A type system for complexity flow analysis

Jean-Yves Marion
LICS, Juin 2011

Summary

1. Complexity and Information flow
(a) Information flow induced by predicative recurrence (ICC)
(b) Types for secure flow analysis
2. A type system for complexity analysis of while-programs
3. A characterization of Ptime by While programs

A while programming language

$$
E \in \text { Expressions }::=X|d| o p\left(E_{1}, \ldots, E_{n}\right)
$$

$C, C^{\prime} \in$ Commands $::=X:=E\left|C ; C^{\prime}\right|$ while $(E)\{C\}$
| if E then C else C^{\prime}

A while programming language

$$
E \in \text { Expressions }::=X|d| o p\left(E_{1}, \ldots, E_{n}\right)
$$

$C, C^{\prime} \in$ Commands $::=X:=E\left|C ; C^{\prime}\right|$ while $(E)\{C\}$ if E then C else C^{\prime}

How to define a type system to control the computational complexity?

Related results on compexity and imperative programming langagues

- Matrices flow calculus (Ben-Amram , Jones, Kristiansen, Moyen, Niggl, Wunderlich)
- Sup-interpretation (Marion, Péchoux) and OO-programming style
- Applied Linear logic (Hofmann \& al) applied to multi-threading (Amadio, Madet)
- Symbolic Ressource analysis
- Java bytecode (Albert \& al)
- Speed (Gulwani \& al)
- See also WCET analysis community

Main result

1. A type system for an imperative programming language such that
2. Terminating and typed programs are computable in polynomial time
3. Conversely, each polynomial time function is definable by a typed program.

Main result

1. A type system for an imperative programming language such that
2. Terminating and typed programs are computable in polynomial time
3. Conversely, each polynomial time function is definable by a typed program.

Two rationales
\Rightarrow Information flow induced by ramified recursion
\Rightarrow Type systems for secure information flow analysis

Ramified recursion and complexity

The set of functions defined by ramified primitive recursion is exactly the set of polynomial time functions (PTIME).

Bellantoni \& Cook and Leivant (1992)

Ramified recursion and complexity

Ramified recursion and complexity

\Rightarrow Tiers
$\underset{\sim}{\mathbb{N}}(k)$
$\uparrow{ }_{\substack{2}}^{\mathbb{N}}(1)$
$\mathbb{N}(0)$

Ramified recursion and complexity

$\begin{array}{ccr}=\text { Tiers } & \mathbb{N}(k) & g: \mathbb{N}(k) \rightarrow \mathbb{N}(0) \\ & \uparrow & h: \mathbb{N}(k) \rightarrow \mathbb{N}(0) \rightarrow \mathbb{N}(0) \\ & \mathbb{N}(1) & \\ & \uparrow{ }^{\mathbb{N}}(0) & \end{array}$

Ramified recursion and complexity
\Rightarrow Tiers

$$
\begin{aligned}
& g: \mathbb{N}(k) \rightarrow \mathbb{N}(0) \\
& h: \mathbb{N}(k) \rightarrow \mathbb{N}(0) \rightarrow \mathbb{N}(0)
\end{aligned}
$$

\Rightarrow Primitive recursion

$$
\begin{aligned}
f(0, y) & =g(y) \\
f(x+1, y) & =h(x, f(x, y))
\end{aligned}
$$

Ramified recursion and complexity

$\begin{array}{cc}- \text { Tiers } & \mathbb{N}(k) \\ & \uparrow \\ & \mathbb{N}(1) \\ & \uparrow \\ & \mathbb{N}(0)\end{array}$
$f: \mathbb{N}(1) \rightarrow \mathbb{N}(k) \rightarrow \mathbb{N}(0)$

$$
\begin{array}{r}
g: \mathbb{N}(k) \rightarrow \mathbb{N}(0) \\
h: \mathbb{N}(k) \rightarrow \mathbb{N}(0) \rightarrow \mathbb{N}(0)
\end{array}
$$

\Rightarrow Primitive recursion

$$
\begin{aligned}
f(0, y) & =g(y) \\
f(x+1, y) & =h(x, f(x, y))
\end{aligned}
$$

Ramification

Ramified recursion and complexity

$\begin{array}{cc}- \text { Tiers } & \mathbb{N}(k) \\ & \uparrow \\ & \mathbb{N}(1) \\ & \uparrow \\ & \mathbb{N}(0)\end{array}$
$f: \mathbb{N}(1) \rightarrow \mathbb{N}(k) \rightarrow \mathbb{N}(0)$

$g: \mathbb{N}(k) \rightarrow \mathbb{N}(0)$
$h: \mathbb{N}(k) \rightarrow \mathbb{N}(0) \rightarrow \mathbb{N}(0)$
\Rightarrow Primitive recursion

$$
\begin{aligned}
f(0, y) & =g(y) \\
f(x+1, y) & =h(x, f(x, y))
\end{aligned}
$$

Ramification

- Downward flow from 1 to $\mathbf{0}$

Ramified recursion and complexity

$\begin{array}{cc}- \text { Tiers } & \mathbb{N}(k) \\ & \uparrow \\ & \mathbb{N}(1) \\ & \uparrow \\ & \mathbb{N}(0)\end{array}$
$f: \mathbb{N}(1) \rightarrow \mathbb{N}(k) \rightarrow \mathbb{N}(0)$

\Rightarrow Downward flow from 1 to $\mathbf{0}$
$g: \mathbb{N}(k) \rightarrow \mathbb{N}(0)$
$h: \mathbb{N}(k) \rightarrow \mathbb{N}(0) \rightarrow \mathbb{N}(0)$
\Rightarrow Primitive recursion

$$
\begin{aligned}
& f(0, y)=g(y) \\
& f(x+1, y)=h(x, f(x, y)) \\
& \text { Ramification }
\end{aligned}
$$

.
\Rightarrow But No upward flow from 0 to 1

Ramified recursion and complexity

The set of functions defined by ramified primitive recursion is exactly the set of polynomial time functions. Bellantoni \& Cook and Leivant

Ramified recursion enforces a restriction on data flow

Downward data flow

A few sources

- Set theory (Russel)
- On (non)-constructions of too fast (to be real) functions (Nelson, Simmons)
- In second order logic with restriction on comprehension axiom (Leivant)
- Ramified systems (Bellantoni-Cook, Leivant, Marion,...)
- Light linear logics (Girard, Lafont, Baillot...)
- Typed lambda-calculus (Hofmann, Baillot, Dal Lago, Ronchi Della Rocca, ...)

A data flow analysis from an ICC point of view

A data flow analysis from an ICC point of view
Implicit flow from x to y

```
int copy(int x, int y)
{
y=0;
while (x)
        {
        x:=x-1;
        y:=y+1;
    }
return y;
}
```

A data flow analysis from an ICC point of view
Implicit flow from x to y
Types/tier
$\Gamma(x)$
$\Gamma(y)$
return y;
\}

A data flow analysis from an ICC point of view
Implicit flow from x to y

Types/tier

$$
\Gamma(x)=\tau
$$

\{

$$
y=0 ;
$$

$$
\begin{aligned}
& \text { while } \quad(x) \\
& \left\{\begin{array}{l}
x:=x-1 \\
y:=y+1 \\
\}
\end{array}\right.
\end{aligned}
$$

return y ;
\}

A data flow analysis from an ICC point of view
Implicit flow from x to y

Types/tier

$$
\Gamma(x)=\tau
$$

$$
\text { while }(x)
$$

$$
\Gamma(y)=\rho
$$

This is the intuition...

Integrity security policy

- Security lattice

1 O Confidential
$0 \bigcirc$ Public

Types are security levels: $\Gamma(x), \Gamma(y)$

Integrity security policy

- Security lattice

1 O Confidential
Types are security levels:

$$
\Gamma(x), \Gamma(y)
$$

$0 \bigcirc$ Public

- Biba's integrity policy (1977) :

Write down

$$
x \text { can write } y \text { if } \Gamma(y) \leq \Gamma(x)
$$

Read up

$$
x \text { can read } y \text { if } \Gamma(x) \leq \Gamma(y)
$$

A sound type system for information flow analysis

A security type system enforces an information flow policy (integrity/confidentialitiy)

- Volpano Smith and Irvine (1997)
- Survey of Sabelfeld and Myers

A sound type system for information flow analysis

A security type system enforces an information flow policy (integrity/confidentialitiy)

- Volpano Smith and Irvine (1997)
- Survey of Sabelfeld and Myers
- Type systems garantee non-interference:

Low level values does not alter high level values (integrity)

A sound type system for information flow analysis

A security type system enforces an information flow policy (integrity/confidentialitiy)

- Volpano Smith and Irvine (1997)
- Survey of Sabelfeld and Myers
- Type systems garantee non-interference:

Low level values does not alter high level values (integrity)

- Extension to allow declassification and reclassification

A type system for complexity flow analysis

Tiers and types

Tiers are levels of lattice

Tiers and types

Tiers are levels of lattice

- A type is a pair (α, β) where α, β are tiers :

Tiers and types

Tiers are levels of lattice

- A type is a pair (α, β) where α, β are tiers :
- α indicates the true tier

Tiers and types

Tiers are levels of lattice

- A type is a pair (α, β) where α, β are tiers :
- α indicates the true tier
* that is the integrity level

Tiers and types

Tiers are levels of lattice

- A type is a pair (α, β) where α, β are tiers :
- α indicates the true tier
* that is the integrity level
- β indicates the current tier

Tiers and types

Tiers are levels of lattice

- A type is a pair (α, β) where α, β are tiers :
- α indicates the true tier
* that is the integrity level
- β indicates the current tier
* that is the declassification level

Type system for expressions

$$
\text { Variable } \frac{\Gamma(X)=\alpha}{\Gamma, \Delta \vdash X:(\alpha, \beta)} \text { where } \beta \preceq \alpha
$$

$$
\text { Op } \frac{\Gamma, \Delta \vdash E_{1}:\left(\alpha_{1}, \beta_{1}\right) \ldots \Gamma, \Delta \vdash E_{n}:\left(\alpha_{n}, \beta_{n}\right)}{\Gamma, \Delta \vdash o p\left(E_{1}, \ldots, E_{n}\right):(\alpha, \beta)}
$$

where $\left(\alpha_{1}, \beta_{1}\right) \rightarrow \ldots \rightarrow\left(\alpha_{n}, \beta_{n}\right) \rightarrow(\alpha, \beta) \in \Delta(o p)$

Type system for expressions

$$
\text { Variable } \frac{\Gamma(X)=\alpha}{\Gamma, \Delta \vdash X:(\alpha, \beta)} \text { where } \beta \preceq \alpha
$$

- This typing rule allows to declassify variables

$$
O p \frac{\Gamma, \Delta \vdash E_{1}:\left(\alpha_{1}, \beta_{1}\right) \ldots \Gamma, \Delta \vdash E_{n}:\left(\alpha_{n}, \beta_{n}\right)}{\Gamma, \Delta \vdash o p\left(E_{1}, \ldots, E_{n}\right):(\alpha, \beta)}
$$

where $\left(\alpha_{1}, \beta_{1}\right) \rightarrow \ldots \rightarrow\left(\alpha_{n}, \beta_{n}\right) \rightarrow(\alpha, \beta) \in \Delta(o p)$

Safe operators

Safe operators

Positive operators : constructors, sucv(X$)=\mathrm{v} \cdot \mathrm{x}$

$$
o p:(\alpha, \beta) \rightarrow(\alpha, \alpha) \quad \alpha \geq \beta
$$

Safe operators

Positive operators : constructors, $\operatorname{suc}_{v}(x)=v . x$

$$
o p:(\alpha, \beta) \rightarrow(\alpha, \alpha) \quad \alpha \geq \beta
$$

Neutral operators : destructors, predecessor predicates

$$
\text { op : }(\alpha, \beta) \rightarrow(\alpha, \beta) \quad \alpha \geq \beta
$$

Safe operators

Positive operators : constructors, $\operatorname{suc}_{v}(x)=v . x$

$$
\text { op : }(\alpha, \beta) \rightarrow(\alpha, \alpha) \quad \alpha \geq \beta
$$

Neutral operators : destructors, predecessor predicates

$$
o p:(\alpha, \beta) \rightarrow(\alpha, \beta) \quad \alpha \geq \beta
$$

Safe operators

Positive operators : constructors, $\operatorname{suc}_{v}(x)=v . x$

$$
\text { op : }(\alpha, \beta) \rightarrow(\alpha, \alpha) \quad \alpha \geq \beta
$$

Neutral operators : destructors, predecessor predicates

$$
o p:(\alpha, \beta) \rightarrow(\alpha, \beta) \quad \alpha \geq \beta
$$

Type soundness for expressions:

$$
\text { if } \Gamma, \Delta \vdash E:(\alpha, \beta) \text { then } \Gamma(X) \geq \alpha
$$

Type system for programs

$$
\begin{gathered}
\frac{\Gamma(X)=\alpha^{\prime} \quad \Gamma, \Delta \vdash E:(\alpha, \beta)}{\Gamma, \Delta \vdash X:=E:(\alpha, \beta)} \alpha^{\prime} \preceq \alpha \\
\frac{\Gamma, \Delta \vdash C:(\alpha, \beta) \quad \Gamma, \Delta \vdash C^{\prime}:\left(\alpha^{\prime}, \beta^{\prime}\right)}{\Gamma, \Delta \vdash C ; C^{\prime}:\left(\alpha \vee \alpha^{\prime}, \beta \vee \beta^{\prime}\right)} \\
\frac{\Gamma, \Delta \vdash E:\left(\rho, \rho^{\prime}\right) \quad \Gamma, \Delta \vdash C:(\alpha, \beta) \quad \Gamma, \Delta \vdash C^{\prime}:(\alpha, \beta)}{\Gamma, \Delta \vdash \text { if } E \text { then } C \text { else } C^{\prime}:(\alpha, \beta)} \\
\frac{\Gamma, \Delta \vdash E:\left(\alpha, \alpha^{\prime}\right) \quad \Gamma, \Delta \vdash C:(\alpha, \beta)}{\Gamma, \Delta \vdash \text { while }(E)\{C\}:(\alpha, \beta)} \text { where } \beta \prec
\end{gathered}
$$

Type system for programs

$$
\begin{gathered}
\frac{\Gamma(X)=\alpha^{\prime} \quad \Gamma, \Delta \vdash E:(\alpha, \beta)}{\Gamma, \Delta \vdash X:=E:(\alpha, \beta)} \alpha^{\prime} \preceq \alpha \\
\frac{\Gamma, \Delta \vdash C:(\alpha, \beta) \quad \Gamma, \Delta \vdash C^{\prime}:\left(\alpha^{\prime}, \beta^{\prime}\right)}{\Gamma, \Delta \vdash C ; C^{\prime}:\left(\alpha \vee \alpha^{\prime}, \beta \vee \beta^{\prime}\right)} \\
\frac{\Gamma, \Delta \vdash E:\left(\rho, \rho^{\prime}\right) \quad \Gamma, \Delta \vdash C:(\alpha, \beta) \quad \Gamma, \Delta \vdash C^{\prime}:(\alpha, \beta)}{\Gamma, \Delta \vdash \text { if } E \text { then } C \text { else } C^{\prime}:(\alpha, \beta)} \\
\frac{\Gamma, \Delta \vdash E:\left(\alpha, \alpha^{\prime}\right) \quad \Gamma, \Delta \vdash C:(\alpha, \beta)}{\Gamma, \Delta \vdash \text { while }(E)\{C\}:(\alpha, \beta)} \text { where } \beta \prec
\end{gathered}
$$

Type system for programs

$$
\begin{gathered}
\frac{\Gamma(X)=\alpha^{\prime} \quad \Gamma, \Delta \vdash E:(\alpha, \beta)}{\Gamma, \Delta \vdash X:=E:(\alpha, \beta)} \alpha^{\prime} \preceq \alpha \\
\frac{\Gamma, \Delta \vdash C:(\alpha, \beta) \quad \Gamma, \Delta \vdash C^{\prime}:\left(\alpha^{\prime}, \beta^{\prime}\right)}{\Gamma, \Delta \vdash C ; C^{\prime}:\left(\alpha \vee \alpha^{\prime}, \beta \vee \beta^{\prime}\right)} \\
\frac{\Gamma, \Delta \vdash E:\left(\rho, \rho^{\prime}\right) \quad \Gamma, \Delta \vdash C:(\alpha, \beta) \quad \Gamma, \Delta \vdash C^{\prime}:(\alpha, \beta)}{\Gamma, \Delta \vdash \text { if } E \text { then } C \text { else } C^{\prime}:(\alpha, \beta)} \\
\frac{\Gamma, \Delta \vdash E:\left(\alpha, \alpha^{\prime}\right) \quad \Gamma, \Delta \vdash C:(\alpha, \beta)}{\Gamma, \Delta \vdash \text { while }(E)\{C\}:(\alpha, \beta)} \text { where } \beta \prec
\end{gathered}
$$

Typing composition

int add(int x, int y)
$\{$ while ($x>0$)
\{
$x=x-1 ;$
$y=y+1 ;$
\}
return $y\}$

Typing composition

int add(int x, int y)
$\{$ while ($x>0$)

\}
return $y\}$

$$
\frac{\frac{\Gamma(X)=\mathbf{1}}{\Gamma, \Delta \vdash X:(\mathbf{1}, \mathbf{0})}}{\Gamma(X)=\mathbf{1}} \frac{\Gamma, \Delta \vdash X-1:(\mathbf{1}, \mathbf{0})}{\Gamma, \Delta \vdash X:=X-1:(\mathbf{1}, \mathbf{0})}
$$

Typing composition

int add(int x, int y)
$\{$ while ($x>0$)
\{

$$
\begin{aligned}
& x=x-1 ; \\
& y=y+1 ; \\
& \}
\end{aligned}
$$

return y\}

$$
\frac{\Gamma(X)=\mathbf{1}}{\Gamma, \Delta \vdash X:(\mathbf{1}, \mathbf{0})} \frac{\Gamma(X)=\mathbf{1}}{\Gamma, \Delta \vdash X-1:(\mathbf{1}, \mathbf{0})} \frac{\Gamma, \Delta \vdash X:=X-1:(\mathbf{1}, \mathbf{0})}{\Gamma}
$$

$$
\frac{\frac{\Gamma(Y)=\mathbf{0}}{\Gamma, \Delta \vdash Y:(\mathbf{0}, \mathbf{0})}}{\Gamma(Y)=\mathbf{0} \frac{1}{\Gamma, \Delta \vdash Y+1:(\mathbf{0}, \mathbf{0})}} \frac{\Gamma, \Delta \vdash Y:=Y+1:(\mathbf{0}, \mathbf{0})}{}
$$

Typing composition

int add(int x, int y) $\{$ while ($x>0$)

$$
\begin{aligned}
& x=x-1 \\
& y=y+1
\end{aligned}
$$

$$
\text { \} }
$$

return y\}

$$
\frac{\frac{\Gamma(X)=\mathbf{1}}{\Gamma, \Delta \vdash X:(\mathbf{1}, \mathbf{0})}}{\Gamma(X)=\mathbf{1}} \frac{\Gamma, \Delta \vdash X:=X-1:(\mathbf{1}, \mathbf{0})}{\Gamma, \Delta-1:(\mathbf{1}, \mathbf{0})}
$$

$$
\begin{gathered}
\frac{\Gamma(Y)=\mathbf{0}}{\Gamma, \Delta \vdash Y:(\mathbf{0}, \mathbf{0})} \\
\frac{\Gamma(Y)=\mathbf{0}}{\Gamma, \Delta \vdash Y+1:(\mathbf{0}, \mathbf{0})} \\
\Gamma, \Delta \vdash Y:=Y+1:(\mathbf{0}, \mathbf{0})
\end{gathered}
$$

$$
\overline{\Gamma, \Delta \vdash\{X:=X-1 ; Y:=Y+1\}:(\mathbf{1}, \mathbf{0})}
$$

Typing while commands

int add(int x, int y)
\{ while ($x>0$)
\{

$$
\begin{aligned}
& x=x-1 \\
& y=y+1
\end{aligned}
$$

\}
return $y\}$

$$
\frac{\frac{\Gamma(X)=\mathbf{1}}{\Gamma, \Delta \vdash X>0:(\mathbf{1}, \mathbf{1})}}{\frac{\Gamma, \Delta \vdash\{X:=X-1 ; Y:=Y+1\}:(\mathbf{1}, \mathbf{0})}{\Gamma, \Delta \vdash \text { while }(X>0)\{X:=X-1 ; Y:=Y+1\}:(\mathbf{1}, \mathbf{0})}}
$$

Typing while commands

int add(int x, int y)
$\{$ while ($x>0$)
\{

$$
\begin{aligned}
& x=x-1 ; \\
& y=y+1 ;
\end{aligned}
$$

\}
return y\}
Downward flow
$\frac{\frac{\Gamma(X)=\mathbf{1}}{\Gamma, \Delta \vdash X>0:(\mathbf{1}, \mathbf{1})}}{\frac{\Gamma, \Delta \vdash \text { while }(X>0)\{X:=X-1 ; Y:=Y+1\}:(\mathbf{1}, \mathbf{0})}{} \quad \Gamma, \Delta \vdash\{X:=X-1 ; Y:=Y+1\}:(\mathbf{1}, \mathbf{0})}$

Multiplication

Multiplication
int mul(int x, int y)
$\Gamma(x)=1$
\{ z = 0;
while ($x>0$)
\{
$x=x-1$;
$y^{\prime}=y$;
while ($y^{\prime}>0$)
\{
$y^{\prime}=y^{\prime}-1$;
\}$\}$
\}

Multiplication

int mul(int x, int y)
 $\Gamma(x)=1 \quad \Gamma(y)=1$ \{ z = 0;
 while ($x>0$)
 \{
 $x=x-1$;
 $y^{\prime}=y$;

while ($y^{\prime}>0$)
\{
$y^{\prime}=y^{\prime}-1$;
$\}_{\}}^{z}=z+1 ;$
\}

Multiplication
int mul(int x, int y)
$\Gamma(x)=1 \quad \Gamma(y)=1$
$\Gamma(z)=0$
$x=x-1$;
$y^{\prime}=y$;
while ($y^{\prime}>0$)
\{

$$
y^{\prime}=y^{\prime}-1
$$

$$
z=z+1 ;
$$

\}

Multiplication

int mul(int x, int y)
$\Gamma(x)=1 \quad \Gamma(y)=1$ \{ z = 0;
while ($x>0$)
\{

$$
\Gamma(Z)=0
$$

Declassification

$y^{\prime}=y$;
while ($y^{\prime}>0$)
\{
$y^{\prime}=y^{\prime}-1$;
$z_{\}}=z+1 ;$
\}

Multiplication

int mul(int x, int y)
$\Gamma(x)=1 \quad \Gamma(y)=1$ \{ z = 0;
while ($x>0$)
\{

$$
\Gamma(Z)=0
$$

Declassification
$\mathrm{y}=\mathrm{y}$;
while $\left(y^{\prime}>0\right)$
\{
$y^{\prime}=y^{\prime}-1$;
$z=z+1 ;$
\}

Greatest common divisor

```
\(\operatorname{Gcd}\left(X^{\mathbf{1}}, Y^{\mathbf{1}}\right)\)
\(\left\{\right.\) if \(\left(X^{\mathbf{1}}>0\right)\) then
\{while \(\left(Y^{\mathbf{1}}>0\right)\)
    \{if \(\left(X^{1}>Y^{1}\right)\)
                                then \(X^{\mathbf{1}}:=X^{\mathbf{1}}-Y^{\mathbf{1}}:(\mathbf{1}, \mathbf{0})\)
                            else \(\quad Y^{\mathbf{1}}:=Y^{\mathbf{1}}-X^{\mathbf{1}}:(\mathbf{1}, \mathbf{0})\)
    \(\} \quad:(\mathbf{1}, \mathbf{0})\)
    \(Z^{1}:=X^{1} \quad:(\mathbf{1}, \mathbf{0})\)
    \(\}:(\mathbf{1}, \mathbf{0})\)
else \(Z^{\mathbf{1}}:=Y^{\mathbf{1}} \quad:(\mathbf{1}, \mathbf{0})\)
\(\}:(\mathbf{1}, \mathbf{0})\)
```


Search for a prefix v in a word x

```
Search \(\left(X^{1}\right)\)
\{ find:=ff; :(1,0)
    loop:=tt; :(1,0)
    while (loop)
    \(\left\{\right.\) if \(e q_{v}(X)\) then find: \(=\mathbf{t t} ;\) loop: \(=\mathbf{f f}\);
        else if \((X==\epsilon)\) then loop: \(=\mathrm{ff}\);
        else \(\quad X:=\operatorname{pred}(X) ;\}\)
    \(\}:(\mathbf{1}, 0)\)
```

A non-interference result

A non-interference property for complexity

A computation is a sequence of configurations

$$
\mu_{0} \Rightarrow \mu_{1} \Rightarrow \ldots \Rightarrow \mu_{n}
$$

A non-interference property for complexity

A computation is a sequence of configurations

$$
\mu_{0} \Rightarrow \mu_{1} \Rightarrow \ldots \Rightarrow \mu_{n}
$$

$\mu(x)=\sigma(x)$ and $\Gamma(x)=1$
$\mu(y) \neq \sigma(y)$ and $\Gamma(y)=0$

A non-interference property for complexity

A computation is a sequence of configurations

$$
\mu_{0} \Rightarrow \mu_{1} \Rightarrow \ldots \Rightarrow \mu_{n}
$$

$\mu(x)=\sigma(x)$ and $\Gamma(x)=1$

$\mu(y) \neq \sigma(y)$ and $\Gamma(y)=0 \xrightarrow{\sigma \Rightarrow \sigma^{\prime}}$

A non-interference property for complexity

A computation is a sequence of configurations

$$
\begin{aligned}
& \mu_{0} \Rightarrow \mu_{1} \Rightarrow \ldots \Rightarrow \mu_{n} \\
& \mu(x)=\sigma(x) \text { and } \Gamma(x)=1 \underbrace{\Rightarrow}_{\mu} \Rightarrow \bar{\mu}^{\prime} \quad \sigma^{\prime}(x)=\sigma^{\prime}(x) \\
& \mu(y) \neq \sigma(y) \text { and } \Gamma(y)=0 \xrightarrow{\sigma \Rightarrow} \sigma^{\prime} \quad \text { if } \Gamma(x)=1
\end{aligned}
$$

A non-interference property for complexity

A computation is a sequence of configurations

$$
\mu_{0} \Rightarrow \mu_{1} \Rightarrow \ldots \Rightarrow \mu_{n}
$$

$\mu(x)=\sigma(x)$ and $\Gamma(x)=1$

$\mu(y) \neq \sigma(y)$ and $\Gamma(y)=0$ if $\Gamma(x)=1$

1. Non-interference says that tier 1 expressions does not depend on tier 0

A non-interference property for complexity

A computation is a sequence of configurations

$$
\mu_{0} \Rightarrow \mu_{1} \Rightarrow \ldots \Rightarrow \mu_{n}
$$

$\mu(x)=\sigma(x)$ and $\Gamma(x)=1$
$\mu(y) \neq \sigma(y)$ and $\Gamma(y)=0$

1. Non-interference says that tier 1 expressions does not depend on tier 0
2. Loop confinement : loops are guarded by tier 1 perdicates

A non-interference property for complexity

A computation is a sequence of configurations

$$
\mu_{0} \Rightarrow \mu_{1} \Rightarrow \ldots \Rightarrow \mu_{n}
$$

$\mu(x)=\sigma(x)$ and $\Gamma(x)=1$

$\mu(y) \neq \sigma(y)$ and $\Gamma(y)=0$

1. Non-interference says that tier 1 expressions does not depend on tier 0
2. Loop confinement : loops are guarded by tier 1 perdicates
3. Rutime depends only on tier 1 configurations

Characterization of Ptime

- Domain of computation is a set of words
- Positive operators are letter concatenations
- Neutral operators are predicates and «shift/pred»

Theorem

- A terminating and typed safe while-program is computable in polynomial-time.
- Conversely, each polynomial time function is computed by a typed safe while-program.

Two views

View A

- Security type system for secure flow analysis
- Security level
- Non-interference
- Declassification

View B

- Notion of ramification
- Tiers
- Temporal non-interference
- Relaxing tiering constraints for loops (reducibility)

Some practical issues

Source program

```start: nop mov eax, 22c907h push @data pop edx nop nop push 598h pop esi nop nop```	decryption key   offset   index
```loc_449016: xor [edx+esi], eax nop dec esi```	actual decryption   decrement the index
```loc_44901b: sub esi, 3 jnz short loc_449016```	decrement the index loop until index $=0$

typed program


With the same complexity
-Program complexity is enforced by type-checking
-Type inference is polynomial time computable
-Termination may be established by external methods, e.g. ranking functions
(Podelsky \& al, Manna \& al)

## Conclusion

- Type systems for security flow analysis may be a rationale to analyse and determine program complexity.
- For $(x=0 ; x++; x<n)$ and other constructions,
- Allowing upward flow by super-safe operators
- Other extensions
- Higher order extension
- Distributed/Mobile computing
- More general question of an intensional (= algorithms) characterizarion of Ptime. But (Hajek 78)

$$
\{M: M \text { is in PTIME }\} \text { is } \Sigma_{0}^{2} \text {-complete }
$$

- Does implicit computational complexity approach be useful for security flow analysis?


## Dynamic termination criterion

## Theorem

We can determine in polynomial time whether or not a program C on input x terminates.

## Proof idea

A loop does not terminate only if there are two successive tier 1 configurations which are identical.


## Some extras

Add operators to transfer constant size information from tier 0 to tier 1

$$
\begin{aligned}
& \operatorname{bit}:(\mathbf{0}, \mathbf{0}) \rightarrow(\mathbf{1}, \mathbf{1}) \\
& \operatorname{bit}(\mathrm{X})=1 \text { if } \mathrm{X}=A\left(\mathrm{X}^{\prime}\right) \\
& \operatorname{Xor}:(\mathbf{0}, \mathbf{0}) \rightarrow(\mathbf{0}, \mathbf{0}) \rightarrow(\mathbf{1}, \mathbf{1}) \\
& \operatorname{Xor}(X, Y)=(X(0) \operatorname{xor} Y(0)) \operatorname{xor}(X(1) \operatorname{xor} Y(1)) \operatorname{xor} \ldots
\end{aligned}
$$

A constant size leak of information is allowed similar to necessary declassification when passwords are checked

1. Loop confinement : loops are guarded are of tier 1
2. Non-interference says that tier 1 expressions does not depend on tier 0
3. There is a polynomial number of tier 1 configurations
