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Model Checking problem

We are interested in the parameterisation of the model checking
problem by the model. Fix a logic L and fix D.

The problem “L (D)” has

I Input: a sentence ϕ of L .

I Question: does D |= ϕ?

We consider syntactic fragments L of FO and structures D that
are relational and finite.



Complexity of Model Checking
Fragment Dual Classification?
{∃,∨} {∀,∧}

Logspace{∃,∨,=} {∀,∧, 6=}
{∃,∧,∨} {∀,∧,∨}

Logspace if there is some element a s.t. all relations are a-valid, and NP-complete otherwise{∃,∧,∨,=} {∀,∧,∨, 6=}
{∃,∧} {∀,∨}

CSP dichotomy conjecture: P or NP-complete{∃,∧,=} {∀,∨, 6=}
{∃,∧, 6=} {∀,∨,=} NP-complete for |D| ≥ 3, reduces to Schaefer classes other-

wise.
{∃,∀,∧} {∃,∀,∨}

QCSP polychotomy: P, NP-complete, or Pspace-complete ?{∃,∀,∧,=} {∃,∀,∨, 6=}
{∃,∀,∧, 6=} {∃,∀,∨,=} Pspace-complete for |D| ≥ 3, reduces to Schaefer classes for

Quantified Sat otherwise.
{∀,∃,∧,∨} Positive equality free: the rest of this talk

{∀,∃,∧,∨,=} {∀,∃,∧,∨, 6=}
P when |D| ≤ 1, Pspace-complete otherwise{¬,∃,∀,∧,∨,=}

{¬,∃,∀,∧,∨} P when D contains only empty or full relations, Pspace-
complete otherwise

I See B. Martin’s paper on this for more details (CiE’08)



Tetrachotomy for {∃,∀,∧,∨}-FO

When |D| ≤ 4, we obtained a tetrachotomy between

Pspace-complete

NP-complete co-NP-complete

Logspace

Our approach was algebraic but direct : i.e. direct complexity
classification in suitable finite lattices [LICS’09, CSL’10].

I It turns out that we knew the “tractable” cases.

I We complete the classification by proving that all other cases
are Pspace-complete.
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classification in suitable finite lattices [LICS’09, CSL’10].

I It turns out that we knew the “tractable” cases.

I We complete the classification by proving that all other cases
are Pspace-complete.



Some Ingredients of our approach

I Galois Connection

I “Tractability” via relativisation of quantifiers



Ferdinand Börner’s tips for Galois Connections

relation closed under preserved by “operation”

absence of ∃ partial

presence of ∀ “surjective”

presence of ∨ unary

presence of = functions
absence of = hyperfunctions

presence of 6= injective

presence of atomic ¬ full

For {∃,∀,∧,∨}-FO, we will need to consider the surjective hyper
endomorphisms of the structure D.



Surjective hyper endomorphisms

A surjective hyper-operation (shop) on a set D is a function

f : D → P(D)

that satisfies

I for all x ∈ D, f (x) 6= ∅ (totality).

I for all y ∈ D, there exists x ∈ D s.t. y ∈ f (x) (surjectivity).

A surjective hyper-endomorphism (she) of D is a surjective
hyper-operation f on D that preserves all extensional relations R
of D,

I if R(x1, . . . , xi ) ∈ D then, for all y1 ∈ f (x1), . . . , yi ∈ f (xi ),
R(y1, . . . , yi ) ∈ D.
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preserves
0 {0}
1 {1}
2 {1, 2}

does not preserve
0 {0}
1 {1, 2}
2 {1, 2}
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Monoid

1 20

D

has the following set of surjective hyper endomorphisms:

shE(D)=

{ 0 0

1 1

2 2

,
0 0

1 1

2 12

,
0 01

1 1

2 2

,
0 01

1 1

2 12

}

which forms in fact a monoid:

shE(D)=

〈 0 01

1 1

2 12

〉.
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Down Shop Monoid

I A set of shops on D is a down-shop-monoid, if it contains idD ,
and is closed under composition and sub-shops.

I We write 〈F 〉 for the down-shop-monoid generated by a set of
surjective hyper-operations F .
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The identity shop idS is defined by x 7→ {x}.



Down Shop Monoid

I A set of shops on D is a down-shop-monoid, if it contains idD ,
and is closed under composition and sub-shops.

I We write 〈F 〉 for the down-shop-monoid generated by a set of
surjective hyper-operations F .

Given shops f and g , define the composition g ◦ f by

x 7→ {z : ∃y z ∈ g(y) ∧ y ∈ f (x)}.



Down Shop Monoid

I A set of shops on D is a down-shop-monoid, if it contains idD ,
and is closed under composition and sub-shops.

I We write 〈F 〉 for the down-shop-monoid generated by a set of
surjective hyper-operations F .

A shop f is a sub-shop of g if f (x) ⊆ g(x), for all x .



Down Shop Monoid

I A set of shops on D is a down-shop-monoid, if it contains idD ,
and is closed under composition and sub-shops.

I We write 〈F 〉 for the down-shop-monoid generated by a set of
surjective hyper-operations F .



A suitable Galois Connection

Let shE(D) be the set of surjective hyper-endomorphisms of a
structure D.

Theorem (Madelaine, Martin ’09)

A relation is {∃,∀,∧,∨}-FO-expressible in a finite structure D, if
and only if, it is invariant under the surjective hyper
endomorphisms of D.

For finite D and D′ (s.t. D = D ′),
shE(D) ⊆ shE(D′) ⇒
{∃,∀,∧,∨}-FO(D′) ≤Logspace {∃,∀,∧,∨}-FO(D).

Motto. surjective hyper-endomorphisms control expressive power
and complexity.
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A suitable Galois Connection

Let shE(D) be the set of surjective hyper-endomorphisms of a
structure D.
If F is a set of surjective hyper-operations then Inv(F ) is the set of
relations of which F are surjective hyper-endomorphisms.

Theorem (Madelaine, Martin ’10)

For a finite structure D and a set of shops F , the following holds,

I 〈D〉{∃,∀,∧,∨}-FO = Inv(shE(D)); and,

I 〈F 〉 = shE(Inv(F )).



Surjective hyper operations of special interest

Let D be a finite set with elements c , d . We define the following
types of surjective hyper operations.

Ac(x) :=

{
D if x = c
{?} otherwise.

e.g.
0 0

1 3

2 0123

3 12

i.e. Ac(c) = D

Ec(x) := {?, c} e.g.
0 012

1 1

2 12

3 13

i.e. Ec
−1(c) = D

∀∃c,d(x) :=

{
D if x = c
{d} otherwise.

e.g.
0 0123

1 2

2 2

3 2



Quantifier Elimination

Ac(c) = D Ed
−1(d) = D

∀∃c,d(c) = D ∀∃c,d−1(d) = D

presence of complexity drops to “algorithm”

Ac NP evaluate all ∀ to c

Ed co-NP evaluate all ∃ to d

∀∃c,d Logspace simultaneously do both

I We shall see that these special surjective hyper operations
characterise fully the complexity.

I For example, if a relational structure D is preserved by an
A-shop but no ∀∃-shop, the model checking problem
{∃,∀,∧,∨}-FO(D) is NP-complete



Warm-up: the boolean case
There are five monoids in this case.〈

0 01

1 01

〉
〈

0 0

1 01

〉
::uuuuuuuuu 〈

0 1

1 0

〉
OO

〈
0 01

1 1

〉
ddIIIIIIIII

〈
0 0

1 1

〉
ddIIIIIIIII

OO ::uuuuuuuuu

Theorem
If shE(D) is green above, then {∃, ∀,∧,∨}-fo(D) is in Logspace;
otherwise it is Pspace-complete.



The three-element case

The lattice is considerably richer. The problem class
{∃,∀,∧,∨}-fo(D) displays tetrachotomy, between

Logspace

NP-complete co-NP-complete

Pspace-complete



lattice in the 3 element case
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Most of these are green “L” cases. The bottom of the lattice is
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Theorem (Madelaine & Martin 2009)

If shE(D) is green, blue or red, above, then {∃,∀,∧,∨}-fo(D) is
in L, is NP-complete or is co-NP-complete, respectively; otherwise
it is Pspace-complete.



Maximal Pspace-complete monoids

There are four maximal Pspace-complete monoids in the 3 element
case (drawn boxed below).〈
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Maximal Pspace-complete monoids

There are 20 maximal Pspace-complete monoids in the 4 element
case.

Class I Class II Class III Class IV Class V
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〉 〈
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The hard part is in proving there are no others.



Limitation of the “classification by lattice” method

Domain Classification Method Maximally hard monoids

2 done by hand 1

3 done by hand,
computer
checked

4

4 done by computer 20

5 failed attempt by computer 161

Stuck. We need to move away from the lattice.



Tetrachotomy for all finite domains

Theorem (Madelaine & Martin 2011)

Let D be any finite structure.

I. If shE(D) contains both an A-shop and an E-shop, then
{∃,∀,∧,∨}-FO(D) is in Logspace.

II. If shE(D) contains an A-shop but no E-shop, then
{∃,∀,∧,∨}-FO(D) is NP-complete.

III. If shE(D) contains an E-shop but no A-shop, then
{∃,∀,∧,∨}-FO(D) is co-NP-complete.

IV. If shE(D) contains neither an A-shop nor an E-shop, then
{∃, ∀,∧,∨}-FO(D) is in Pspace-complete.

Proved for domain size 2,3,4 (using the lattice).

Settled for larger domains (without the lattice).



Ingredients of our approach

Previous ingredients:

I Galois Connection

I “Tractability” via relativisation of quantifiers

New ingredients:

I A suitable notion of core for {∃,∀,∧,∨}-FO
I Normal form for the monoid associated with the core of a

structure D
I Generic hardness proof



Core

For CSP there is the well-established notion
of core. The core of a structure D is a
minimal induced substructure X ⊆ D all of
whose endomorphisms are automorphisms.

It is well-known that X is unique and CSP(D) = CSP(X ).



Core and relativisation

Another way to define the core is as a minimal subset X ⊆ D such
that for all positive conjunctive φ(x):

D |= ∃x φ(x) iff D |= ∃x∈ X φ(x).

Does there exist a “core”-like notion for {∃,∀,∧,∨}-fo?

Yes.
But we need 2 relativising sets U (universal) and X (existential).
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Another way to define the core is as a minimal subset X ⊆ D such
that for all positive conjunctive φ(x):

D |= ∃x φ(x) iff D |= ∃x∈ X φ(x).

Does there exist a “core”-like notion for {∃,∀,∧,∨}-fo?

Yes.
But we need 2 relativising sets U (universal) and X (existential).



U-X -core

Theorem (Madelaine & Martin, 2011)

The following are equivalent

1. There is f ∈ shE(D) s.t. f (U) = D and f −1(X ) = D

2. for all positive equality-free φ, D |= φ⇔ D |= φ[∀/U,∃/X ].

We may minimise X and U, then maximise their intersection to
obtain a monoid we call reduced.

The substructure of D induced by U ∪ X satisfies the same
sentences of {∃,∀,∧,∨}-FO as D. We call it the U − X -core (as
it is unique up to isomorphism).
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The following are equivalent

1. There is f ∈ shE(D) s.t. f (U) = D and f −1(X ) = D

2. for all positive equality-free φ, D |= φ⇔ D |= φ[∀/U,∃/X ].

We may minimise X and U, then maximise their intersection to
obtain a monoid we call reduced.

The substructure of D induced by U ∪ X satisfies the same
sentences of {∃,∀,∧,∨}-FO as D. We call it the U − X -core (as
it is unique up to isomorphism).



Example of a reduced monoid

Consider the domain 5 maximal monoid 〈
0 0

1 0234

2 024

3 0124

4 4

,
0 4

1 0124

2 024

3 0234

4 0

〉.

0 0

1 0234

2 024

3 0124

4 0

,

0 0

1 0234

2 024

3 0124

4 44

U := {1, 3} and X := {0, 4}.

Thus we are equivalent to the reduced monoid

〈
0 0

1 034

3 014

4 4

,

0 4

1 014

3 034

4 0

〉.



Tractable cases

Case Complexity A-shop E -shop U-X -core Relativises into Dual

I Logspace yes yes |U| = 1, |X | = 1 {∧,∨}-fo I

II NP-complete yes no |U| = 1, |X | ≥ 2 {∃,∧,∨}-fo III

III co-NP-complete no yes |U| ≥ 2, |X | = 1 {∀,∨,∧}-fo II

Remaining case. when both |U| ≥ 2 and |X | ≥ 2.



Canonical shop and normal form of the reduced monoid

U X

U X

Canonical shop

3-permuted form

All shops in the reduced monoid are in a similar form up to
permutation of U ∩ X , X \ U and U \ X , or sub-shops thereof.



Canonical shop and normal form of the reduced monoid

U X U X

Canonical shop 3-permuted form

All shops in the reduced monoid are in a similar form up to
permutation of U ∩ X , X \ U and U \ X , or sub-shops thereof.



Pspace-hardness
U and X have both size at least 2.
We consider three cases:

I U = X .

I shops are necessarily “permutations”.
I We know from previous results that this case is

Pspace-complete.

I U 6= X and U ∩ X 6= ∅.

I one set can not be included in another.
I We complete the monoid by adding more shops to blur U ∩ X

to a single element and U∆X to a single element.
I This amounts to consider a Pspace-hard monoid from the

2-element case.

I U ∩ X = ∅.

I we are unable to exhibit such a simple proof.
I we complete the monoid by adding all shops in the 3-permuted

form.
I thanks to the relative simplicity of this completed monoid, we

can provide a generic hardness proof inspired from the 4
element case
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Tetrachotomy for all domains

Tetrachotomy for {∃,∀,∧,∨}-FO(D)

Case Complexity A-shop E -shop U-X -core Relativises into Dual

I Logspace yes yes |U| = 1, |X | = 1 {∧,∨}-fo I

II NP-complete yes no |U| = 1, |X | ≥ 2 {∃,∧,∨}-fo III

III co-NP-complete no yes |U| ≥ 2, |X | = 1 {∀,∨,∧}-fo II

IV Pspace-complete no no |U| ≥ 2, |X | ≥ 2 {∃, ∀,∨,∧}-fo IV

Bonus. A notion of core for quantified constraints.



The meta problem is NP-complete.

The {∃, ∀,∧,∨}-FO(σ) meta-problem takes as input a finite
σ-structure D and answers L, NP-complete, co-NP-complete or
Pspace-complete, according to the complexity of
{∃,∀,∧,∨}-fo(D).
It is NP-hard even for some fixed and finite signature σ0.



Conclusion

Fragment Dual Classification?

{∃,∧} {∀,∨} CSP Dichotomy conjecture (P or NP-complete).
solved for (undirected) graphs (Hell & Nešeťril), in
the boolean case (Schaefer), the 3 element case (Bu-
latov) and the conservative case (Bulatov, Barto).

{∃,∧,=} {∀,∨, 6=}

{∃,∀,∧} {∃,∀,∨} P/Pspace-complete dichotomy in the boolean case
(Schaefer). In general, no precise conjecture. Par-
tial results exhibit P, NP-complete, and Pspace-
complete complexities: via the algebraic approach by
Chen et. al. or a combinatorial approach for graphs
and digraphs (Madelaine & Martin). Even the case
of (undirected) graphs remains open.

{∃,∀,∧,=} {∃,∀,∨, 6=}

{∀,∃,∧,∨} Tetrachotomy
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