

X (1) � X (2) � X (3) � . . .

Y (1)

f1
?
� Y (2)

f2
?
� Y (3)

f3
?
� . . .

• Example: object of streams of natural numbers

N �
π

N2 �
π

N3 �
π

. . .

• For x ∈ X (m) define

x |n = rn ◦ · · · ◦ rm−1(x).

An endofunctor

• Define IX (“later X ”)

{∗} � X (1) � X (2) � . . .

• Preserves limits, but not colimits

• Define next : X → IX

X (1) �
r1

X (2) �
r2

X (3) � . . .

{∗}
?
� X (1)

r1
?
�
r1

X (2)

r2
?
� . . .

Fixed points

• A morphism factoring through next is called contractive

X
next
- IX

X

∃
?

f -

• Contractive morphisms have unique fixed points

• Fixed point operator

fixX : (IX → X)→ X

Internal logic

• Toposes model higher order logic

φ, ψ ::= [s = t] | φ ∧ ψ | φ ∨ ψ | φ→ ψ |
∃x : X .φ | ∀x : X .φ | ∃ψ : Pred(X).φ | ∀ψ : Pred(X).φ

• Predicates interpreted as subobjects

[[φ]](1) � [[φ]](2) � [[φ]](3) � . . .

|
⋂

|
⋂

|
⋂

X (1) � X (2) � X (3) � . . .

• Subobject classifier Ω

{0, 1} �
min(1,−)

{0, 1, 2} �
min(2,−)

{0, 1, 2, 3} � . . .

• Think of Ω as type of propositions

Forcing relation

• Given ϕ : Pred(X), n ∈ ω, and α ∈ X (n)

• Define n |= ϕ(α) iff α ∈ [[ϕ]](n)

• Kripke-Joyal semantics

n |= (ϕ ∨ ψ)(α) ⇐⇒ n |= ϕ(α) ∨ n |= ψ(α)

n |= (ϕ =⇒ ψ)(α) ⇐⇒ ∀k ≤ n. k |= ϕ(α|k) =⇒ k |= ψ(α|k)

An operator on predicates

• Define B : Ω→ Ω

B
n

= min(n, (−) + 1) : {0, . . . , n} → {0, . . . , n}

• 1 |= Bϕ(α) and

n + 1 |= Bϕ(α) ⇐⇒ n |= ϕ(α|n).

• Connection to I

Bm - IA

X
? next

- IX

Im
?

Recursive predicates

• B : Ω→ Ω is contractive

• If f or g is contractive so is fg

• Suppose r : Pred(X) ` φ : Pred(X) has every occurrence of r
guarded by B

• Then φ contractive

• So has unique fixed point µr .φ : Pred(X)

Internal logic

• Monotonicity
∀p : Ω. p =⇒ B p

• Löb rule
∀p : Ω. (B p =⇒ p) =⇒ p.

• Internal notion of contractiveness

Contr(f)
def⇐⇒ ∀x , x ′ : X .B(x = x ′) =⇒ f (x) = f (x ′).

• Externally contractive implies internally contractive

• Internal Banach Fixed-Point Theorem

(∃x : X .>) ∧ Contr(f) =⇒ ∃!x : X . f (x) = x .

• Follows from

Contr(f) =⇒ ∃n : N.∀x , x ′ : X . f n(x) = f n(x ′).

Recursive domain equations

• Recall F : S → S strong if exists

FX ,Y : Y X → FY FX

• Say F locally contractive if each FX ,Y contractive

• Generalises to mixed variance functors of many variables

• Theorem: If F : Sop × S → S is locally contractive then
there exists X such that F (X ,X) ∼= X . Moreover, X unique
up to isomorphism

• Solutions are initial dialgebras

Modeling dependent types

• Recall that any topos models dependent type theory

• E.g. recall rules

Γ, i : I ` A : Type

Γ `
∏

i :I A : Type

Γ, i : I ` A : Type

Γ `
∑

i :I A : Type

• Combined with subset types

Γ, x : A ` φ : Prop

Γ ` {x : A | φ} : Type

• Will extend this with guarded recursive types

Generalising I to dependent types

• Dependent type judgements Γ ` A interpreted as objects of
S/[[Γ]]

• II : S/I → S/I maps pY : Y → I to pII Y :

II Y - IY

I

pII Y
? next

- I I

I pY
?

• Behaves well wrt. reindexing: can use I as type constructor
in dependent internal type theory

• Results on domain equations generalise to slices

Functorial types

A(~X) ::= Xi | C | A(~X)× A(~X) | A(~X)→ A(~X) |∏
i :I A(~X) |

∑
i :I A(~X) | {a : A(~X) | φ~X

(a)} |

IA(~X) | µX .A(~X ,X)

• where
φ~X0

(a) =⇒ φ~X1
(A(~f)(a))

provably holds for all ~f , a.

• Recursive type well-defined if X only occurs under I

Example application

Example application

• Define interpretation of CBV language with higher order store
entirely inside internal language of S

• Previous models
• Step-indexing
• Using domain equations solved in metric spaces

• Here:
• Everything in one universe
• Simple set-like interpretation
• No explicit steps but I operators certain places

• We see guarded recursion as the principle that makes
step-indexed models work

The language

• Types

τ ::= 1 | τ1× τ2 | µα.τ | ∀α.τ | α | τ1→ τ2 | ref τ

• Standard small-step operational CBV semantics

• Sets of types, terms and values can be read as definitions in
the internal language of S

• Likewise sets Store, Config = Term× Store

• Non-standard encoding of transitive closure of operational
semantics

A recursively defined universe of types

• Idea: interpret types as predicates on Value

• But the predicate should depend on the world

• Would like to solve (but can not)

W = N →fin T T =W →mon P(Value)

• Can solve this equation

T̂ = µX . I((N →fin X)→mon P(Value))

Semantics, overview

W = N →fin T̂
T =W →mon P(Value)

• Define [[τ]] : TEnv(τ)→ T by induction on τ
• Simple set-like definitions except for µα.τ, ref τ

[[τ1 × τ2]]ϕ = λw . {(v1, v2) | v1 ∈ [[τ1]]ϕ(w) ∧ v2 ∈ [[τ2]]ϕ(w)}
[[µα.τ]]ϕ = fix (λν. λw . { fold v | B(v ∈ [[τ]]ϕ[α 7→ ν] (w))})

• Theorem. If ` t : τ , then for all w ∈ W we have
t ∈ comp([[τ]]∅)(w).

• where

comp : T → T c

T c =W → P(Term)

Partial correctness predicate

• Define eval : P(Term× Store× P(Value× Store)),

eval(t, s,Q)
def⇐⇒ (t ∈ Value ∧ Q(t, s)) ∨

(∃t1 : Term, s1 : Store.
step((t, s), (t1, s1)) ∧ B eval(t1, s1,Q))

• n |= eval(t, s,Q) iff the following property holds: for all
m < n, if (t, s) reduces to (v , s ′) in m steps, then
(n −m) |= Q(v , s ′).

Conclusions to example

• Composite interpretation

Source language - Internal language of S - Set theory

is essentially a known step-indexing-model

• We see guarded recursion as the principle that makes
step-indexed models work

• Internal language expressive enough for advanced example

• This could be a way to implement such models: need
extensions of e.g. Coq with guarded recursion

• This is just one example: guarded recursion occurs many
other places in computer science

Conclusions

• Topos of trees models recursion on
• term level
• predicate level
• type level

• Recursive types can be combined with dependent types

• Powerful internal language sufficient for modeling
programming languages with higher order store

• Factorize step indexing models through guarded recursion

• Relates to ultrametric spaces, but gives a richer universe

	Overview

