Introduction

Higher-order arithmetic (tuned) The forcing translation The forcing machine

A computational analysis of the
proof transformation by forcing

Conclusion

Alexandre Miquel
ENS de Lyon — LIP/Plume team

June 22th, 2011 - LICS'11
Fields Institute, Toronto

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Introduction

e What is forcing ?
o A technique invented by Cohen ('63) to prove the independence
of continuum hypothesis (CH) w.r.t. ZFC
o Cohen forcing can be understood as

@ A technique to transform models of ZFC, using generic sets

o A translation of formulas and proofs (proof theorist’s point of view)

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Introduction

e What is forcing ?

o A technique invented by Cohen ('63) to prove the independence
of continuum hypothesis (CH) w.r.t. ZFC
o Cohen forcing can be understood as

@ A technique to transform models of ZFC, using generic sets

o A translation of formulas and proofs (proof theorist’s point of view)

@ Curry-Howard correspondence in classical logic

o Classical reasoning principles as control operators [Griffin'90]

call/cc : (A=B)=A)=A

o The theory of classical realizability [Krivine '01, 03, '09]

o Complete reformulation of Kleene's realizability by hard-wiring
Friedman’s A-translation in the engine (and even more)

@ Works in expressive frameworks : PA2, PAw, ZF + DC

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

The big picture

o Krivine’s realizability interpretation of forcing [Krivine '09, '10]

o Introduces generalized realizability structures
o Defines iterated forcing/realizability + case studies

e Existence of an underlying program transformation...

@ Aims of the talk :

o Rephrase translation in PAw, using typing rather than realizability

o Present program transformation + underlying computation model

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion
The big picture
o Krivine’s realizability interpretation of forcing [Krivine '09, '10]

o Introduces generalized realizability structures
o Defines iterated forcing/realizability + case studies

o Existence of an underlying program transformation...

@ Aims of the talk :

e Rephrase translation in PAw, using typing rather than realizability

e Present program transformation + underlying computation model

@ Underlying methodology :

Translation of Program Abstract machine
formulas & proofs transform (transform becomes identity)

Example : ——-translation ~» CPS transform ~- stack based machine

© Introduction

© Higher-order arithmetic (tuned)
© The forcing translation
© The forcing machine

© Conclusion

«O» «F»r «

© Introduction

© Higher-order arithmetic (tuned)
© The forcing translation
@ The forcing machine

© Conclusion

«O>r «Fr <

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Higher-order arithmetic (tuned)

@ System PAw™ : a multi-sorted language to express

e Individuals (kind ¢)
e Propositions (kind o)
o Predicates over individuals (t—=0, t—1—0, ..)
o Predicates over predicates... ((t—=0)—=0, ..)

Syntax of kinds and higher-order terms (a.k.a. constructors)

Kinds o = ¢ | o | T—0o

HO terms M,N,A,B == x" | XX".M | MN
| 0 | s | recs
\

A=B | WA | (M=M)A

Proof terms (postponed)

@ Proposition (M = M’)A s provably equivalentto M=, M' = A
(where = is Leibniz equality), but has more compact proof terms

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

The relation of conversion

Conversion M =g M’ parameterized by a finite set of equations

E = {M=Mj,..., M= M.} (non oriented, well ‘kinded’)

o Base case : if (M=M)e&, then M= M
e Contains B-conversion, n-conversion, recursion (as usual)
@ Many rules to identify semantically equivalent propositions :

VxTVy? A = Vy?Vx™ A
A=Vx"B = Vx" (A= B) xT ¢FV/(A)
UxT((M = M")A) = (M= M)Vx"A xT ¢FV(M,M")

~» Conversion emphasizes the Curry-style setting

ST TemmmmmRRLmEmmER mmmme s e
Deduction system (typing)
@ Proof terms :

t,u
@ Contexts :

r

x| x.t | tu] « (Curry-style)
= oxp AL X LA,

(A; of kind o)

DA

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Deduction system (typing)

@ Proof terms : tbu = x | M.t] tu | « (Curry-style)
o Contexts : M = xx: A, ..., x, A, (A; of kind o)
Deduction /typing rules
ETFx:A e ETFE: A" °
ElNx:AFt: B ETHt:A=B ETFu:A
ETFXx.t: A=B ETkFHtu:B
EM=M;TFt:A ETFt: (M=MA
ETEt: (M=M)A ETHt:A
ETHt: A ETEFt: VXA
T meRv(En)
ETHt:VXA ETEt: Alx:=N"}
ETFa: ((A=B)=A)=A

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

From operational semantics...

@ Krivine's \.-calculus

e A-calculus with call/cc and continuation constants :

t,bu = x | M.t | tu | « | ks

o An abstract machine with explicit stacks :

o Stack = list of closed terms (notation : 7, 7’)
@ Process = closed term x stack
@ Evaluation rules (weak head normalization, call by name)
(Push) tu x T - t x u-w
(Grab) Ax.t *x u-m - t{x:=u} * =
(Save) « *x t-7 - t x kypemw
(Restore) ke * t-n > t * 7

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

... to classical realizability semantics

@ Interpreting higher-order terms :

o Individuals interpreted as natural numbers [l =N
o Propositions interpreted as falsity values o] = B(M)
o Functions interpreted set-theoretically [r = o] = [o])

@ Parameterized by a pole 1 C A Tl (closed under anti-evaluation)

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

... to classical realizability semantics

@ Interpreting higher-order terms :
o Individuals interpreted as natural numbers [l =N
o Propositions interpreted as falsity values o] = B(M)
o Functions interpreted set-theoretically [r = o] = [o])
@ Parameterized by a pole 1 C A Tl (closed under anti-evaluation)
@ Interpreting logical constructions :
[vx"Al, = U [Alp xe [A=B], = [[A]];fL -[Bl,
ee[r]
A if [M], = [M’
(M= MYAL, = {[[I if M, = M,
(%] otherwise
e Notation : tFA = teAlY = VrelA] (txm)e L
o Adequacy : If Ft:A then tIFA

© Introduction

© Higher-order arithmetic (tuned)
© The forcing translation
@ The forcing machine

© Conclusion

«O>r «Fr <

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Representing conditions

o Intuition : Represent the set of conditions (in system PAw™) as an
upwards closed subset of a meet-semilattice

o Take :
o A kind k of conditions, equipped with
e A binary product (p, q) — pq (kind kK — Kk — k)
o Aunitl (kind k)

o A predicate p — C|[p] of well-formedness (kind K — 0)

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Representing conditions

o Intuition : Represent the set of conditions (in system PAw™) as an
upwards closed subset of a meet-semilattice

o Take :
o A kind k of conditions, equipped with
e A binary product (p, q) — pq (kind kK — Kk — k)
o Aunitl (kind k)
o A predicate p — C|[p] of well-formedness (kind K — 0)

e Typical example : finite functions from 7 to o are modelled by

O K =T—>0—0 (binary relations C 7 x o)
e pg = MXy? .pxyVagxy (union of relations p and q)
el = X"y, L (empty relation)

o C[p] = “pis a finite function from 7 to o”

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Combinators

The forcing translation is parameterized by
@ The kind k + closed terms -, 1, C (logical level)
@ 9 closed proof terms v, a1, ..., ag (computational level)

Primitive combinators

ax : C[1]
a1 @ Vp* Vq" (Clpq] = Clp]) as : Vp® Vq© Vr® (Cl(pq)r] = Clp(qr)])
ar : Vp® Vq"® (Clpq] = Clql) as : Yp" Vq" Vre (Clp(qr)] = Cl(pq)r])

az : Vp® Vg~ (Clpq]l = Clgp]) a7 : Vp® (C[p] = C[p1])
agq : Vp® (Clp] = Clpp]) ag @ Vp* (Clp] = C[1p])

Introduction

Combinators

Higher-order arithmetic (tuned)

The forcing translation The forcing machine Conclusion

The forcing translation is parameterized by

@ The kind k + closed terms -, 1, C (logical level)

@ 9 closed proof terms ., a, ...

Primitive combinators

: C[1]
: Vp® ¥q" (Clpq] = Clp])
: Vp" Vg~ (Clpq] = Clq])
: Vp® ¥q" (Clpq] = Clqp])
: Vp* (Clp] = Clpp])

O
(e %1
a2

, 08 (computational level)

as 1 Vp* Vgt Vr® (C[(pq)r] = Clp(qr)])
e 1 Vp* Yq" Vr® (Clp(qr)] = C[(pq)r])
a7+ Vp* (Clp] = Clp1])
ag @ Vp® (Clp] = C[1p])

Derived combinators (from aw, az, . . .

a9

aio
11
Q12
i3
Q14
ais

Q3 01 O (g O (3
Q2 O (5

Qg O Qg

Qs O (3

a3 0 (12

Q5 0 (03 O (X10 © (x4 O (X2
Qg O (3

) 0‘8)

. Vpt Vg® vr® (Cl(pg)r] = Clpr])

: Vp® Vg® Vr* (Cl(pq)r] = Clgr])

: Vp* Vg" (Clpqg] = Clp(pq)])

: Vp® Vg® vr* (Clp(qr)] = Clq(rp)])
: Vp® Vq® v (Clp(qr)] = C[(rp)q])
: Vp* Vg" vr* (C[p(qr)] = Clq(rr)])
: Vp™ Vg~ vr® (Clp(qr)] = Clap])

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Ordering

Let p<q := Vr*(Clpr] = Clgr])

o < is a preorder with greatest element 1 :

Ac.c : Vpt (p<p)
Axyc.y(xc) : Vp*VqiVrt (p<q=q<r=p<r)
ag o ap © VPt (p<1)
@ Product pq is the g.I.b. of p and g :
ag © Vp® Vq" (pqg < p)
aio © Vp® Vq" (pq < q)
Axy.ai3oyoapoxoair : VpEVgEVrt (r<p=r<qg=r<pq)

C (set of ‘good’ conditions) is upwards closed :

Axc.oq (x(azc)) : Vp®Vg© (p<q= C[p] = Clq]) J

@ Bad conditions are smallest elements :

Axc.x(a1c) : Vp® (=C[p] = Vqg" p < q) J

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

The forcing translation in PAw™ : logical level

Translating kinds : 7 +— 7*

= o"=k—o (r—=o)' =7"=0o"

Intuition : Propositions become sets of conditions

Auxiliary translation on HO terms of all kinds : M:1T — M*:.7*
(X-r)* = XT*
X7 M)* = T M
(MN)* = M*N*
(VXTA)* = ArfLUxT A'r
(M1 = MYAY* = Ar"®. (Mf = M3)A*r
(A= B)" = M".VgVr'"(r=aqr')((g+ A) = B*r')

Forcing translation on propositions : (p : & fixed condition)

pEA = Vr*(Clpr] = A*r)

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Properties of the forcing translation

General properties

B = Axyc.y(xc) : VprVg" (g<p=(plk A)=(qF A)
B2 = Xxc.x(arc) : Vp® (=Clp]=pl A)

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Properties of the forcing translation

General properties

B = Xyc.y(xc) : Vp"Vg" (¢g<p=(pl A)= (g A))
B2 = Xxc.x(a1c) : Vp® (=C[p]=pl A)
Forcing logical constructions (computationally irrelevant)
pE(M=M)A = (M =M")(pk A)
pEVYX"A = Vx" (pk A)

A

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Properties of the forcing translation

General properties

B = Xyc.y(xc) : Vp"Vg" (¢g<p=(pl A)= (g A))
B2 = Xxc.x(arc) : Vp® (=Clp]=pl A)
Forcing logical constructions (computationally irrelevant)
pE(M=M)A = (M*=M")(plk A)
pEVYX"A = Vx" (pk A)

A

Forcing an implication (computationally relevant)

p-A=B < Vq"((gF A)= (pql B))
since :
7 = Axey.xy(asc) : Vq((gk A)=(pglk B)) = (p A= B)
12 = Myc.x(asc)y : (pEA=B) = Vq((¢ A)= (pq - B))

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

The forcing translation in PAw™ : level of proof terms

Krivine's program transformation t — t*

x* = x c® = Aex.@(Mk.x (s c) (12 K)) wu=rxe x((a5 <)
(t U)* =7 t* U* Y3=Axyc . x (g1 €)y
(Ax.t)* = 31 (Ax. t* {x = Bax} {x := Baxi}i=1) =Gy m e)

bounded var other free vars of t Fg=ve-x(egd)

Ba=Axc . x(agc)

@ The translation inserts : 1 (“fold”) in front of each A

~3 (“apply”) in front of each app.

@ A bound occurrence of x in t is translated as 8(84x),
where n is the de Bruijn index of this occurrence

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

The forcing translation in PAw™ : level of proof terms

Krivine's program transformation t — t*

x* = x c® = Aex.@(Mk.x (s c) (12 K)) wu=rxe x((a5 <)
(t U)* =7 t* U* Y3=Axyc . x (g1 €)y
(Ax.t)* = 31 (Ax. t* {x = Bax} {x := Baxi}i=1) =Gy m e)

bounded var other free vars of t Fg=ve-x(egd)

Ba=Axc . x(agc)

@ The translation inserts : 1 (“fold”) in front of each A

~3 (“apply”) in front of each app.

@ A bound occurrence of x in t is translated as 8(84x),
where n is the de Bruijn index of this occurrence

Soundness (in PAw™)

If E x1: A1, ..., xp A Bt B
then &% xi:(pFA), ..., xp:(pFA,) F t* : (pF B)

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Computational meaning of the transformation

@ Aproofof pFA = Vr*(Clpr] = A*r) s a function waiting
an argument c : C[pr] (for some r) ~» computational condition

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Computational meaning of the transformation

@ Aproofof pFA = Vr*(Clpr] = A*r) s a function waiting
an argument c : C[pr] (for some r) ~» computational condition

(M.t)" *x c-u-m

(tw)* % c-m

Evaluation combinators

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Computational meaning of the transformation
@ Aproofof pFA = Vr*(Clpr] = A*r) s a function waiting
an argument c : C[pr] (for some r) ~» computational condition

(M.t)" *x c-u-m - t"{x :=fsu} * asc-m

(tw)* % c-m

Evaluation combinators

as : Clp(gr)] = Cl(pq)r]

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Computational meaning of the transformation
@ Aproofof pFA = Vr*(Clpr] = A*r) s a function waiting
an argument c : C[pr] (for some r) ~» computational condition

(M.t)" *x c-u-m - t"{x :=fsu} * asc-m

(tw)* % c-m - t" x oanc-utem

Evaluation combinators

as : Clp(gr)] = Cl(pq)r]
onn @ Clpr] = Clp(pr)]

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Computational meaning of the transformation

@ Aproofof pFA = Vr*(Clpr] = A*r) s a function waiting
an argument c : C[pr] (for some r) ~» computational condition

(M.t)" *x c-u-m - t"{x :=fsu} * asc-m
(tu)* * c-m >~ t* x onc-ut-m
« *x c-u-m - u x auc-ki-mw
where : kX = qaks (= Aex. kg (x (a5 €)))

Evaluation combinators

as : Clp(gr)] = Cl(pq)r]
an : Clpr] = Clp(pr)]
ars : Clp(gr)] = Clqg(rr)]

=

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Computational meaning of the transformation

@ Aproofof pFA = Vr*(Clpr] = A*r) s a function waiting
an argument c : C[pr] (for some r) ~» computational condition

(M.t)" *x c-u-m - t"{x :=fsu} * asc-m
(tu)* * c-m >~ t* x onc-ut-m

« *x c-u-m - u x auc-ki-mw

ki *x c-t-m

where : kX = qaks (= Aex. kg (x (a5 €)))

Evaluation combinators

as : Clp(gr)] = Cl(pq)r]
o1n ¢ Clpr] = Clp(pr)]
aa + Clp(gr)] = Clq(rr)]

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Computational meaning of the transformation

@ Aproofof pFA = Vr*(Clpr] = A*r) s a function waiting
an argument c : C[pr] (for some r) ~» computational condition

(M.t)" *x c-u-m - t"{x :=fsu} * asc-m
(tu)* * c-m >~ t* x onc-ut-m
« *x c-u-m - u x auc-ki-mw
ki %« c-t-o - t * oasCc-m
where : kX = qaks (= Aex.kx (x (a5 €)))

Evaluation combinators

as : Clp(gr)] = Cl(pq)r]
onn : Clpr] = Clp(pr)]
oaa o Clp(gr)] = Clq(rr)]
o5 o Clp(gr)] = Clagp]

© Introduction

© Higher-order arithmetic (tuned)
© The forcing translation
© The forcing machine

© Conclusion

«O>r «Fr <

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine

Krivine Abstract Machine (KAM)

Conclusion

Terms t,bu = x | M.t | tu | «
Environments e == 0 | ex=c
Closures c == (tle) | kn
Stacks T = o | c-mw
@ Real mode :
(xle;y=c) » 7 s (xle) * = (v #x)
(xle,x=¢) * = - c *x m
(Ax.tle) x ¢ > (tleex=c) x «
(tule) = = - (tle) * (ule) =
(cle) * ¢ > c x ke m
ke * c-/ = cx T

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Krivine Forcing Abstract Machine (KFAM)

Terms t,bu = x | M.t | tu | «

Environments e = 0 e,x=c

Closures c == (tle) | ke | (tle)" | ki
————

Stacks s = 9 | c-T forcing closures

@ Real mode :

(ley=c) © > (xle) * m (v £ %)
(xle,x=¢) * = - c *x m
(Ax.tle) x ¢ > (tleex=c) x «
(tule) = = - (tle) * (ule) =
(cle) * ¢ > c x ke m
ke * c-/ = cx T

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion
Krivine Forcing Abstract Machine (KFAM)
Terms t,bu = x | M.t | tu | «
Environments e == 0 | ex=c
Closures c == (tle) | kx | (tle)* | k&
————
Stacks ™ = < | c- T forcing closures
@ Real mode :
(xle,y=¢) x = - (xle) » =« (y #x)
(xle,x=¢) * = - c *x m
(Ax.tle) x ¢ > (tleex=c) x «
(tule) = = - (tle) * (ule) =
(cle) * ¢ > c x ke m
kr *x c-m > c * T
@ Forcing mode :
(xle,y =¢)* * -7 - (x|le)* * agcy-m (v # x)
(xle,x =¢)* * co-m - c x ajpcy T
(Ax.tle)* * co-c-m = (tle,ex=¢c)" x ascp 7
(tule)* * co-m - (tle)* * ai1co- (ule)* =
(<le)* x co-c-m = c x amacy-kk-m
ki x cg-c-n’ = C x ai5c) T

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion
Krivine Forcing Abstract Machine (KFAM)
Terms t,u = x | Ax.t | tu | «
Environments e == 0 | ex=c
Closures c == (tle) | kx | (tle)* | k&
————
Stacks s = < | c-T forcing closures
@ Real mode :
(xle,y=¢) x = - (xle) » =« (y #x)
(xle,x=¢) x = - c * m
(Ax.tle) x ¢ > (tleex=c) x «
(tule) = = - (tle) * (ule) =
(cle) * ¢ > c x ke m
kr *x c-m > c * T
@ Forcing mode :
(xle,y=¢)* x -7 - (x|e)* * agco-m (v # x)
(xle,x=¢)* *x co 7 - c * Qipco- T
(Ax.tle)* * q-c-m > (tleex=c)* ¥ ascp ™
(tule)* * co-m - (tle)* * aiico- (ule)* - m
(<le)* x co-c-m = c x amacy-kk-m
ki x cg-c-n’ = C x ai5c) T

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Extracting programs from proofs by forcing

o New abstract machine (KFAM) means new realizability algebras,
new realizability models and new adequacy results

@ Two adequacy results for the KFAM :
o Adequacy in real mode Ft:A ~ (t|0)IFA
o Adequacy in forcing mode Ft:A ~ (t]0)"IF(pk A)

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Extracting programs from proofs by forcing

o New abstract machine (KFAM) means new realizability algebras,
new realizability models and new adequacy results

@ Two adequacy results for the KFAM :
o Adequacy in real mode Ft:A ~ (t|0)IFA
o Adequacy in forcing mode Ft:A ~ (t]0)"IF(pk A)

Extracting programs from proofs ‘by forcing’

Given two proof-terms u (‘user’) and s (‘system’) such that :
x:AkFu:B and Fs:(1F A

we get :

(u | x = (sl0))"

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Extracting programs from proofs by forcing

o New abstract machine (KFAM) means new realizability algebras,
new realizability models and new adequacy results

@ Two adequacy results for the KFAM :
o Adequacy in real mode Ft:A ~ (t|0)IFA
o Adequacy in forcing mode Ft:A ~ (t]0)"IF(pk A)

Extracting programs from proofs ‘by forcing’

Given two proof-terms u (‘user’) and s (‘system’) such that :
x:AkFu:B and Fs:(1F A

we get :
(U | X = (SW)))* IFreal (1 - B)

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Extracting programs from proofs by forcing

o New abstract machine (KFAM) means new realizability algebras,
new realizability models and new adequacy results

@ Two adequacy results for the KFAM :
o Adequacy in real mode Ft:A ~ (t|0)IFA
o Adequacy in forcing mode Ft:A ~ (t]0)"IF(pk A)

Extracting programs from proofs ‘by forcing’

Given two proof-terms u (‘user’) and s (‘system’) such that :
x:AkFu:B and Fs:(1F A

we get :
(U | X = (SW)))* IFreal (1 - B)

((U|X:(s|®))*a 1) ”_forcing B

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Conclusion

Underlying methodology

Abstract machine

Translation of Program
PONY
(transform becomes identity)

formulas & proofs transform

@ This methodology applies to the forcing translation

o A new abstract machine : the KFAM
o Reminiscent from well known tricks of computer architecture
(protection rings, virtual memory, hardware tracing, ...)

o Computational condition treated as a reference (forcing mode)

Introduction Higher-order arithmetic (tuned) The forcing translation The forcing machine Conclusion

Conclusion

Underlying methodology

Abstract machine

Translation of Program
PONY
(transform becomes identity)

formulas & proofs transform

@ This methodology applies to the forcing translation

o A new abstract machine : the KFAM

o Reminiscent from well known tricks of computer architecture
(protection rings, virtual memory, hardware tracing, ...)

o Computational condition treated as a reference (forcing mode)

@ How this computation model is used in particular cases of forcing ?

@ Use this methodology the other way around !

o Deduce new logical translations from computation models
borrowed to computer architecture, operating systems, ...

	Introduction
	Higher-order arithmetic (tuned)
	The forcing translation
	The forcing machine
	Conclusion

