
A type system for complexity flow analysis

Jean-Yves Marion

LICS, Juin 2011

mercredi 22 juin 2011

Summary

1. Complexity and Information flow

(a) Information flow induced by predicative recurrence (ICC)

(b) Types for secure flow analysis

2. A type system for complexity analysis of while-programs

3. A characterization of Ptime by While programs

mercredi 22 juin 2011

A while programming language

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

A while programming language

C , C � ∈ Commands ::= X :=E | C ; C � | while(E){C}
| if E then C else C �

E ∈ Expressions ::= X | d | op(E1, . . . ,En)

� op is a constructor : successors, cons, . . .
� op is a destructor : predecessor, shift, . . .

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

A while programming language

C , C � ∈ Commands ::= X :=E | C ; C � | while(E){C}
| if E then C else C �

E ∈ Expressions ::= X | d | op(E1, . . . ,En)

� op is a constructor : successors, cons, . . .
� op is a destructor : predecessor, shift, . . .

mercredi 22 juin 2011

A while programming language

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

A while programming language

C , C � ∈ Commands ::= X :=E | C ; C � | while(E){C}
| if E then C else C �

E ∈ Expressions ::= X | d | op(E1, . . . ,En)

� op is a constructor : successors, cons, . . .
� op is a destructor : predecessor, shift, . . .

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

A while programming language

C , C � ∈ Commands ::= X :=E | C ; C � | while(E){C}
| if E then C else C �

E ∈ Expressions ::= X | d | op(E1, . . . ,En)

� op is a constructor : successors, cons, . . .
� op is a destructor : predecessor, shift, . . .

How to define a type system to control the
computational complexity ?

mercredi 22 juin 2011

Related results on compexity and imperative
programming langagues

• Matrices flow calculus (Ben-Amram , Jones, Kristiansen, Moyen, Niggl,
Wunderlich)

• Sup-interpretation (Marion, Péchoux) and OO-programming style

• Applied Linear logic (Hofmann & al) applied to multi-threading (Amadio, Madet)

• Symbolic Ressource analysis

• Java bytecode (Albert & al)

• Speed (Gulwani & al)

• See also WCET analysis community

mercredi 22 juin 2011

1. A type system for an imperative programming
language such that

2. Terminating and typed programs are computable
in polynomial time

3. Conversely, each polynomial time function is
definable by a typed program.

Main result

mercredi 22 juin 2011

1. A type system for an imperative programming
language such that

2. Terminating and typed programs are computable
in polynomial time

3. Conversely, each polynomial time function is
definable by a typed program.

Main result

➡ Information flow induced by ramified recursion
➡ Type systems for secure information flow analysis

Two rationales

mercredi 22 juin 2011

Ramified recursion and complexity

The set of functions defined by ramified primitive
recursion is exactly the set of polynomial time functions
(PTIME).

Bellantoni & Cook and Leivant (1992)

mercredi 22 juin 2011

Ramified recursion and complexity

mercredi 22 juin 2011

Ramified recursion and complexity

➡ Tiers

N(0)

N(1)

N(k)

mercredi 22 juin 2011

Ramified recursion and complexity

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

➡ Tiers

N(0)

N(1)

N(k)

mercredi 22 juin 2011

Ramified recursion and complexity

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

➡ Tiers

N(0)

N(1)

N(k)

➡Primitive recursion

mercredi 22 juin 2011

Ramified recursion and complexity

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

➡ Tiers

N(0)

N(1)

N(k)

➡Primitive recursion

Ramification

mercredi 22 juin 2011

Ramified recursion and complexity

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1➡ Downward flow from 1 to 0

➡ Tiers

1 0

N(0)

N(1)

N(k)

➡Primitive recursion

Ramification

mercredi 22 juin 2011

Ramified recursion and complexity

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Flow analysis of Ramified recursion

Each variable x is assigned to a security level Γ(x) over 0 < 1
ramified primitive recursion g : N(k)→ N(0) and
h : N(k)→ N(0)→ N(0)

f (0, y) = g(y)

f (x + 1, y) = h(x , f (x , y))

and f : N(1)→ N(k)→ N(0)

� Downward flow from 1 to 0
� No upward flow from 0 to 1➡ Downward flow from 1 to 0

➡ Tiers

1 0

➡ But No upward flow from 0 to 1

N(0)

N(1)

N(k)

➡Primitive recursion

Ramification

mercredi 22 juin 2011

Ramified recursion and complexity

The set of functions defined by ramified primitive
recursion is exactly the set of polynomial time functions.

Bellantoni & Cook and Leivant

 Ramified recursion enforces a restriction on data flow

N(0)

N(1)

N(k)

Downward data flow

mercredi 22 juin 2011

A few sources

• Set theory (Russel)

• On (non)-constructions of too fast (to be real) functions (Nelson, Simmons)

• In second order logic with restriction on comprehension axiom (Leivant)

• Ramified systems (Bellantoni-Cook, Leivant, Marion,...)

• Light linear logics (Girard, Lafont, Baillot...)

• Typed lambda-calculus (Hofmann, Baillot, Dal Lago, Ronchi Della Rocca, ...)

mercredi 22 juin 2011

A data flow analysis from an ICC point of view

mercredi 22 juin 2011

A data flow analysis from an ICC point of view

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Secure flow typing
Implicit flow from x to y

i n t copy (i n t x , i n t y)
{
y=0;
whi le (x)

{
x :=x−1;
y :=y+1;
}

return y ;
}

� Suppose that Γ(x) = 1 and Γ(y) = 0.
� Violation of the security model : No upward flow !

Γ,∆ � e : τ Γ,∆ � c : ρ
ρ ≺ τ

Γ,∆ � while(e){c} : ρ

Implicit flow from x to y

mercredi 22 juin 2011

A data flow analysis from an ICC point of view

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Secure flow typing
Implicit flow from x to y

i n t copy (i n t x , i n t y)
{
y=0;
whi le (x)

{
x :=x−1;
y :=y+1;
}

return y ;
}

� Suppose that Γ(x) = 1 and Γ(y) = 0.
� Violation of the security model : No upward flow !

Γ,∆ � e : τ Γ,∆ � c : ρ
ρ ≺ τ

Γ,∆ � while(e){c} : ρ

Implicit flow from x to y

Γ(x)

Γ(y)

Types/tier

mercredi 22 juin 2011

A data flow analysis from an ICC point of view

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Secure flow typing
Implicit flow from x to y

i n t copy (i n t x , i n t y)
{
y=0;
whi le (x)

{
x :=x−1;
y :=y+1;
}

return y ;
}

� Suppose that Γ(x) = 1 and Γ(y) = 0.
� Violation of the security model : No upward flow !

Γ,∆ � e : τ Γ,∆ � c : ρ
ρ ≺ τ

Γ,∆ � while(e){c} : ρ

Implicit flow from x to y

Γ(x)

Γ(y)

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Secure flow typing
Implicit flow from x to y

i n t copy (i n t x , i n t y)
{
y=0;
whi le (x)

{
x :=x−1;
y :=y+1;
}

return y ;
}

� Suppose that Γ(x) = 1 and Γ(y) = 0.
� Violation of the security model : No upward flow !

Γ,∆ � e : τ Γ,∆ � c : ρ
ρ ≺ τ

Γ,∆ � while(e){c} : ρ

= τ

= ρ

Types/tier

mercredi 22 juin 2011

A data flow analysis from an ICC point of view

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Secure flow typing
Implicit flow from x to y

i n t copy (i n t x , i n t y)
{
y=0;
whi le (x)

{
x :=x−1;
y :=y+1;
}

return y ;
}

� Suppose that Γ(x) = 1 and Γ(y) = 0.
� Violation of the security model : No upward flow !

Γ,∆ � e : τ Γ,∆ � c : ρ
ρ ≺ τ

Γ,∆ � while(e){c} : ρ

Implicit flow from x to y

Γ(x)

Γ(y)

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Secure flow typing
Implicit flow from x to y

i n t copy (i n t x , i n t y)
{
y=0;
whi le (x)

{
x :=x−1;
y :=y+1;
}

return y ;
}

� Suppose that Γ(x) = 1 and Γ(y) = 0.
� Violation of the security model : No upward flow !

Γ,∆ � e : τ Γ,∆ � c : ρ
ρ ≺ τ

Γ,∆ � while(e){c} : ρ

= τ

= ρ

This is the intuition...

Types/tier

mercredi 22 juin 2011

Integrity security policy

1

0

Confidential

Public

 Types are security levels:

- Security lattice

Γ(x),Γ(y)

mercredi 22 juin 2011

Integrity security policy

1

0

Confidential

Public

 Types are security levels:

- Security lattice

Γ(x),Γ(y)

- Biba’s integrity policy (1977) :

Write down
x can write y if Γ(y) ≤ Γ(x)

Read up
x can read y if Γ(x) ≤ Γ(y)

mercredi 22 juin 2011

A sound type system for information flow analysis

A security type system enforces an information flow
policy (integrity/confidentialitiy)

 - Volpano Smith and Irvine (1997)
- Survey of Sabelfeld and Myers

mercredi 22 juin 2011

A sound type system for information flow analysis

A security type system enforces an information flow
policy (integrity/confidentialitiy)

- Type systems garantee non-interference:
Low level values does not alter high level values (integrity)

- Volpano Smith and Irvine (1997)
- Survey of Sabelfeld and Myers

mercredi 22 juin 2011

A sound type system for information flow analysis

A security type system enforces an information flow
policy (integrity/confidentialitiy)

- Type systems garantee non-interference:
Low level values does not alter high level values (integrity)

- Extension to allow declassification and reclassification

- Volpano Smith and Irvine (1997)
- Survey of Sabelfeld and Myers

mercredi 22 juin 2011

A type system for complexity flow analysis

mercredi 22 juin 2011

Tiers and types

Tiers are levels of lattice

0

1

mercredi 22 juin 2011

Tiers and types

Tiers are levels of lattice

- A type is a pair (α,β) where α,β are tiers :

0

1

mercredi 22 juin 2011

Tiers and types

Tiers are levels of lattice

- A type is a pair (α,β) where α,β are tiers :

- α indicates the true tier

0

1

mercredi 22 juin 2011

Tiers and types

Tiers are levels of lattice

- A type is a pair (α,β) where α,β are tiers :

- α indicates the true tier

 that is the integrity level

0

1

mercredi 22 juin 2011

Tiers and types

Tiers are levels of lattice

- A type is a pair (α,β) where α,β are tiers :

- α indicates the true tier

 that is the integrity level

- β indicates the current tier

0

1

mercredi 22 juin 2011

Tiers and types

Tiers are levels of lattice

- A type is a pair (α,β) where α,β are tiers :

- α indicates the true tier

 that is the integrity level

- β indicates the current tier

 that is the declassification level

0

1

mercredi 22 juin 2011

Type system for expressions

Variable

Γ(X) = α
where β � α

Γ,∆ � X : (α,β)

Op

Γ,∆ � E1 : (α1,β1) . . .Γ,∆ � En : (αn,βn)

Γ,∆ � op(E1, . . . ,En) : (α,β)

where (α1,β1) → . . . → (αn,βn) → (α,β) ∈ ∆(op)

Fig. 1. Type system for expressions

D. Command types

Figure 2 gives the typing rules for commands. As we

shall see later, any program that is well-typed according to

these rules satisfies non-interference properties as well as

the ramification conditions of the ICC tiering discipline. The

typing rules control information in way, which is related to

Volpano, Irvine and Smith’s system [14]. A typing judgement

is of the form Γ,∆ � C : (α,β), and means that the command

C is of type (α,β), where α and β are tiers of SC, under Γ
and ∆.

III. A TIMED BIG STEP SEMANTICS

We present a big step semantics, which takes the com-

putation time into account. In an imperative language, a

computation is a sequence of transition steps where at each

step corresponds a store update. A transition performs a fixed

number of basic operations or tests, which are counted as a

unit cost. So, it is reasonable to define a time measure which

corresponds to the number of transition steps.

Let W be the set of words over a finite alphabet. Expres-

sions, commands and programs are interpreted over W. We

take two words tt and ff of W to denote respectively true

and false. A store µ is a finite mapping from V to W. We

write µ[�X ← �d] for the store σ such that σ(Xi) = di and

σ(Y) = µ(Y) for Y �= Xi, where i = 1, n for some fixed n.

We write dom(µ) to mean the domain of µ.

Rules to evaluate expressions are given in Figure 3. Each

operator of arity n is interpreted by a total function �op� :
Wn �→ W. The relation µ � E ⇒t d means that the expression

E is evaluated within t steps to d ∈ W, where each variable

in V(E) is in dom(µ). We just write µ � E ⇒ µ�
if we don’t

care about the running time.

Variables µ � X ⇒1 µ(X)

Op
µ � E1 ⇒t1 d1 . . . µ � En ⇒tn dn

µ � op(E1, . . . ,En) ⇒1+
�n

i=1 ti �op�(d1, . . . , dn)

Fig. 3. Time semantics of Expressions

Command execution rules are given in Figure 4. Given a

store µ, the relation µ � C ⇒t µ�
expresses that the command

C returns the store µ�
and terminates within t steps. We write

µ � C ⇒ µ�
if we don’t care about the running time. A

command C does not terminate in a given store µ, if there is

no µ�
and no t such that µ � C ⇒t µ�

. In this case, we write

µ � C ⇒⊥.

A program P is given by a command C , a list of input

variables X1, . . . ,Xn, and an output variable Y . A program

computes a partial function �P� from Wn
to W defined by

�P�(d1, . . . , dn) = µ(Y) iff µ0[�X ← �d] � C ⇒ µ

where for each variable Z in C , µ0(Z) = ff. A program is

terminating iff �P� is a total function.

The program running time is the partial function TimeP

from Wn
to N defined by

TimeP(d1, . . . , dn) = t iff µ0[�X ← �d] � C ⇒t µ

The length of a word d is denoted |d |. A program P is running

in polynomial time if there is a polynomial Q such that for

all d1, . . . , dn, TimeP(d1, . . . , dn) ≤ Q(maxi(|di|)).
IV. SAFE PROGRAMS

A. Neutral and positive operator interpretations

We present a restriction on operator interpretations. For

this we shall define two kinds of operator interpretations

called neutral and positive. But before, we present some

typical operators with their interpretations over W to illustrate

definitions.

• For each word v , we have an operator eqv which tests

whether or not a word begins with a given prefix v .

�eqv �(u) =
�
tt if u = v .d for some d

ff otherwise

• We have an operator pred , which deletes the first letter

of a word such that

�pred�(u) =
�
� if u = �

u if u = i.d and for some d and letter i

• For each word v , we have an operator sucv satisfying

�sucv �(u) = v .u .

Now, define � as the sub-word relation over W by u � d ,

iff there are v and v �
such that d = v .u.v �

where . is the

concatenation.

An operator op has a neutral interpretation if either

1) either �op� : W → {tt,ff} is a predicate; or

2) or for all d1, . . . , dn, �op�(d1, . . . , dn) � di for some

i ≤ n.

The operators eqv and pred have a neutral interpretation.

An operator op has a positive interpretation if there is a

constant cop such that

|�op�(d1, . . . , dn)| ≤ max
i

(|di|) + cop

The operator sucv has a positive interpretation.

Remark 1: A neutral interpretation is also a positive inter-

pretation. But the converse is false.

Variable

Γ(X) = α
where β � α

Γ,∆ � X : (α,β)

Op

Γ,∆ � E1 : (α1,β1) . . .Γ,∆ � En : (αn,βn)

Γ,∆ � op(E1, . . . ,En) : (α,β)

where (α1,β1) → . . . → (αn,βn) → (α,β) ∈ ∆(op)

Fig. 1. Type system for expressions

D. Command types

Figure 2 gives the typing rules for commands. As we

shall see later, any program that is well-typed according to

these rules satisfies non-interference properties as well as

the ramification conditions of the ICC tiering discipline. The

typing rules control information in way, which is related to

Volpano, Irvine and Smith’s system [14]. A typing judgement

is of the form Γ,∆ � C : (α,β), and means that the command

C is of type (α,β), where α and β are tiers of SC, under Γ
and ∆.

III. A TIMED BIG STEP SEMANTICS

We present a big step semantics, which takes the com-

putation time into account. In an imperative language, a

computation is a sequence of transition steps where at each

step corresponds a store update. A transition performs a fixed

number of basic operations or tests, which are counted as a

unit cost. So, it is reasonable to define a time measure which

corresponds to the number of transition steps.

Let W be the set of words over a finite alphabet. Expres-

sions, commands and programs are interpreted over W. We

take two words tt and ff of W to denote respectively true

and false. A store µ is a finite mapping from V to W. We

write µ[�X ← �d] for the store σ such that σ(Xi) = di and

σ(Y) = µ(Y) for Y �= Xi, where i = 1, n for some fixed n.

We write dom(µ) to mean the domain of µ.

Rules to evaluate expressions are given in Figure 3. Each

operator of arity n is interpreted by a total function �op� :
Wn �→ W. The relation µ � E ⇒t d means that the expression

E is evaluated within t steps to d ∈ W, where each variable

in V(E) is in dom(µ). We just write µ � E ⇒ µ�
if we don’t

care about the running time.

Variables µ � X ⇒1 µ(X)

Op
µ � E1 ⇒t1 d1 . . . µ � En ⇒tn dn

µ � op(E1, . . . ,En) ⇒1+
�n

i=1 ti �op�(d1, . . . , dn)

Fig. 3. Time semantics of Expressions

Command execution rules are given in Figure 4. Given a

store µ, the relation µ � C ⇒t µ�
expresses that the command

C returns the store µ�
and terminates within t steps. We write

µ � C ⇒ µ�
if we don’t care about the running time. A

command C does not terminate in a given store µ, if there is

no µ�
and no t such that µ � C ⇒t µ�

. In this case, we write

µ � C ⇒⊥.

A program P is given by a command C , a list of input

variables X1, . . . ,Xn, and an output variable Y . A program

computes a partial function �P� from Wn
to W defined by

�P�(d1, . . . , dn) = µ(Y) iff µ0[�X ← �d] � C ⇒ µ

where for each variable Z in C , µ0(Z) = ff. A program is

terminating iff �P� is a total function.

The program running time is the partial function TimeP

from Wn
to N defined by

TimeP(d1, . . . , dn) = t iff µ0[�X ← �d] � C ⇒t µ

The length of a word d is denoted |d |. A program P is running

in polynomial time if there is a polynomial Q such that for

all d1, . . . , dn, TimeP(d1, . . . , dn) ≤ Q(maxi(|di|)).
IV. SAFE PROGRAMS

A. Neutral and positive operator interpretations

We present a restriction on operator interpretations. For

this we shall define two kinds of operator interpretations

called neutral and positive. But before, we present some

typical operators with their interpretations over W to illustrate

definitions.

• For each word v , we have an operator eqv which tests

whether or not a word begins with a given prefix v .

�eqv �(u) =
�
tt if u = v .d for some d

ff otherwise

• We have an operator pred , which deletes the first letter

of a word such that

�pred�(u) =
�
� if u = �

u if u = i.d and for some d and letter i

• For each word v , we have an operator sucv satisfying

�sucv �(u) = v .u .

Now, define � as the sub-word relation over W by u � d ,

iff there are v and v �
such that d = v .u.v �

where . is the

concatenation.

An operator op has a neutral interpretation if either

1) either �op� : W → {tt,ff} is a predicate; or

2) or for all d1, . . . , dn, �op�(d1, . . . , dn) � di for some

i ≤ n.

The operators eqv and pred have a neutral interpretation.

An operator op has a positive interpretation if there is a

constant cop such that

|�op�(d1, . . . , dn)| ≤ max
i

(|di|) + cop

The operator sucv has a positive interpretation.

Remark 1: A neutral interpretation is also a positive inter-

pretation. But the converse is false.

mercredi 22 juin 2011

Type system for expressions

Variable

Γ(X) = α
where β � α

Γ,∆ � X : (α,β)

Op

Γ,∆ � E1 : (α1,β1) . . .Γ,∆ � En : (αn,βn)

Γ,∆ � op(E1, . . . ,En) : (α,β)

where (α1,β1) → . . . → (αn,βn) → (α,β) ∈ ∆(op)

Fig. 1. Type system for expressions

D. Command types

Figure 2 gives the typing rules for commands. As we

shall see later, any program that is well-typed according to

these rules satisfies non-interference properties as well as

the ramification conditions of the ICC tiering discipline. The

typing rules control information in way, which is related to

Volpano, Irvine and Smith’s system [14]. A typing judgement

is of the form Γ,∆ � C : (α,β), and means that the command

C is of type (α,β), where α and β are tiers of SC, under Γ
and ∆.

III. A TIMED BIG STEP SEMANTICS

We present a big step semantics, which takes the com-

putation time into account. In an imperative language, a

computation is a sequence of transition steps where at each

step corresponds a store update. A transition performs a fixed

number of basic operations or tests, which are counted as a

unit cost. So, it is reasonable to define a time measure which

corresponds to the number of transition steps.

Let W be the set of words over a finite alphabet. Expres-

sions, commands and programs are interpreted over W. We

take two words tt and ff of W to denote respectively true

and false. A store µ is a finite mapping from V to W. We

write µ[�X ← �d] for the store σ such that σ(Xi) = di and

σ(Y) = µ(Y) for Y �= Xi, where i = 1, n for some fixed n.

We write dom(µ) to mean the domain of µ.

Rules to evaluate expressions are given in Figure 3. Each

operator of arity n is interpreted by a total function �op� :
Wn �→ W. The relation µ � E ⇒t d means that the expression

E is evaluated within t steps to d ∈ W, where each variable

in V(E) is in dom(µ). We just write µ � E ⇒ µ�
if we don’t

care about the running time.

Variables µ � X ⇒1 µ(X)

Op
µ � E1 ⇒t1 d1 . . . µ � En ⇒tn dn

µ � op(E1, . . . ,En) ⇒1+
�n

i=1 ti �op�(d1, . . . , dn)

Fig. 3. Time semantics of Expressions

Command execution rules are given in Figure 4. Given a

store µ, the relation µ � C ⇒t µ�
expresses that the command

C returns the store µ�
and terminates within t steps. We write

µ � C ⇒ µ�
if we don’t care about the running time. A

command C does not terminate in a given store µ, if there is

no µ�
and no t such that µ � C ⇒t µ�

. In this case, we write

µ � C ⇒⊥.

A program P is given by a command C , a list of input

variables X1, . . . ,Xn, and an output variable Y . A program

computes a partial function �P� from Wn
to W defined by

�P�(d1, . . . , dn) = µ(Y) iff µ0[�X ← �d] � C ⇒ µ

where for each variable Z in C , µ0(Z) = ff. A program is

terminating iff �P� is a total function.

The program running time is the partial function TimeP

from Wn
to N defined by

TimeP(d1, . . . , dn) = t iff µ0[�X ← �d] � C ⇒t µ

The length of a word d is denoted |d |. A program P is running

in polynomial time if there is a polynomial Q such that for

all d1, . . . , dn, TimeP(d1, . . . , dn) ≤ Q(maxi(|di|)).
IV. SAFE PROGRAMS

A. Neutral and positive operator interpretations

We present a restriction on operator interpretations. For

this we shall define two kinds of operator interpretations

called neutral and positive. But before, we present some

typical operators with their interpretations over W to illustrate

definitions.

• For each word v , we have an operator eqv which tests

whether or not a word begins with a given prefix v .

�eqv �(u) =
�
tt if u = v .d for some d

ff otherwise

• We have an operator pred , which deletes the first letter

of a word such that

�pred�(u) =
�
� if u = �

u if u = i.d and for some d and letter i

• For each word v , we have an operator sucv satisfying

�sucv �(u) = v .u .

Now, define � as the sub-word relation over W by u � d ,

iff there are v and v �
such that d = v .u.v �

where . is the

concatenation.

An operator op has a neutral interpretation if either

1) either �op� : W → {tt,ff} is a predicate; or

2) or for all d1, . . . , dn, �op�(d1, . . . , dn) � di for some

i ≤ n.

The operators eqv and pred have a neutral interpretation.

An operator op has a positive interpretation if there is a

constant cop such that

|�op�(d1, . . . , dn)| ≤ max
i

(|di|) + cop

The operator sucv has a positive interpretation.

Remark 1: A neutral interpretation is also a positive inter-

pretation. But the converse is false.

Variable

Γ(X) = α
where β � α

Γ,∆ � X : (α,β)

Op

Γ,∆ � E1 : (α1,β1) . . .Γ,∆ � En : (αn,βn)

Γ,∆ � op(E1, . . . ,En) : (α,β)

where (α1,β1) → . . . → (αn,βn) → (α,β) ∈ ∆(op)

Fig. 1. Type system for expressions

D. Command types

Figure 2 gives the typing rules for commands. As we

shall see later, any program that is well-typed according to

these rules satisfies non-interference properties as well as

the ramification conditions of the ICC tiering discipline. The

typing rules control information in way, which is related to

Volpano, Irvine and Smith’s system [14]. A typing judgement

is of the form Γ,∆ � C : (α,β), and means that the command

C is of type (α,β), where α and β are tiers of SC, under Γ
and ∆.

III. A TIMED BIG STEP SEMANTICS

We present a big step semantics, which takes the com-

putation time into account. In an imperative language, a

computation is a sequence of transition steps where at each

step corresponds a store update. A transition performs a fixed

number of basic operations or tests, which are counted as a

unit cost. So, it is reasonable to define a time measure which

corresponds to the number of transition steps.

Let W be the set of words over a finite alphabet. Expres-

sions, commands and programs are interpreted over W. We

take two words tt and ff of W to denote respectively true

and false. A store µ is a finite mapping from V to W. We

write µ[�X ← �d] for the store σ such that σ(Xi) = di and

σ(Y) = µ(Y) for Y �= Xi, where i = 1, n for some fixed n.

We write dom(µ) to mean the domain of µ.

Rules to evaluate expressions are given in Figure 3. Each

operator of arity n is interpreted by a total function �op� :
Wn �→ W. The relation µ � E ⇒t d means that the expression

E is evaluated within t steps to d ∈ W, where each variable

in V(E) is in dom(µ). We just write µ � E ⇒ µ�
if we don’t

care about the running time.

Variables µ � X ⇒1 µ(X)

Op
µ � E1 ⇒t1 d1 . . . µ � En ⇒tn dn

µ � op(E1, . . . ,En) ⇒1+
�n

i=1 ti �op�(d1, . . . , dn)

Fig. 3. Time semantics of Expressions

Command execution rules are given in Figure 4. Given a

store µ, the relation µ � C ⇒t µ�
expresses that the command

C returns the store µ�
and terminates within t steps. We write

µ � C ⇒ µ�
if we don’t care about the running time. A

command C does not terminate in a given store µ, if there is

no µ�
and no t such that µ � C ⇒t µ�

. In this case, we write

µ � C ⇒⊥.

A program P is given by a command C , a list of input

variables X1, . . . ,Xn, and an output variable Y . A program

computes a partial function �P� from Wn
to W defined by

�P�(d1, . . . , dn) = µ(Y) iff µ0[�X ← �d] � C ⇒ µ

where for each variable Z in C , µ0(Z) = ff. A program is

terminating iff �P� is a total function.

The program running time is the partial function TimeP

from Wn
to N defined by

TimeP(d1, . . . , dn) = t iff µ0[�X ← �d] � C ⇒t µ

The length of a word d is denoted |d |. A program P is running

in polynomial time if there is a polynomial Q such that for

all d1, . . . , dn, TimeP(d1, . . . , dn) ≤ Q(maxi(|di|)).
IV. SAFE PROGRAMS

A. Neutral and positive operator interpretations

We present a restriction on operator interpretations. For

this we shall define two kinds of operator interpretations

called neutral and positive. But before, we present some

typical operators with their interpretations over W to illustrate

definitions.

• For each word v , we have an operator eqv which tests

whether or not a word begins with a given prefix v .

�eqv �(u) =
�
tt if u = v .d for some d

ff otherwise

• We have an operator pred , which deletes the first letter

of a word such that

�pred�(u) =
�
� if u = �

u if u = i.d and for some d and letter i

• For each word v , we have an operator sucv satisfying

�sucv �(u) = v .u .

Now, define � as the sub-word relation over W by u � d ,

iff there are v and v �
such that d = v .u.v �

where . is the

concatenation.

An operator op has a neutral interpretation if either

1) either �op� : W → {tt,ff} is a predicate; or

2) or for all d1, . . . , dn, �op�(d1, . . . , dn) � di for some

i ≤ n.

The operators eqv and pred have a neutral interpretation.

An operator op has a positive interpretation if there is a

constant cop such that

|�op�(d1, . . . , dn)| ≤ max
i

(|di|) + cop

The operator sucv has a positive interpretation.

Remark 1: A neutral interpretation is also a positive inter-

pretation. But the converse is false.

- This typing rule allows to declassify variables

mercredi 22 juin 2011

Safe operators	

mercredi 22 juin 2011

Safe operators	

 Positive operators : constructors, sucv(x)=v.x

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Expression types
Tiers or levels α,β are in a security lattice (SC,�,∧,∨)
The type of an expression E is a (α,β)

� Each variable X in V(E) is of level � α.
� β � α.

� Constructor type : op : (α,β) → (α,α)

� Destructor type : op : (α,β) → (α,β)

Implicit declassification : Downgrade

Γ,∆ � X : (α,β�)
β � β�

Γ,∆ � X : (α,β)

Explicit reclassification by constructor : Unary constructor

Γ,∆ � E : (α,β)
(α,β) → (α,α) ∈ ∆(op)

Γ,∆ � op(E) : (α,α)

α ≥ β

mercredi 22 juin 2011

Safe operators	

 Positive operators : constructors, sucv(x)=v.x

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Expression types
Tiers or levels α,β are in a security lattice (SC,�,∧,∨)
The type of an expression E is a (α,β)

� Each variable X in V(E) is of level � α.
� β � α.

� Constructor type : op : (α,β) → (α,α)

� Destructor type : op : (α,β) → (α,β)

Implicit declassification : Downgrade

Γ,∆ � X : (α,β�)
β � β�

Γ,∆ � X : (α,β)

Explicit reclassification by constructor : Unary constructor

Γ,∆ � E : (α,β)
(α,β) → (α,α) ∈ ∆(op)

Γ,∆ � op(E) : (α,α)

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Expression types
Tiers or levels α,β are in a security lattice (SC,�,∧,∨)
The type of an expression E is a (α,β)

� Each variable X in V(E) is of level � α.
� β � α.

� Constructor type : op : (α,β) → (α,α)

� Destructor type : op : (α,β) → (α,β)

Implicit declassification : Downgrade

Γ,∆ � X : (α,β�)
β � β�

Γ,∆ � X : (α,β)

Explicit reclassification by constructor : Unary constructor

Γ,∆ � E : (α,β)
(α,β) → (α,α) ∈ ∆(op)

Γ,∆ � op(E) : (α,α)

Neutral operators : destructors, predecessor
predicates

α ≥ β

α ≥ β

mercredi 22 juin 2011

Safe operators	

 Positive operators : constructors, sucv(x)=v.x

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Expression types
Tiers or levels α,β are in a security lattice (SC,�,∧,∨)
The type of an expression E is a (α,β)

� Each variable X in V(E) is of level � α.
� β � α.

� Constructor type : op : (α,β) → (α,α)

� Destructor type : op : (α,β) → (α,β)

Implicit declassification : Downgrade

Γ,∆ � X : (α,β�)
β � β�

Γ,∆ � X : (α,β)

Explicit reclassification by constructor : Unary constructor

Γ,∆ � E : (α,β)
(α,β) → (α,α) ∈ ∆(op)

Γ,∆ � op(E) : (α,α)

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Expression types
Tiers or levels α,β are in a security lattice (SC,�,∧,∨)
The type of an expression E is a (α,β)

� Each variable X in V(E) is of level � α.
� β � α.

� Constructor type : op : (α,β) → (α,α)

� Destructor type : op : (α,β) → (α,β)

Implicit declassification : Downgrade

Γ,∆ � X : (α,β�)
β � β�

Γ,∆ � X : (α,β)

Explicit reclassification by constructor : Unary constructor

Γ,∆ � E : (α,β)
(α,β) → (α,α) ∈ ∆(op)

Γ,∆ � op(E) : (α,α)

Neutral operators : destructors, predecessor
predicates

α ≥ β

α ≥ β

mercredi 22 juin 2011

Safe operators	

 Positive operators : constructors, sucv(x)=v.x

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Expression types
Tiers or levels α,β are in a security lattice (SC,�,∧,∨)
The type of an expression E is a (α,β)

� Each variable X in V(E) is of level � α.
� β � α.

� Constructor type : op : (α,β) → (α,α)

� Destructor type : op : (α,β) → (α,β)

Implicit declassification : Downgrade

Γ,∆ � X : (α,β�)
β � β�

Γ,∆ � X : (α,β)

Explicit reclassification by constructor : Unary constructor

Γ,∆ � E : (α,β)
(α,β) → (α,α) ∈ ∆(op)

Γ,∆ � op(E) : (α,α)

NICS

Flow analysis of
Ramified
recursion

Secure flow
typing

Expression types
Tiers or levels α,β are in a security lattice (SC,�,∧,∨)
The type of an expression E is a (α,β)

� Each variable X in V(E) is of level � α.
� β � α.

� Constructor type : op : (α,β) → (α,α)

� Destructor type : op : (α,β) → (α,β)

Implicit declassification : Downgrade

Γ,∆ � X : (α,β�)
β � β�

Γ,∆ � X : (α,β)

Explicit reclassification by constructor : Unary constructor

Γ,∆ � E : (α,β)
(α,β) → (α,α) ∈ ∆(op)

Γ,∆ � op(E) : (α,α)

Neutral operators : destructors, predecessor
predicates

α ≥ β

α ≥ β

Type soundness for expressions:

Γ(X) = 1

Γ,∆ � X > 0 : (1,1)

Γ(X) = 1

Γ(X) = 1

Γ,∆ � X : (1,0)

Γ,∆ � X − 1 : (1,0)

Γ,∆ � X :=X − 1 : (1,0)

Γ(Y) = 0

Γ(Y) = 0

Γ,∆ � Y : (0,0)

Γ,∆ � Y + 1 : (0,0)

Γ,∆ � Y :=Y + 1 : (0,0)

Γ,∆ � {X :=X − 1;Y :=Y + 1} : (1,0)

Γ,∆ � while(X > 0){X :=X − 1;Y :=Y + 1} : (1,0)

Fig. 5. Typing derivation of add

i f eqa(Right)
t h e n i f eqs(State)
t h e n State:=s� ;

Left:=sucb(Left) ;

Right:=pred(Right) ;

e l s e . . .

The command above expresses that if the current read letter is

a and the state is s, then the next state is s�, the head moves

to the right and the read letter is replaced by b. Since each

variable inside the above command is of type (0,0), the type

of the if-command is also (0,0).
The iteration is made by nested k-while-loops. For this, we

use k variables X1, . . . , Xk of type 1.

X11:=X 1
/ / t h e i n i t i a l v a l u e

w h i l e (X11 > 0)

{ X11:=X11 − 1 : (1,0)
X21:=X 1

: (1,0)
w h i l e (X21 > 0)

{ X21:=X21 − 1 : (1,0)
X30:=X 1

: (1,0)
.
.
.

} : (1,0)
} : (1,0)

The guard of each loop is of tier 1. On the other hand, the body

of each loop is of tier (1,0) because first the step command

is of type (0,0) and second each variable of type (1,0) is

assigned neutral operators or variables of the same type.

VI. TYPE SOUNDNESS FOR EXPRESSIONS

We begin with a lemma, which says that the type system for

expressions is sound, with respect to declassification policy.

Lemma 2 (Expression declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then β � α.

Proof: The proof goes by induction on expressions and

uses the fact that operators are either neutral or positive.

The following lemma, called simple security, says that only

variables at level α or higher will have their contents read

in order to evaluate an expression E of type (α,β). Over

the two tier lattice ({0,1},�,0), if α = 1, E is evaluated

without reading any tier 0 variables. This property corresponds

to the rule ”no read down” of Biba’s model. This reveals

also some similarities with Myers’ and Liskov’s decentralized

label model [30] where each object has an owner and a list of

readers which this owner permits to read the data.

Lemma 3 (Simple security): Assume that Γ is a variable

typing environment. Assume also that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then for every

X ∈ V(E), we have Γ(X) � α.

Proof: The proof is done by structural induction on E .

The base case is when E is a variable. The typing judgement

yields Γ(X) � α. Suppose that E = op(E1, . . . ,En). There

are two cases to examine since ∆ is safe.

• op is a neutral operator. Then its type is (α1,β1) →
. . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi). where β =
∨i=1,nβi � α = ∧i=1,nαi. By induction hypothesis, for

each X in Ei we have Γ(X) � αi. So, Γ(X) � ∧i=1,nαi.

• op is positive and its type is (α1,β1) → . . . →
(αn,βn) → (∧i=1,nαi,∧i=1,nαi). By induction hypoth-

esis, for each X in Ei we have Γ(X) � αi. Again,

Γ(X) � ∧i=1,nαi.

VII. TYPE SOUNDNESS FOR COMMANDS

The two following lemmas state properties on command

types which are useful in other proofs.

Lemma 4 (Command declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. Assume also Γ,∆ � C : (α,β). Then

β � α.

Proof: By Lemma 2 and by observing that if β � α and

β� � α�
then β ∨ β� � α ∨ α�

.

Lemma 5 (Monotonicity): Assume also that C �
is a sub-

command of C and that Γ,∆ � C : (α,β) where ∆ is safe.

Then, Γ,∆ � C � : (α�,β�), where α� � α and β� � β.

Proof: By induction on typing derivation length.

The following lemma corresponds to the write access rule

of Biba’s model, which states that a command can write data

of lower level than itself. In our context, if a command C has

the type (α,β) then Confinement lemma says no variable of

rank above tier α is updated in C .

Γ(X) ≥ αif then

mercredi 22 juin 2011

Type system for programs

Assign
Γ(X) = α� Γ,∆ � E : (α,β)

α� � α
Γ,∆ � X :=E : (α,β)

Compose
Γ,∆ � C : (α,β) Γ,∆ � C � : (α�,β�)

Γ,∆ � C ; C � : (α ∨ α�,β ∨ β�)

If
Γ,∆ � E : (ρ, ρ�) Γ,∆ � C : (α,β) Γ,∆ � C � : (α,β)

where α � ρ
Γ,∆ � if E then C else C � : (α,β)

While
Γ,∆ � E : (α,α�) Γ,∆ � C : (α,β)

where β ≺ α
Γ,∆ � while(E){C} : (α,β)

Fig. 2. Type system for commands

Update
µ � E ⇒t d

µ � X :=E ⇒t+1 µ[X ← d]

µ � C ⇒t µ� µ� � C � ⇒t� µ��

µ � C ; C � ⇒t+t� µ��
Sequence

Branch
µ � E ⇒t tt µ � C ⇒t� µ�

µ � if E then C else C � ⇒t+t�+1 µ�

µ � E ⇒t ff µ � C � ⇒t� µ��

µ � if E then C else C � ⇒t+t�+1 µ��

While
µ � E ⇒t ff

µ � while(E){C} ⇒t µ

µ � E ⇒t tt µ � C ⇒t� µ� µ� � while(E){C} ⇒t�� µ��

µ � while(E){C} ⇒t+t�+t��+1 µ��

Fig. 4. Timed semantics of Commands

B. Positive and neutral operators and safe environment
Assume that ∆ is an operator typing environment. A con-

stant is neutral if all its types the type w.r.t. ∆ satisfy (α,β)
where β � α. An n+ 1-ary operator is neutral if all its types
w.r.t. ∆ satisfy

(α1,β1) . . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi)

where ∨i=1,nβi � ∧i=1,nαi.
A n-ary operator is positive if all its types w.r.t. ∆ satisfy

(α1,β1) → . . . → (αn,βn) → (∧i=1,nαi,∧i=1,nαi)

Next, if each operator op in the domain of ∆ is neutral or
positive then we say that ∆ is a safe typing environment.
Throughout this article, we consider safe operator typing
environments.

Remark 2: Depending on an operator typing environment
∆, an operator may be neutral and positive at the same time.

Lemma 1 (Tier unicity): Assume that Γ is a variable typing
environment and ∆ is a safe operator typing environment.
There is a unique tier α such that Γ,∆ � E : (α,β).

Proof: By induction on E . If E is a variable, the conclu-
sion follows immediately. Suppose that E = op(E1, . . . ,En).

Since ∆ is safe, op is either neutral or positive. In either
case, α = ∧i=1,nαi, where the type of each Ei is (αi,βi).
By induction hypothesis, αi is unique. So α is also unique by
lattice definition.

Remark 3: In contrast to this, β is not unique because it
represents the current level of classification of an object, and
so this level may vary depending on the context in which an
expression is used. Typically, a variable of tier 1 can be an
expression of type (1,0) or (0,0).

C. Main Result
Assume that ∆ is a safe operator typing environment, and

Γ a variable typing environment. A program P defined by a
command C is well-typed if Γ,∆ � C : (α,β) where (α,β)
is the type of P.

We now define a relation between the operator interpretation
and its types given by ∆. A program is safe if (i) it is
well-typed, if (ii) each operator has a neutral or a positive
interpretation and if (iii) each operator which has a neutral
(positive) interpretation is neutral (positive) w.r.t. ∆.

Theorem 1: Let ({0,1},�,0) be the complexity lattice. A
terminating and safe program is computable in polynomial

mercredi 22 juin 2011

Type system for programs

Assign
Γ(X) = α� Γ,∆ � E : (α,β)

α� � α
Γ,∆ � X :=E : (α,β)

Compose
Γ,∆ � C : (α,β) Γ,∆ � C � : (α�,β�)

Γ,∆ � C ; C � : (α ∨ α�,β ∨ β�)

If
Γ,∆ � E : (ρ, ρ�) Γ,∆ � C : (α,β) Γ,∆ � C � : (α,β)

where α � ρ
Γ,∆ � if E then C else C � : (α,β)

While
Γ,∆ � E : (α,α�) Γ,∆ � C : (α,β)

where β ≺ α
Γ,∆ � while(E){C} : (α,β)

Fig. 2. Type system for commands

Update
µ � E ⇒t d

µ � X :=E ⇒t+1 µ[X ← d]

µ � C ⇒t µ� µ� � C � ⇒t� µ��

µ � C ; C � ⇒t+t� µ��
Sequence

Branch
µ � E ⇒t tt µ � C ⇒t� µ�

µ � if E then C else C � ⇒t+t�+1 µ�

µ � E ⇒t ff µ � C � ⇒t� µ��

µ � if E then C else C � ⇒t+t�+1 µ��

While
µ � E ⇒t ff

µ � while(E){C} ⇒t µ

µ � E ⇒t tt µ � C ⇒t� µ� µ� � while(E){C} ⇒t�� µ��

µ � while(E){C} ⇒t+t�+t��+1 µ��

Fig. 4. Timed semantics of Commands

B. Positive and neutral operators and safe environment
Assume that ∆ is an operator typing environment. A con-

stant is neutral if all its types the type w.r.t. ∆ satisfy (α,β)
where β � α. An n+ 1-ary operator is neutral if all its types
w.r.t. ∆ satisfy

(α1,β1) . . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi)

where ∨i=1,nβi � ∧i=1,nαi.
A n-ary operator is positive if all its types w.r.t. ∆ satisfy

(α1,β1) → . . . → (αn,βn) → (∧i=1,nαi,∧i=1,nαi)

Next, if each operator op in the domain of ∆ is neutral or
positive then we say that ∆ is a safe typing environment.
Throughout this article, we consider safe operator typing
environments.

Remark 2: Depending on an operator typing environment
∆, an operator may be neutral and positive at the same time.

Lemma 1 (Tier unicity): Assume that Γ is a variable typing
environment and ∆ is a safe operator typing environment.
There is a unique tier α such that Γ,∆ � E : (α,β).

Proof: By induction on E . If E is a variable, the conclu-
sion follows immediately. Suppose that E = op(E1, . . . ,En).

Since ∆ is safe, op is either neutral or positive. In either
case, α = ∧i=1,nαi, where the type of each Ei is (αi,βi).
By induction hypothesis, αi is unique. So α is also unique by
lattice definition.

Remark 3: In contrast to this, β is not unique because it
represents the current level of classification of an object, and
so this level may vary depending on the context in which an
expression is used. Typically, a variable of tier 1 can be an
expression of type (1,0) or (0,0).

C. Main Result
Assume that ∆ is a safe operator typing environment, and

Γ a variable typing environment. A program P defined by a
command C is well-typed if Γ,∆ � C : (α,β) where (α,β)
is the type of P.

We now define a relation between the operator interpretation
and its types given by ∆. A program is safe if (i) it is
well-typed, if (ii) each operator has a neutral or a positive
interpretation and if (iii) each operator which has a neutral
(positive) interpretation is neutral (positive) w.r.t. ∆.

Theorem 1: Let ({0,1},�,0) be the complexity lattice. A
terminating and safe program is computable in polynomial

mercredi 22 juin 2011

Type system for programs

Assign
Γ(X) = α� Γ,∆ � E : (α,β)

α� � α
Γ,∆ � X :=E : (α,β)

Compose
Γ,∆ � C : (α,β) Γ,∆ � C � : (α�,β�)

Γ,∆ � C ; C � : (α ∨ α�,β ∨ β�)

If
Γ,∆ � E : (ρ, ρ�) Γ,∆ � C : (α,β) Γ,∆ � C � : (α,β)

where α � ρ
Γ,∆ � if E then C else C � : (α,β)

While
Γ,∆ � E : (α,α�) Γ,∆ � C : (α,β)

where β ≺ α
Γ,∆ � while(E){C} : (α,β)

Fig. 2. Type system for commands

Update
µ � E ⇒t d

µ � X :=E ⇒t+1 µ[X ← d]

µ � C ⇒t µ� µ� � C � ⇒t� µ��

µ � C ; C � ⇒t+t� µ��
Sequence

Branch
µ � E ⇒t tt µ � C ⇒t� µ�

µ � if E then C else C � ⇒t+t�+1 µ�

µ � E ⇒t ff µ � C � ⇒t� µ��

µ � if E then C else C � ⇒t+t�+1 µ��

While
µ � E ⇒t ff

µ � while(E){C} ⇒t µ

µ � E ⇒t tt µ � C ⇒t� µ� µ� � while(E){C} ⇒t�� µ��

µ � while(E){C} ⇒t+t�+t��+1 µ��

Fig. 4. Timed semantics of Commands

B. Positive and neutral operators and safe environment
Assume that ∆ is an operator typing environment. A con-

stant is neutral if all its types the type w.r.t. ∆ satisfy (α,β)
where β � α. An n+ 1-ary operator is neutral if all its types
w.r.t. ∆ satisfy

(α1,β1) . . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi)

where ∨i=1,nβi � ∧i=1,nαi.
A n-ary operator is positive if all its types w.r.t. ∆ satisfy

(α1,β1) → . . . → (αn,βn) → (∧i=1,nαi,∧i=1,nαi)

Next, if each operator op in the domain of ∆ is neutral or
positive then we say that ∆ is a safe typing environment.
Throughout this article, we consider safe operator typing
environments.

Remark 2: Depending on an operator typing environment
∆, an operator may be neutral and positive at the same time.

Lemma 1 (Tier unicity): Assume that Γ is a variable typing
environment and ∆ is a safe operator typing environment.
There is a unique tier α such that Γ,∆ � E : (α,β).

Proof: By induction on E . If E is a variable, the conclu-
sion follows immediately. Suppose that E = op(E1, . . . ,En).

Since ∆ is safe, op is either neutral or positive. In either
case, α = ∧i=1,nαi, where the type of each Ei is (αi,βi).
By induction hypothesis, αi is unique. So α is also unique by
lattice definition.

Remark 3: In contrast to this, β is not unique because it
represents the current level of classification of an object, and
so this level may vary depending on the context in which an
expression is used. Typically, a variable of tier 1 can be an
expression of type (1,0) or (0,0).

C. Main Result
Assume that ∆ is a safe operator typing environment, and

Γ a variable typing environment. A program P defined by a
command C is well-typed if Γ,∆ � C : (α,β) where (α,β)
is the type of P.

We now define a relation between the operator interpretation
and its types given by ∆. A program is safe if (i) it is
well-typed, if (ii) each operator has a neutral or a positive
interpretation and if (iii) each operator which has a neutral
(positive) interpretation is neutral (positive) w.r.t. ∆.

Theorem 1: Let ({0,1},�,0) be the complexity lattice. A
terminating and safe program is computable in polynomial

mercredi 22 juin 2011

Typing composition

int add(int x, int y)
{ while (x>0)

{
x = x-1;
y = y+1;
}

return y}

mercredi 22 juin 2011

Typing composition

int add(int x, int y)
{ while (x>0)

{
x = x-1;
y = y+1;
}

return y}

Γ(X) = 1

Γ,∆ � X > 0 : (1,1)

Γ(X) = 1

Γ(X) = 1

Γ,∆ � X : (1,0)

Γ,∆ � X − 1 : (1,0)

Γ,∆ � X :=X − 1 : (1,0)

Γ(Y) = 0

Γ(Y) = 0

Γ,∆ � Y : (0,0)

Γ,∆ � Y + 1 : (0,0)

Γ,∆ � Y :=Y + 1 : (0,0)

Γ,∆ � {X :=X − 1;Y :=Y + 1} : (1,0)

Γ,∆ � while(X > 0){X :=X − 1;Y :=Y + 1} : (1,0)

Fig. 5. Typing derivation of add

i f eqa(Right)
t h e n i f eqs(State)
t h e n State:=s� ;

Left:=sucb(Left) ;

Right:=pred(Right) ;

e l s e . . .

The command above expresses that if the current read letter is

a and the state is s, then the next state is s�, the head moves

to the right and the read letter is replaced by b. Since each

variable inside the above command is of type (0,0), the type

of the if-command is also (0,0).
The iteration is made by nested k-while-loops. For this, we

use k variables X1, . . . , Xk of type 1.

X11:=X 1
/ / t h e i n i t i a l v a l u e

w h i l e (X11 > 0)

{ X11:=X11 − 1 : (1,0)
X21:=X 1

: (1,0)
w h i l e (X21 > 0)

{ X21:=X21 − 1 : (1,0)
X30:=X 1

: (1,0)
.
.
.

} : (1,0)
} : (1,0)

The guard of each loop is of tier 1. On the other hand, the body

of each loop is of tier (1,0) because first the step command

is of type (0,0) and second each variable of type (1,0) is

assigned neutral operators or variables of the same type.

VI. TYPE SOUNDNESS FOR EXPRESSIONS

We begin with a lemma, which says that the type system for

expressions is sound, with respect to declassification policy.

Lemma 2 (Expression declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then β � α.

Proof: The proof goes by induction on expressions and

uses the fact that operators are either neutral or positive.

The following lemma, called simple security, says that only

variables at level α or higher will have their contents read

in order to evaluate an expression E of type (α,β). Over

the two tier lattice ({0,1},�,0), if α = 1, E is evaluated

without reading any tier 0 variables. This property corresponds

to the rule ”no read down” of Biba’s model. This reveals

also some similarities with Myers’ and Liskov’s decentralized

label model [30] where each object has an owner and a list of

readers which this owner permits to read the data.

Lemma 3 (Simple security): Assume that Γ is a variable

typing environment. Assume also that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then for every

X ∈ V(E), we have Γ(X) � α.

Proof: The proof is done by structural induction on E .

The base case is when E is a variable. The typing judgement

yields Γ(X) � α. Suppose that E = op(E1, . . . ,En). There

are two cases to examine since ∆ is safe.

• op is a neutral operator. Then its type is (α1,β1) →
. . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi). where β =
∨i=1,nβi � α = ∧i=1,nαi. By induction hypothesis, for

each X in Ei we have Γ(X) � αi. So, Γ(X) � ∧i=1,nαi.

• op is positive and its type is (α1,β1) → . . . →
(αn,βn) → (∧i=1,nαi,∧i=1,nαi). By induction hypoth-

esis, for each X in Ei we have Γ(X) � αi. Again,

Γ(X) � ∧i=1,nαi.

VII. TYPE SOUNDNESS FOR COMMANDS

The two following lemmas state properties on command

types which are useful in other proofs.

Lemma 4 (Command declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. Assume also Γ,∆ � C : (α,β). Then

β � α.

Proof: By Lemma 2 and by observing that if β � α and

β� � α�
then β ∨ β� � α ∨ α�

.

Lemma 5 (Monotonicity): Assume also that C �
is a sub-

command of C and that Γ,∆ � C : (α,β) where ∆ is safe.

Then, Γ,∆ � C � : (α�,β�), where α� � α and β� � β.

Proof: By induction on typing derivation length.

The following lemma corresponds to the write access rule

of Biba’s model, which states that a command can write data

of lower level than itself. In our context, if a command C has

the type (α,β) then Confinement lemma says no variable of

rank above tier α is updated in C .

mercredi 22 juin 2011

Typing composition

int add(int x, int y)
{ while (x>0)

{
x = x-1;

y = y+1;
}

return y}

Γ(X) = 1

Γ,∆ � X > 0 : (1,1)

Γ(X) = 1

Γ(X) = 1

Γ,∆ � X : (1,0)

Γ,∆ � X − 1 : (1,0)

Γ,∆ � X :=X − 1 : (1,0)

Γ(Y) = 0

Γ(Y) = 0

Γ,∆ � Y : (0,0)

Γ,∆ � Y + 1 : (0,0)

Γ,∆ � Y :=Y + 1 : (0,0)

Γ,∆ � {X :=X − 1;Y :=Y + 1} : (1,0)

Γ,∆ � while(X > 0){X :=X − 1;Y :=Y + 1} : (1,0)

Fig. 5. Typing derivation of add

i f eqa(Right)
t h e n i f eqs(State)
t h e n State:=s� ;

Left:=sucb(Left) ;

Right:=pred(Right) ;

e l s e . . .

The command above expresses that if the current read letter is

a and the state is s, then the next state is s�, the head moves

to the right and the read letter is replaced by b. Since each

variable inside the above command is of type (0,0), the type

of the if-command is also (0,0).
The iteration is made by nested k-while-loops. For this, we

use k variables X1, . . . , Xk of type 1.

X11:=X 1
/ / t h e i n i t i a l v a l u e

w h i l e (X11 > 0)

{ X11:=X11 − 1 : (1,0)
X21:=X 1

: (1,0)
w h i l e (X21 > 0)

{ X21:=X21 − 1 : (1,0)
X30:=X 1

: (1,0)
.
.
.

} : (1,0)
} : (1,0)

The guard of each loop is of tier 1. On the other hand, the body

of each loop is of tier (1,0) because first the step command

is of type (0,0) and second each variable of type (1,0) is

assigned neutral operators or variables of the same type.

VI. TYPE SOUNDNESS FOR EXPRESSIONS

We begin with a lemma, which says that the type system for

expressions is sound, with respect to declassification policy.

Lemma 2 (Expression declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then β � α.

Proof: The proof goes by induction on expressions and

uses the fact that operators are either neutral or positive.

The following lemma, called simple security, says that only

variables at level α or higher will have their contents read

in order to evaluate an expression E of type (α,β). Over

the two tier lattice ({0,1},�,0), if α = 1, E is evaluated

without reading any tier 0 variables. This property corresponds

to the rule ”no read down” of Biba’s model. This reveals

also some similarities with Myers’ and Liskov’s decentralized

label model [30] where each object has an owner and a list of

readers which this owner permits to read the data.

Lemma 3 (Simple security): Assume that Γ is a variable

typing environment. Assume also that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then for every

X ∈ V(E), we have Γ(X) � α.

Proof: The proof is done by structural induction on E .

The base case is when E is a variable. The typing judgement

yields Γ(X) � α. Suppose that E = op(E1, . . . ,En). There

are two cases to examine since ∆ is safe.

• op is a neutral operator. Then its type is (α1,β1) →
. . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi). where β =
∨i=1,nβi � α = ∧i=1,nαi. By induction hypothesis, for

each X in Ei we have Γ(X) � αi. So, Γ(X) � ∧i=1,nαi.

• op is positive and its type is (α1,β1) → . . . →
(αn,βn) → (∧i=1,nαi,∧i=1,nαi). By induction hypoth-

esis, for each X in Ei we have Γ(X) � αi. Again,

Γ(X) � ∧i=1,nαi.

VII. TYPE SOUNDNESS FOR COMMANDS

The two following lemmas state properties on command

types which are useful in other proofs.

Lemma 4 (Command declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. Assume also Γ,∆ � C : (α,β). Then

β � α.

Proof: By Lemma 2 and by observing that if β � α and

β� � α�
then β ∨ β� � α ∨ α�

.

Lemma 5 (Monotonicity): Assume also that C �
is a sub-

command of C and that Γ,∆ � C : (α,β) where ∆ is safe.

Then, Γ,∆ � C � : (α�,β�), where α� � α and β� � β.

Proof: By induction on typing derivation length.

The following lemma corresponds to the write access rule

of Biba’s model, which states that a command can write data

of lower level than itself. In our context, if a command C has

the type (α,β) then Confinement lemma says no variable of

rank above tier α is updated in C .

Γ(X) = 1

Γ,∆ � X > 0 : (1,1)

Γ(X) = 1

Γ(X) = 1

Γ,∆ � X : (1,0)

Γ,∆ � X − 1 : (1,0)

Γ,∆ � X :=X − 1 : (1,0)

Γ(Y) = 0

Γ(Y) = 0

Γ,∆ � Y : (0,0)

Γ,∆ � Y + 1 : (0,0)

Γ,∆ � Y :=Y + 1 : (0,0)

Γ,∆ � {X :=X − 1;Y :=Y + 1} : (1,0)

Γ,∆ � while(X > 0){X :=X − 1;Y :=Y + 1} : (1,0)

Fig. 5. Typing derivation of add

i f eqa(Right)
t h e n i f eqs(State)
t h e n State:=s� ;

Left:=sucb(Left) ;

Right:=pred(Right) ;

e l s e . . .

The command above expresses that if the current read letter is

a and the state is s, then the next state is s�, the head moves

to the right and the read letter is replaced by b. Since each

variable inside the above command is of type (0,0), the type

of the if-command is also (0,0).
The iteration is made by nested k-while-loops. For this, we

use k variables X1, . . . , Xk of type 1.

X11:=X 1
/ / t h e i n i t i a l v a l u e

w h i l e (X11 > 0)

{ X11:=X11 − 1 : (1,0)
X21:=X 1

: (1,0)
w h i l e (X21 > 0)

{ X21:=X21 − 1 : (1,0)
X30:=X 1

: (1,0)
.
.
.

} : (1,0)
} : (1,0)

The guard of each loop is of tier 1. On the other hand, the body

of each loop is of tier (1,0) because first the step command

is of type (0,0) and second each variable of type (1,0) is

assigned neutral operators or variables of the same type.

VI. TYPE SOUNDNESS FOR EXPRESSIONS

We begin with a lemma, which says that the type system for

expressions is sound, with respect to declassification policy.

Lemma 2 (Expression declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then β � α.

Proof: The proof goes by induction on expressions and

uses the fact that operators are either neutral or positive.

The following lemma, called simple security, says that only

variables at level α or higher will have their contents read

in order to evaluate an expression E of type (α,β). Over

the two tier lattice ({0,1},�,0), if α = 1, E is evaluated

without reading any tier 0 variables. This property corresponds

to the rule ”no read down” of Biba’s model. This reveals

also some similarities with Myers’ and Liskov’s decentralized

label model [30] where each object has an owner and a list of

readers which this owner permits to read the data.

Lemma 3 (Simple security): Assume that Γ is a variable

typing environment. Assume also that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then for every

X ∈ V(E), we have Γ(X) � α.

Proof: The proof is done by structural induction on E .

The base case is when E is a variable. The typing judgement

yields Γ(X) � α. Suppose that E = op(E1, . . . ,En). There

are two cases to examine since ∆ is safe.

• op is a neutral operator. Then its type is (α1,β1) →
. . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi). where β =
∨i=1,nβi � α = ∧i=1,nαi. By induction hypothesis, for

each X in Ei we have Γ(X) � αi. So, Γ(X) � ∧i=1,nαi.

• op is positive and its type is (α1,β1) → . . . →
(αn,βn) → (∧i=1,nαi,∧i=1,nαi). By induction hypoth-

esis, for each X in Ei we have Γ(X) � αi. Again,

Γ(X) � ∧i=1,nαi.

VII. TYPE SOUNDNESS FOR COMMANDS

The two following lemmas state properties on command

types which are useful in other proofs.

Lemma 4 (Command declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. Assume also Γ,∆ � C : (α,β). Then

β � α.

Proof: By Lemma 2 and by observing that if β � α and

β� � α�
then β ∨ β� � α ∨ α�

.

Lemma 5 (Monotonicity): Assume also that C �
is a sub-

command of C and that Γ,∆ � C : (α,β) where ∆ is safe.

Then, Γ,∆ � C � : (α�,β�), where α� � α and β� � β.

Proof: By induction on typing derivation length.

The following lemma corresponds to the write access rule

of Biba’s model, which states that a command can write data

of lower level than itself. In our context, if a command C has

the type (α,β) then Confinement lemma says no variable of

rank above tier α is updated in C .

mercredi 22 juin 2011

Typing composition

int add(int x, int y)
{ while (x>0)

{
x = x-1;
y = y+1;
}

return y}

Γ(X) = 1

Γ,∆ � X > 0 : (1,1)

Γ(X) = 1

Γ(X) = 1

Γ,∆ � X : (1,0)

Γ,∆ � X − 1 : (1,0)

Γ,∆ � X :=X − 1 : (1,0)

Γ(Y) = 0

Γ(Y) = 0

Γ,∆ � Y : (0,0)

Γ,∆ � Y + 1 : (0,0)

Γ,∆ � Y :=Y + 1 : (0,0)

Γ,∆ � {X :=X − 1;Y :=Y + 1} : (1,0)

Γ,∆ � while(X > 0){X :=X − 1;Y :=Y + 1} : (1,0)

Fig. 5. Typing derivation of add

i f eqa(Right)
t h e n i f eqs(State)
t h e n State:=s� ;

Left:=sucb(Left) ;

Right:=pred(Right) ;

e l s e . . .

The command above expresses that if the current read letter is

a and the state is s, then the next state is s�, the head moves

to the right and the read letter is replaced by b. Since each

variable inside the above command is of type (0,0), the type

of the if-command is also (0,0).
The iteration is made by nested k-while-loops. For this, we

use k variables X1, . . . , Xk of type 1.

X11:=X 1
/ / t h e i n i t i a l v a l u e

w h i l e (X11 > 0)

{ X11:=X11 − 1 : (1,0)
X21:=X 1

: (1,0)
w h i l e (X21 > 0)

{ X21:=X21 − 1 : (1,0)
X30:=X 1

: (1,0)
.
.
.

} : (1,0)
} : (1,0)

The guard of each loop is of tier 1. On the other hand, the body

of each loop is of tier (1,0) because first the step command

is of type (0,0) and second each variable of type (1,0) is

assigned neutral operators or variables of the same type.

VI. TYPE SOUNDNESS FOR EXPRESSIONS

We begin with a lemma, which says that the type system for

expressions is sound, with respect to declassification policy.

Lemma 2 (Expression declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then β � α.

Proof: The proof goes by induction on expressions and

uses the fact that operators are either neutral or positive.

The following lemma, called simple security, says that only

variables at level α or higher will have their contents read

in order to evaluate an expression E of type (α,β). Over

the two tier lattice ({0,1},�,0), if α = 1, E is evaluated

without reading any tier 0 variables. This property corresponds

to the rule ”no read down” of Biba’s model. This reveals

also some similarities with Myers’ and Liskov’s decentralized

label model [30] where each object has an owner and a list of

readers which this owner permits to read the data.

Lemma 3 (Simple security): Assume that Γ is a variable

typing environment. Assume also that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then for every

X ∈ V(E), we have Γ(X) � α.

Proof: The proof is done by structural induction on E .

The base case is when E is a variable. The typing judgement

yields Γ(X) � α. Suppose that E = op(E1, . . . ,En). There

are two cases to examine since ∆ is safe.

• op is a neutral operator. Then its type is (α1,β1) →
. . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi). where β =
∨i=1,nβi � α = ∧i=1,nαi. By induction hypothesis, for

each X in Ei we have Γ(X) � αi. So, Γ(X) � ∧i=1,nαi.

• op is positive and its type is (α1,β1) → . . . →
(αn,βn) → (∧i=1,nαi,∧i=1,nαi). By induction hypoth-

esis, for each X in Ei we have Γ(X) � αi. Again,

Γ(X) � ∧i=1,nαi.

VII. TYPE SOUNDNESS FOR COMMANDS

The two following lemmas state properties on command

types which are useful in other proofs.

Lemma 4 (Command declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. Assume also Γ,∆ � C : (α,β). Then

β � α.

Proof: By Lemma 2 and by observing that if β � α and

β� � α�
then β ∨ β� � α ∨ α�

.

Lemma 5 (Monotonicity): Assume also that C �
is a sub-

command of C and that Γ,∆ � C : (α,β) where ∆ is safe.

Then, Γ,∆ � C � : (α�,β�), where α� � α and β� � β.

Proof: By induction on typing derivation length.

The following lemma corresponds to the write access rule

of Biba’s model, which states that a command can write data

of lower level than itself. In our context, if a command C has

the type (α,β) then Confinement lemma says no variable of

rank above tier α is updated in C .

Γ(X) = 1

Γ,∆ � X > 0 : (1,1)

Γ(X) = 1

Γ(X) = 1

Γ,∆ � X : (1,0)

Γ,∆ � X − 1 : (1,0)

Γ,∆ � X :=X − 1 : (1,0)

Γ(Y) = 0

Γ(Y) = 0

Γ,∆ � Y : (0,0)

Γ,∆ � Y + 1 : (0,0)

Γ,∆ � Y :=Y + 1 : (0,0)

Γ,∆ � {X :=X − 1;Y :=Y + 1} : (1,0)

Γ,∆ � while(X > 0){X :=X − 1;Y :=Y + 1} : (1,0)

Fig. 5. Typing derivation of add

i f eqa(Right)
t h e n i f eqs(State)
t h e n State:=s� ;

Left:=sucb(Left) ;

Right:=pred(Right) ;

e l s e . . .

The command above expresses that if the current read letter is

a and the state is s, then the next state is s�, the head moves

to the right and the read letter is replaced by b. Since each

variable inside the above command is of type (0,0), the type

of the if-command is also (0,0).
The iteration is made by nested k-while-loops. For this, we

use k variables X1, . . . , Xk of type 1.

X11:=X 1
/ / t h e i n i t i a l v a l u e

w h i l e (X11 > 0)

{ X11:=X11 − 1 : (1,0)
X21:=X 1

: (1,0)
w h i l e (X21 > 0)

{ X21:=X21 − 1 : (1,0)
X30:=X 1

: (1,0)
.
.
.

} : (1,0)
} : (1,0)

The guard of each loop is of tier 1. On the other hand, the body

of each loop is of tier (1,0) because first the step command

is of type (0,0) and second each variable of type (1,0) is

assigned neutral operators or variables of the same type.

VI. TYPE SOUNDNESS FOR EXPRESSIONS

We begin with a lemma, which says that the type system for

expressions is sound, with respect to declassification policy.

Lemma 2 (Expression declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then β � α.

Proof: The proof goes by induction on expressions and

uses the fact that operators are either neutral or positive.

The following lemma, called simple security, says that only

variables at level α or higher will have their contents read

in order to evaluate an expression E of type (α,β). Over

the two tier lattice ({0,1},�,0), if α = 1, E is evaluated

without reading any tier 0 variables. This property corresponds

to the rule ”no read down” of Biba’s model. This reveals

also some similarities with Myers’ and Liskov’s decentralized

label model [30] where each object has an owner and a list of

readers which this owner permits to read the data.

Lemma 3 (Simple security): Assume that Γ is a variable

typing environment. Assume also that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then for every

X ∈ V(E), we have Γ(X) � α.

Proof: The proof is done by structural induction on E .

The base case is when E is a variable. The typing judgement

yields Γ(X) � α. Suppose that E = op(E1, . . . ,En). There

are two cases to examine since ∆ is safe.

• op is a neutral operator. Then its type is (α1,β1) →
. . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi). where β =
∨i=1,nβi � α = ∧i=1,nαi. By induction hypothesis, for

each X in Ei we have Γ(X) � αi. So, Γ(X) � ∧i=1,nαi.

• op is positive and its type is (α1,β1) → . . . →
(αn,βn) → (∧i=1,nαi,∧i=1,nαi). By induction hypoth-

esis, for each X in Ei we have Γ(X) � αi. Again,

Γ(X) � ∧i=1,nαi.

VII. TYPE SOUNDNESS FOR COMMANDS

The two following lemmas state properties on command

types which are useful in other proofs.

Lemma 4 (Command declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. Assume also Γ,∆ � C : (α,β). Then

β � α.

Proof: By Lemma 2 and by observing that if β � α and

β� � α�
then β ∨ β� � α ∨ α�

.

Lemma 5 (Monotonicity): Assume also that C �
is a sub-

command of C and that Γ,∆ � C : (α,β) where ∆ is safe.

Then, Γ,∆ � C � : (α�,β�), where α� � α and β� � β.

Proof: By induction on typing derivation length.

The following lemma corresponds to the write access rule

of Biba’s model, which states that a command can write data

of lower level than itself. In our context, if a command C has

the type (α,β) then Confinement lemma says no variable of

rank above tier α is updated in C .

Γ(X) = 1

Γ,∆ � X > 0 : (1,1)

Γ(X) = 1

Γ(X) = 1

Γ,∆ � X : (1,0)

Γ,∆ � X − 1 : (1,0)

Γ,∆ � X :=X − 1 : (1,0)

Γ(Y) = 0

Γ(Y) = 0

Γ,∆ � Y : (0,0)

Γ,∆ � Y + 1 : (0,0)

Γ,∆ � Y :=Y + 1 : (0,0)

Γ,∆ � {X :=X − 1;Y :=Y + 1} : (1,0)

Γ,∆ � while(X > 0){X :=X − 1;Y :=Y + 1} : (1,0)

Fig. 5. Typing derivation of add

i f eqa(Right)
t h e n i f eqs(State)
t h e n State:=s� ;

Left:=sucb(Left) ;

Right:=pred(Right) ;

e l s e . . .

The command above expresses that if the current read letter is

a and the state is s, then the next state is s�, the head moves

to the right and the read letter is replaced by b. Since each

variable inside the above command is of type (0,0), the type

of the if-command is also (0,0).
The iteration is made by nested k-while-loops. For this, we

use k variables X1, . . . , Xk of type 1.

X11:=X 1
/ / t h e i n i t i a l v a l u e

w h i l e (X11 > 0)

{ X11:=X11 − 1 : (1,0)
X21:=X 1

: (1,0)
w h i l e (X21 > 0)

{ X21:=X21 − 1 : (1,0)
X30:=X 1

: (1,0)
.
.
.

} : (1,0)
} : (1,0)

The guard of each loop is of tier 1. On the other hand, the body

of each loop is of tier (1,0) because first the step command

is of type (0,0) and second each variable of type (1,0) is

assigned neutral operators or variables of the same type.

VI. TYPE SOUNDNESS FOR EXPRESSIONS

We begin with a lemma, which says that the type system for

expressions is sound, with respect to declassification policy.

Lemma 2 (Expression declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then β � α.

Proof: The proof goes by induction on expressions and

uses the fact that operators are either neutral or positive.

The following lemma, called simple security, says that only

variables at level α or higher will have their contents read

in order to evaluate an expression E of type (α,β). Over

the two tier lattice ({0,1},�,0), if α = 1, E is evaluated

without reading any tier 0 variables. This property corresponds

to the rule ”no read down” of Biba’s model. This reveals

also some similarities with Myers’ and Liskov’s decentralized

label model [30] where each object has an owner and a list of

readers which this owner permits to read the data.

Lemma 3 (Simple security): Assume that Γ is a variable

typing environment. Assume also that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then for every

X ∈ V(E), we have Γ(X) � α.

Proof: The proof is done by structural induction on E .

The base case is when E is a variable. The typing judgement

yields Γ(X) � α. Suppose that E = op(E1, . . . ,En). There

are two cases to examine since ∆ is safe.

• op is a neutral operator. Then its type is (α1,β1) →
. . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi). where β =
∨i=1,nβi � α = ∧i=1,nαi. By induction hypothesis, for

each X in Ei we have Γ(X) � αi. So, Γ(X) � ∧i=1,nαi.

• op is positive and its type is (α1,β1) → . . . →
(αn,βn) → (∧i=1,nαi,∧i=1,nαi). By induction hypoth-

esis, for each X in Ei we have Γ(X) � αi. Again,

Γ(X) � ∧i=1,nαi.

VII. TYPE SOUNDNESS FOR COMMANDS

The two following lemmas state properties on command

types which are useful in other proofs.

Lemma 4 (Command declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. Assume also Γ,∆ � C : (α,β). Then

β � α.

Proof: By Lemma 2 and by observing that if β � α and

β� � α�
then β ∨ β� � α ∨ α�

.

Lemma 5 (Monotonicity): Assume also that C �
is a sub-

command of C and that Γ,∆ � C : (α,β) where ∆ is safe.

Then, Γ,∆ � C � : (α�,β�), where α� � α and β� � β.

Proof: By induction on typing derivation length.

The following lemma corresponds to the write access rule

of Biba’s model, which states that a command can write data

of lower level than itself. In our context, if a command C has

the type (α,β) then Confinement lemma says no variable of

rank above tier α is updated in C .

mercredi 22 juin 2011

Typing while commands

Γ(X) = 1

Γ,∆ � X > 0 : (1,1)

Γ(X) = 1

Γ(X) = 1

Γ,∆ � X : (1,0)

Γ,∆ � X − 1 : (1,0)

Γ,∆ � X :=X − 1 : (1,0)

Γ(Y) = 0

Γ(Y) = 0

Γ,∆ � Y : (0,0)

Γ,∆ � Y + 1 : (0,0)

Γ,∆ � Y :=Y + 1 : (0,0)

Γ,∆ � {X :=X − 1;Y :=Y + 1} : (1,0)

Γ,∆ � while(X > 0){X :=X − 1;Y :=Y + 1} : (1,0)

Fig. 5. Typing derivation of add

i f eqa(Right)
t h e n i f eqs(State)
t h e n State:=s� ;

Left:=sucb(Left) ;

Right:=pred(Right) ;

e l s e . . .

The command above expresses that if the current read letter is

a and the state is s, then the next state is s�, the head moves

to the right and the read letter is replaced by b. Since each

variable inside the above command is of type (0,0), the type

of the if-command is also (0,0).
The iteration is made by nested k-while-loops. For this, we

use k variables X1, . . . , Xk of type 1.

X11:=X 1
/ / t h e i n i t i a l v a l u e

w h i l e (X11 > 0)

{ X11:=X11 − 1 : (1,0)
X21:=X 1

: (1,0)
w h i l e (X21 > 0)

{ X21:=X21 − 1 : (1,0)
X30:=X 1

: (1,0)
.
.
.

} : (1,0)
} : (1,0)

The guard of each loop is of tier 1. On the other hand, the body

of each loop is of tier (1,0) because first the step command

is of type (0,0) and second each variable of type (1,0) is

assigned neutral operators or variables of the same type.

VI. TYPE SOUNDNESS FOR EXPRESSIONS

We begin with a lemma, which says that the type system for

expressions is sound, with respect to declassification policy.

Lemma 2 (Expression declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then β � α.

Proof: The proof goes by induction on expressions and

uses the fact that operators are either neutral or positive.

The following lemma, called simple security, says that only

variables at level α or higher will have their contents read

in order to evaluate an expression E of type (α,β). Over

the two tier lattice ({0,1},�,0), if α = 1, E is evaluated

without reading any tier 0 variables. This property corresponds

to the rule ”no read down” of Biba’s model. This reveals

also some similarities with Myers’ and Liskov’s decentralized

label model [30] where each object has an owner and a list of

readers which this owner permits to read the data.

Lemma 3 (Simple security): Assume that Γ is a variable

typing environment. Assume also that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then for every

X ∈ V(E), we have Γ(X) � α.

Proof: The proof is done by structural induction on E .

The base case is when E is a variable. The typing judgement

yields Γ(X) � α. Suppose that E = op(E1, . . . ,En). There

are two cases to examine since ∆ is safe.

• op is a neutral operator. Then its type is (α1,β1) →
. . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi). where β =
∨i=1,nβi � α = ∧i=1,nαi. By induction hypothesis, for

each X in Ei we have Γ(X) � αi. So, Γ(X) � ∧i=1,nαi.

• op is positive and its type is (α1,β1) → . . . →
(αn,βn) → (∧i=1,nαi,∧i=1,nαi). By induction hypoth-

esis, for each X in Ei we have Γ(X) � αi. Again,

Γ(X) � ∧i=1,nαi.

VII. TYPE SOUNDNESS FOR COMMANDS

The two following lemmas state properties on command

types which are useful in other proofs.

Lemma 4 (Command declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. Assume also Γ,∆ � C : (α,β). Then

β � α.

Proof: By Lemma 2 and by observing that if β � α and

β� � α�
then β ∨ β� � α ∨ α�

.

Lemma 5 (Monotonicity): Assume also that C �
is a sub-

command of C and that Γ,∆ � C : (α,β) where ∆ is safe.

Then, Γ,∆ � C � : (α�,β�), where α� � α and β� � β.

Proof: By induction on typing derivation length.

The following lemma corresponds to the write access rule

of Biba’s model, which states that a command can write data

of lower level than itself. In our context, if a command C has

the type (α,β) then Confinement lemma says no variable of

rank above tier α is updated in C .

Γ(X) = 1

Γ,∆ � X > 0 : (1,1)

Γ(X) = 1

Γ(X) = 1

Γ,∆ � X : (1,0)

Γ,∆ � X − 1 : (1,0)

Γ,∆ � X :=X − 1 : (1,0)

Γ(Y) = 0

Γ(Y) = 0

Γ,∆ � Y : (0,0)

Γ,∆ � Y + 1 : (0,0)

Γ,∆ � Y :=Y + 1 : (0,0)

Γ,∆ � {X :=X − 1;Y :=Y + 1} : (1,0)

Γ,∆ � while(X > 0){X :=X − 1;Y :=Y + 1} : (1,0)

Fig. 5. Typing derivation of add

i f eqa(Right)
t h e n i f eqs(State)
t h e n State:=s� ;

Left:=sucb(Left) ;

Right:=pred(Right) ;

e l s e . . .

The command above expresses that if the current read letter is

a and the state is s, then the next state is s�, the head moves

to the right and the read letter is replaced by b. Since each

variable inside the above command is of type (0,0), the type

of the if-command is also (0,0).
The iteration is made by nested k-while-loops. For this, we

use k variables X1, . . . , Xk of type 1.

X11:=X 1
/ / t h e i n i t i a l v a l u e

w h i l e (X11 > 0)

{ X11:=X11 − 1 : (1,0)
X21:=X 1

: (1,0)
w h i l e (X21 > 0)

{ X21:=X21 − 1 : (1,0)
X30:=X 1

: (1,0)
.
.
.

} : (1,0)
} : (1,0)

The guard of each loop is of tier 1. On the other hand, the body

of each loop is of tier (1,0) because first the step command

is of type (0,0) and second each variable of type (1,0) is

assigned neutral operators or variables of the same type.

VI. TYPE SOUNDNESS FOR EXPRESSIONS

We begin with a lemma, which says that the type system for

expressions is sound, with respect to declassification policy.

Lemma 2 (Expression declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then β � α.

Proof: The proof goes by induction on expressions and

uses the fact that operators are either neutral or positive.

The following lemma, called simple security, says that only

variables at level α or higher will have their contents read

in order to evaluate an expression E of type (α,β). Over

the two tier lattice ({0,1},�,0), if α = 1, E is evaluated

without reading any tier 0 variables. This property corresponds

to the rule ”no read down” of Biba’s model. This reveals

also some similarities with Myers’ and Liskov’s decentralized

label model [30] where each object has an owner and a list of

readers which this owner permits to read the data.

Lemma 3 (Simple security): Assume that Γ is a variable

typing environment. Assume also that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then for every

X ∈ V(E), we have Γ(X) � α.

Proof: The proof is done by structural induction on E .

The base case is when E is a variable. The typing judgement

yields Γ(X) � α. Suppose that E = op(E1, . . . ,En). There

are two cases to examine since ∆ is safe.

• op is a neutral operator. Then its type is (α1,β1) →
. . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi). where β =
∨i=1,nβi � α = ∧i=1,nαi. By induction hypothesis, for

each X in Ei we have Γ(X) � αi. So, Γ(X) � ∧i=1,nαi.

• op is positive and its type is (α1,β1) → . . . →
(αn,βn) → (∧i=1,nαi,∧i=1,nαi). By induction hypoth-

esis, for each X in Ei we have Γ(X) � αi. Again,

Γ(X) � ∧i=1,nαi.

VII. TYPE SOUNDNESS FOR COMMANDS

The two following lemmas state properties on command

types which are useful in other proofs.

Lemma 4 (Command declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. Assume also Γ,∆ � C : (α,β). Then

β � α.

Proof: By Lemma 2 and by observing that if β � α and

β� � α�
then β ∨ β� � α ∨ α�

.

Lemma 5 (Monotonicity): Assume also that C �
is a sub-

command of C and that Γ,∆ � C : (α,β) where ∆ is safe.

Then, Γ,∆ � C � : (α�,β�), where α� � α and β� � β.

Proof: By induction on typing derivation length.

The following lemma corresponds to the write access rule

of Biba’s model, which states that a command can write data

of lower level than itself. In our context, if a command C has

the type (α,β) then Confinement lemma says no variable of

rank above tier α is updated in C .

int add(int x, int y)
{ while (x>0)

{
x = x-1;
y = y+1;
}

return y}

mercredi 22 juin 2011

Typing while commands

Downward flow

Γ(X) = 1

Γ,∆ � X > 0 : (1,1)

Γ(X) = 1

Γ(X) = 1

Γ,∆ � X : (1,0)

Γ,∆ � X − 1 : (1,0)

Γ,∆ � X :=X − 1 : (1,0)

Γ(Y) = 0

Γ(Y) = 0

Γ,∆ � Y : (0,0)

Γ,∆ � Y + 1 : (0,0)

Γ,∆ � Y :=Y + 1 : (0,0)

Γ,∆ � {X :=X − 1;Y :=Y + 1} : (1,0)

Γ,∆ � while(X > 0){X :=X − 1;Y :=Y + 1} : (1,0)

Fig. 5. Typing derivation of add

i f eqa(Right)
t h e n i f eqs(State)
t h e n State:=s� ;

Left:=sucb(Left) ;

Right:=pred(Right) ;

e l s e . . .

The command above expresses that if the current read letter is

a and the state is s, then the next state is s�, the head moves

to the right and the read letter is replaced by b. Since each

variable inside the above command is of type (0,0), the type

of the if-command is also (0,0).
The iteration is made by nested k-while-loops. For this, we

use k variables X1, . . . , Xk of type 1.

X11:=X 1
/ / t h e i n i t i a l v a l u e

w h i l e (X11 > 0)

{ X11:=X11 − 1 : (1,0)
X21:=X 1

: (1,0)
w h i l e (X21 > 0)

{ X21:=X21 − 1 : (1,0)
X30:=X 1

: (1,0)
.
.
.

} : (1,0)
} : (1,0)

The guard of each loop is of tier 1. On the other hand, the body

of each loop is of tier (1,0) because first the step command

is of type (0,0) and second each variable of type (1,0) is

assigned neutral operators or variables of the same type.

VI. TYPE SOUNDNESS FOR EXPRESSIONS

We begin with a lemma, which says that the type system for

expressions is sound, with respect to declassification policy.

Lemma 2 (Expression declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then β � α.

Proof: The proof goes by induction on expressions and

uses the fact that operators are either neutral or positive.

The following lemma, called simple security, says that only

variables at level α or higher will have their contents read

in order to evaluate an expression E of type (α,β). Over

the two tier lattice ({0,1},�,0), if α = 1, E is evaluated

without reading any tier 0 variables. This property corresponds

to the rule ”no read down” of Biba’s model. This reveals

also some similarities with Myers’ and Liskov’s decentralized

label model [30] where each object has an owner and a list of

readers which this owner permits to read the data.

Lemma 3 (Simple security): Assume that Γ is a variable

typing environment. Assume also that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then for every

X ∈ V(E), we have Γ(X) � α.

Proof: The proof is done by structural induction on E .

The base case is when E is a variable. The typing judgement

yields Γ(X) � α. Suppose that E = op(E1, . . . ,En). There

are two cases to examine since ∆ is safe.

• op is a neutral operator. Then its type is (α1,β1) →
. . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi). where β =
∨i=1,nβi � α = ∧i=1,nαi. By induction hypothesis, for

each X in Ei we have Γ(X) � αi. So, Γ(X) � ∧i=1,nαi.

• op is positive and its type is (α1,β1) → . . . →
(αn,βn) → (∧i=1,nαi,∧i=1,nαi). By induction hypoth-

esis, for each X in Ei we have Γ(X) � αi. Again,

Γ(X) � ∧i=1,nαi.

VII. TYPE SOUNDNESS FOR COMMANDS

The two following lemmas state properties on command

types which are useful in other proofs.

Lemma 4 (Command declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. Assume also Γ,∆ � C : (α,β). Then

β � α.

Proof: By Lemma 2 and by observing that if β � α and

β� � α�
then β ∨ β� � α ∨ α�

.

Lemma 5 (Monotonicity): Assume also that C �
is a sub-

command of C and that Γ,∆ � C : (α,β) where ∆ is safe.

Then, Γ,∆ � C � : (α�,β�), where α� � α and β� � β.

Proof: By induction on typing derivation length.

The following lemma corresponds to the write access rule

of Biba’s model, which states that a command can write data

of lower level than itself. In our context, if a command C has

the type (α,β) then Confinement lemma says no variable of

rank above tier α is updated in C .

Γ(X) = 1

Γ,∆ � X > 0 : (1,1)

Γ(X) = 1

Γ(X) = 1

Γ,∆ � X : (1,0)

Γ,∆ � X − 1 : (1,0)

Γ,∆ � X :=X − 1 : (1,0)

Γ(Y) = 0

Γ(Y) = 0

Γ,∆ � Y : (0,0)

Γ,∆ � Y + 1 : (0,0)

Γ,∆ � Y :=Y + 1 : (0,0)

Γ,∆ � {X :=X − 1;Y :=Y + 1} : (1,0)

Γ,∆ � while(X > 0){X :=X − 1;Y :=Y + 1} : (1,0)

Fig. 5. Typing derivation of add

i f eqa(Right)
t h e n i f eqs(State)
t h e n State:=s� ;

Left:=sucb(Left) ;

Right:=pred(Right) ;

e l s e . . .

The command above expresses that if the current read letter is

a and the state is s, then the next state is s�, the head moves

to the right and the read letter is replaced by b. Since each

variable inside the above command is of type (0,0), the type

of the if-command is also (0,0).
The iteration is made by nested k-while-loops. For this, we

use k variables X1, . . . , Xk of type 1.

X11:=X 1
/ / t h e i n i t i a l v a l u e

w h i l e (X11 > 0)

{ X11:=X11 − 1 : (1,0)
X21:=X 1

: (1,0)
w h i l e (X21 > 0)

{ X21:=X21 − 1 : (1,0)
X30:=X 1

: (1,0)
.
.
.

} : (1,0)
} : (1,0)

The guard of each loop is of tier 1. On the other hand, the body

of each loop is of tier (1,0) because first the step command

is of type (0,0) and second each variable of type (1,0) is

assigned neutral operators or variables of the same type.

VI. TYPE SOUNDNESS FOR EXPRESSIONS

We begin with a lemma, which says that the type system for

expressions is sound, with respect to declassification policy.

Lemma 2 (Expression declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then β � α.

Proof: The proof goes by induction on expressions and

uses the fact that operators are either neutral or positive.

The following lemma, called simple security, says that only

variables at level α or higher will have their contents read

in order to evaluate an expression E of type (α,β). Over

the two tier lattice ({0,1},�,0), if α = 1, E is evaluated

without reading any tier 0 variables. This property corresponds

to the rule ”no read down” of Biba’s model. This reveals

also some similarities with Myers’ and Liskov’s decentralized

label model [30] where each object has an owner and a list of

readers which this owner permits to read the data.

Lemma 3 (Simple security): Assume that Γ is a variable

typing environment. Assume also that ∆ is a safe operator

typing environment. If Γ,∆ � E : (α,β), then for every

X ∈ V(E), we have Γ(X) � α.

Proof: The proof is done by structural induction on E .

The base case is when E is a variable. The typing judgement

yields Γ(X) � α. Suppose that E = op(E1, . . . ,En). There

are two cases to examine since ∆ is safe.

• op is a neutral operator. Then its type is (α1,β1) →
. . . → (αn,βn) → (∧i=1,nαi,∨i=1,nβi). where β =
∨i=1,nβi � α = ∧i=1,nαi. By induction hypothesis, for

each X in Ei we have Γ(X) � αi. So, Γ(X) � ∧i=1,nαi.

• op is positive and its type is (α1,β1) → . . . →
(αn,βn) → (∧i=1,nαi,∧i=1,nαi). By induction hypoth-

esis, for each X in Ei we have Γ(X) � αi. Again,

Γ(X) � ∧i=1,nαi.

VII. TYPE SOUNDNESS FOR COMMANDS

The two following lemmas state properties on command

types which are useful in other proofs.

Lemma 4 (Command declassification): Assume that Γ is a

variable typing environment and that ∆ is a safe operator

typing environment. Assume also Γ,∆ � C : (α,β). Then

β � α.

Proof: By Lemma 2 and by observing that if β � α and

β� � α�
then β ∨ β� � α ∨ α�

.

Lemma 5 (Monotonicity): Assume also that C �
is a sub-

command of C and that Γ,∆ � C : (α,β) where ∆ is safe.

Then, Γ,∆ � C � : (α�,β�), where α� � α and β� � β.

Proof: By induction on typing derivation length.

The following lemma corresponds to the write access rule

of Biba’s model, which states that a command can write data

of lower level than itself. In our context, if a command C has

the type (α,β) then Confinement lemma says no variable of

rank above tier α is updated in C .

int add(int x, int y)
{ while (x>0)

{
x = x-1;
y = y+1;
}

return y}

mercredi 22 juin 2011

Multiplication

int mul(int x, int y)
{ z = 0;
while (x>0)

{
x = x-1;
y’= y;

}
}

while (y’>0)
{

y’ = y’-1;
z = z+1;
}

mercredi 22 juin 2011

Multiplication

int mul(int x, int y)
{ z = 0;
while (x>0)

{
x = x-1;
y’= y;

}
}

Γ(x) = 1

while (y’>0)
{

y’ = y’-1;
z = z+1;
}

mercredi 22 juin 2011

Multiplication

int mul(int x, int y)
{ z = 0;
while (x>0)

{
x = x-1;
y’= y;

}
}

Γ(x) = 1 Γ(y) = 1

while (y’>0)
{

y’ = y’-1;
z = z+1;
}

mercredi 22 juin 2011

Multiplication

int mul(int x, int y)
{ z = 0;
while (x>0)

{
x = x-1;
y’= y;

}
}

Γ(x) = 1 Γ(y) = 1

while (y’>0)
{

y’ = y’-1;
z = z+1;
}

Γ(z) = 0

mercredi 22 juin 2011

Multiplication

int mul(int x, int y)
{ z = 0;
while (x>0)

{
x = x-1;
y’= y;

}
}

Γ(x) = 1 Γ(y) = 1

0
Declassification

while (y’>0)
{

y’ = y’-1;
z = z+1;
}

Γ(z) = 0

mercredi 22 juin 2011

Multiplication

int mul(int x, int y)
{ z = 0;
while (x>0)

{
x = x-1;
y’= y;

}
}

Γ(x) = 1 Γ(y) = 1

0
0

Declassification

while (y’>0)
{

y’ = y’-1;
z = z+1;
}

Γ(z) = 0

Γ(y’) = 1

mercredi 22 juin 2011

Greatest common divisor

time. Conversely, every polynomial time function over the set
of words W is computable by a terminating and safe program.

Proof: If the type of a safe program over ({0,1},�,0)
is (0,0) then the running time is constant because there is no
loop. If its type is (1,0), then we use Lemma 11. Finally, if
its type is (1,1), then we use Lemma 13.

The converse is a consequence of Theorem 2.

D. Examples

We present three examples over the natural numbers. We
posit that natural numbers are encoded by words in unary.
The complexity lattice is ({0,1},�,0). We consider a positive
operator +1 in infix notation. Types of the operator +1 w.r.t.
∆ are (0,0) → (0,0), (1,0) → (1,1), and (1,1) → (1,1).
We also consider two neutral operators : −1 and a unary
predicate > 0, both in infix notation. Types w.r.t. ∆ are
(0,0) → (0,0), (1,0) → (1,0) and (1,1) → (1,1). Thus,
the typing environment ∆ is safe. So all programs below are
safe.

The type of each command is written at the end of the line.
We use labels for tiers. For example X 1 means that the tier
of X is 1.

1) Addition: Let us now examine the addition.

Add(X 1,Y 0)
{w h i l e (X 1 > 0) {

X 1:=X 1 − 1 : (1,0)
Y 0:=Y 0 + 1 : (0,0)

} : (1,0)

The typing derivation is given in Figure 5. We see that the
while-loop is controlled by X , which is of tier 1. The while-
typing rule enforces the body-loop is of type (1,0). Therefore,
all commands inside the body-loop are of type (1,0) or (0,0).
As a result, the variable Y must be of tier 0 and the operator
+1 of type (0,0) → (0,0). The assignment X 1:=X 1−1 is a
typical case of declassification. The variable X of tier 1 is first
downgraded to an expression of type (1,0). Then, we apply a
neutral operator, here −1 with the type (1,0) → (1,0). We get
a declassified expression X −1 of type (1,0), that is assigned
to X by a command of type (1,0). One can intuitively see that
Y can not be of tier β because in this case Y 0:=Y 0+1 should
be of type (1,1), which will violate the typing condition on
while-loop.

2) Multiplication: Both inputs are of tier 1 and the output
Z is of 0.

Mul(X 1,Y 1)
{ Z 0:=0 : (0,0)
w h i l e (X 1 > 0)

{X 1:=X 1 − 1 : (1,0)
U 1:=Y 1 : (1,0)
w h i l e (Y 1 > 0)
{ Y 1:=Y 1 − 1 : (1,0)

Z 0:=Z 0 + 1 : (0,0)
} : (1,0)

Y 1:=U 1 : (1,0)
} : (1,0)

} : (1,0)

The typing derivation of U 1:=Y 1 is

Γ(U) = 1

Γ(Y) = 1

Γ,∆ � Y : (1,0)

Γ,∆ � U :=Y : (1,0)

3) Greatest Common Divisor: The program below com-
putes the greatest common divisor of X and Y . The result
is stored in Z . For this, we need subtraction that we define
as a neutral operator. Indeed, we have �d − u� � d w.r.t.
the unary encoding of natural numbers. We also need the
predicate X > Y . We assign to both of them the neutral type
(1,0) → (1,0) → (1,0) in the typing derivation of Gcd
presented below.

Gcd(X 1,Y 1)
{ i f (X 1 > 0) t h e n
{w h i l e (Y 1 > 0)
{ i f (X 1 > Y 1)

t h e n X 1:=X 1 − Y 1 : (1,0)
e l s e Y 1:=Y 1 − X 1 : (1,0)

} : (1,0)
Z 1:=X 1 : (1,0)
} : (1,0)

e l s e Z 1:=Y 1 : (1,0)
} : (1,0)

4) Search: The program below searches for v in a word
X . For this, take two constants tt and ff to denote tt and
ff of type (1,0).

Search(X 1)
{ find:=ff ; : (1,0)
loop:=tt ; : (1,0)
w h i l e (loop)
{ i f eqv (X) t h e n find:=tt ; loop:=ff ;

e l s e i f (X == �) t h e n loop:=ff ;
e l s e X :=pred(X) ; }

} : (1,0)

It is necessary that the tier of X is 1 in order to be able
to modify the tier 1 variable loop which guards the while-
loop. As a consequence, each command inside the two nested
if-then-else is of type (1,0).

V. CHARACTERIZING POLYNOMIAL TIME FUNCTIONS

We now provide a simulation of polynomial time Turing
machines by safe and terminating programs.

Theorem 2: Every polynomial time function over the set of
words W can be computed by a safe and terminating program.

Proof: A unary polynomial time function f on W is
computed by a Turing Machine M , with one tape and one
head, within (n + 1)k steps for some constant k where n is
the input size. The tape of M is represented by two variables
Left and Right which contains respectively the left side of
the tape and the right side of the tape. States are encoded by
fixed sized words and the variable State contains the current
state. The tier of the three variables holding a configuration of
M is 0. A one step transition is simulated by a finite cascade
of if-commands of the form:

mercredi 22 juin 2011

Search for a prefix v in a word x

time. Conversely, every polynomial time function over the set
of words W is computable by a terminating and safe program.

Proof: If the type of a safe program over ({0,1},�,0)
is (0,0) then the running time is constant because there is no
loop. If its type is (1,0), then we use Lemma 11. Finally, if
its type is (1,1), then we use Lemma 13.

The converse is a consequence of Theorem 2.

D. Examples

We present three examples over the natural numbers. We
posit that natural numbers are encoded by words in unary.
The complexity lattice is ({0,1},�,0). We consider a positive
operator +1 in infix notation. Types of the operator +1 w.r.t.
∆ are (0,0) → (0,0), (1,0) → (1,1), and (1,1) → (1,1).
We also consider two neutral operators : −1 and a unary
predicate > 0, both in infix notation. Types w.r.t. ∆ are
(0,0) → (0,0), (1,0) → (1,0) and (1,1) → (1,1). Thus,
the typing environment ∆ is safe. So all programs below are
safe.

The type of each command is written at the end of the line.
We use labels for tiers. For example X 1 means that the tier
of X is 1.

1) Addition: Let us now examine the addition.

Add(X 1,Y 0)
{w h i l e (X 1 > 0) {

X 1:=X 1 − 1 : (1,0)
Y 0:=Y 0 + 1 : (0,0)

} : (1,0)

The typing derivation is given in Figure 5. We see that the
while-loop is controlled by X , which is of tier 1. The while-
typing rule enforces the body-loop is of type (1,0). Therefore,
all commands inside the body-loop are of type (1,0) or (0,0).
As a result, the variable Y must be of tier 0 and the operator
+1 of type (0,0) → (0,0). The assignment X 1:=X 1−1 is a
typical case of declassification. The variable X of tier 1 is first
downgraded to an expression of type (1,0). Then, we apply a
neutral operator, here −1 with the type (1,0) → (1,0). We get
a declassified expression X −1 of type (1,0), that is assigned
to X by a command of type (1,0). One can intuitively see that
Y can not be of tier β because in this case Y 0:=Y 0+1 should
be of type (1,1), which will violate the typing condition on
while-loop.

2) Multiplication: Both inputs are of tier 1 and the output
Z is of 0.

Mul(X 1,Y 1)
{ Z 0:=0 : (0,0)
w h i l e (X 1 > 0)

{X 1:=X 1 − 1 : (1,0)
U 1:=Y 1 : (1,0)
w h i l e (Y 1 > 0)
{ Y 1:=Y 1 − 1 : (1,0)

Z 0:=Z 0 + 1 : (0,0)
} : (1,0)

Y 1:=U 1 : (1,0)
} : (1,0)

} : (1,0)

The typing derivation of U 1:=Y 1 is

Γ(U) = 1

Γ(Y) = 1

Γ,∆ � Y : (1,0)

Γ,∆ � U :=Y : (1,0)

3) Greatest Common Divisor: The program below com-
putes the greatest common divisor of X and Y . The result
is stored in Z . For this, we need subtraction that we define
as a neutral operator. Indeed, we have �d − u� � d w.r.t.
the unary encoding of natural numbers. We also need the
predicate X > Y . We assign to both of them the neutral type
(1,0) → (1,0) → (1,0) in the typing derivation of Gcd
presented below.

Gcd(X 1,Y 1)
{ i f (X 1 > 0) t h e n
{w h i l e (Y 1 > 0)
{ i f (X 1 > Y 1)

t h e n X 1:=X 1 − Y 1 : (1,0)
e l s e Y 1:=Y 1 − X 1 : (1,0)

} : (1,0)
Z 1:=X 1 : (1,0)
} : (1,0)

e l s e Z 1:=Y 1 : (1,0)
} : (1,0)

4) Search: The program below searches for v in a word
X . For this, take two constants tt and ff to denote tt and
ff of type (1,0).

Search(X 1)
{ find:=ff ; : (1,0)
loop:=tt ; : (1,0)
w h i l e (loop)
{ i f eqv (X) t h e n find:=tt ; loop:=ff ;

e l s e i f (X == �) t h e n loop:=ff ;
e l s e X :=pred(X) ; }

} : (1,0)

It is necessary that the tier of X is 1 in order to be able
to modify the tier 1 variable loop which guards the while-
loop. As a consequence, each command inside the two nested
if-then-else is of type (1,0).

V. CHARACTERIZING POLYNOMIAL TIME FUNCTIONS

We now provide a simulation of polynomial time Turing
machines by safe and terminating programs.

Theorem 2: Every polynomial time function over the set of
words W can be computed by a safe and terminating program.

Proof: A unary polynomial time function f on W is
computed by a Turing Machine M , with one tape and one
head, within (n + 1)k steps for some constant k where n is
the input size. The tape of M is represented by two variables
Left and Right which contains respectively the left side of
the tape and the right side of the tape. States are encoded by
fixed sized words and the variable State contains the current
state. The tier of the three variables holding a configuration of
M is 0. A one step transition is simulated by a finite cascade
of if-commands of the form:

mercredi 22 juin 2011

A non-interference result

mercredi 22 juin 2011

A non-interference property for complexity

µ0 ⇒ µ1 ⇒ . . .⇒ µn

A computation is a sequence of configurations

mercredi 22 juin 2011

A non-interference property for complexity

µ0 ⇒ µ1 ⇒ . . .⇒ µn

A computation is a sequence of configurations

µ(y) �= σ(y) and Γ(y) = 0

µ(x) = σ(x) and Γ(x) = 1

mercredi 22 juin 2011

A non-interference property for complexity

µ0 ⇒ µ1 ⇒ . . .⇒ µn

A computation is a sequence of configurations

µ⇒ µ�

µ(y) �= σ(y) and Γ(y) = 0

µ(x) = σ(x) and Γ(x) = 1

σ ⇒ σ�

mercredi 22 juin 2011

A non-interference property for complexity

µ0 ⇒ µ1 ⇒ . . .⇒ µn

A computation is a sequence of configurations

µ⇒ µ�

µ(y) �= σ(y) and Γ(y) = 0

µ(x) = σ(x) and Γ(x) = 1

σ ⇒ σ�
µ�(x) = σ�(x)

if Γ(x) = 1

mercredi 22 juin 2011

A non-interference property for complexity

µ0 ⇒ µ1 ⇒ . . .⇒ µn

A computation is a sequence of configurations

µ⇒ µ�

µ(y) �= σ(y) and Γ(y) = 0

µ(x) = σ(x) and Γ(x) = 1

σ ⇒ σ�
µ�(x) = σ�(x)

if Γ(x) = 1

1. Non-interference says that tier 1 expressions does
not depend on tier 0

mercredi 22 juin 2011

A non-interference property for complexity

µ0 ⇒ µ1 ⇒ . . .⇒ µn

A computation is a sequence of configurations

µ⇒ µ�

µ(y) �= σ(y) and Γ(y) = 0

µ(x) = σ(x) and Γ(x) = 1

σ ⇒ σ�
µ�(x) = σ�(x)

if Γ(x) = 1

1. Non-interference says that tier 1 expressions does
not depend on tier 0

2. Loop confinement : loops are guarded by tier 1
perdicates

mercredi 22 juin 2011

A non-interference property for complexity

µ0 ⇒ µ1 ⇒ . . .⇒ µn

A computation is a sequence of configurations

µ⇒ µ�

µ(y) �= σ(y) and Γ(y) = 0

µ(x) = σ(x) and Γ(x) = 1

σ ⇒ σ�
µ�(x) = σ�(x)

if Γ(x) = 1

1. Non-interference says that tier 1 expressions does
not depend on tier 0

2. Loop confinement : loops are guarded by tier 1
perdicates

3. Rutime depends only on tier 1 configurations

mercredi 22 juin 2011

Characterization of Ptime

Theorem

- A terminating and typed safe while-program is
computable in polynomial-time.

- Conversely, each polynomial time function is
computed by a typed safe while-program.

- Domain of computation is a set of words
- Positive operators are letter concatenations
- Neutral operators are predicates and «shift/pred»

mercredi 22 juin 2011

Two views ...

View A

• Security type system for secure
flow analysis

• Security level

• Non-interference

• Declassification

View B

• Notion of ramification

• Tiers

• Temporal non-interference

• Relaxing tiering constraints for
loops (reducibility)

mercredi 22 juin 2011

Some practical issues

A. DECRYPTION LOOP IN PARITE.B

s t a r t :

nop

mov eax , 22 c907h ; decrypt ion key

push @data ; o f f s e t

pop edx

nop

nop

push 598h ; index

pop e s i

nop

nop

loc_449016 :

xor [edx+e s i] , eax ; a c tua l decrypt ion

nop

dec e s i ; decrement the index

loc_44901b :

sub e s i , 3 ; decrement the index

jnz shor t loc_449016 ; loop un t i l index == 0

;−−−−−−−− XORed data

@data :

dd 23 b4efh

dd 22 c907h

dd 62 c907h

dd 20755dh

. . .

When we run this virus with TraceSurfer, the decrypted code is correctly

identified:

$ python t r a c e s u r f e r . py −−monotonous pa r i t e . t r a c e . out

par s ing pa r i t e . t r a c e . out

2808631 i n s t r u c t i o n s have been parsed

2 code wave (s) found

∗∗ ∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗∗∗
Code Wave 1

49948 unique i n s t r u c t i o n po i n t e r s [0 x409706 . . 0 x7e02130b]

43976 unique wr i t e s

96425 unique reads

2 bytes in X(1) & R(2) − W(2) [0 x7d6225bc . . 0 x7d625fbc]

∗∗ ∗∗∗ ∗∗∗∗∗ ∗∗∗∗∗∗∗
Code Wave 2

18

With the same complexity

{ z = 1;
while (x)

{ ...into a typed program

-Program complexity is enforced by type-checking

-Type inference is polynomial time computable

-Termination may be established by external methods, e.g. ranking functions
(Podelsky & al, Manna & al)

Source program typed program

abstract

mercredi 22 juin 2011

Conclusion

• Type systems for security flow analysis may be a rationale to analyse and
determine program complexity.

• For(x=0;x++;x<n) and other constructions,

• Allowing upward flow by super-safe operators

• Other extensions

• Higher order extension

• Distributed/Mobile computing

• More general question of an intensional (= algorithms) characterizarion of
Ptime. But (Hajek 78)

• Does implicit computational complexity approach be useful for security flow
analysis ?

{M : M is in PTIME} is Σ2
0-complete

mercredi 22 juin 2011

Dynamic termination criterion

Theorem
We can determine in polynomial time whether or not a
program C on input x terminates.

A loop does not terminate only if there are two
successive tier 1 configurations which are identical.

Proof idea

E
D

CB

A

mercredi 22 juin 2011

Some extras

Add operators to transfer constant size information
from tier 0 to tier 1

bit(x) = 1 if x=A(x’)

(0,0)→ (1,1)bit:

(0,0)→ (0,0)→ (1,1)Xor:

A constant size leak of information is allowed similar
to necessary declassification when passwords are
checked

Xor(X,Y) = (X(0) xor Y(0)) xor (X(1) xor Y(1)) xor ...

mercredi 22 juin 2011

1. Loop confinement : loops are guarded are of tier 1

2. Non-interference says that tier 1 expressions does
not depend on tier 0

3. There is a polynomial number of tier 1 configurations

mercredi 22 juin 2011

