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Model Checking problem

We are interested in the parameterisation of the model checking
problem by the model. Fix a logic .Z and fix D.

The problem "2 (D)" has
> Input: a sentence ¢ of .Z.
» Question: does D = 7

We consider syntactic fragments .Z of FO and structures D that
are relational and finite.



Complexity of Model Checking

d, ar

Fragment Dual Classification?
{3, v} {v,A}
3v.=r | {v.A#} Logspace
{3,A,V} {V,A,V} . . . .
GAN, =) | Y, AV, #) Logspace if there is some element a s.t. all relations are a-vali
{31} {v, v} - - _
(3.A, =} Vv, £} CSP dichotomy conjecture: P or NP-complete
{3, A, #} {V,Vv,=} NP-complete for |D| > 3, reduces to Schaefer classes other-
wise.
{3‘\—/7/\} {37V7\/} . ?
VA=) | BV.V.4) QCSP polychotomy: P, NP-complete, or Pspace-complete 7
{3, V,N, #} | {3, V,V,=} Pspace-complete for |D| > 3, reduces to Schaefer classes for
Quantified Sat otherwise.
{V,3,A,V} Positive equality free: the rest of this talk
V.3 A V=Y, 3 AV, #} :
) < -
(53,9, AV, =) P when |D| < 1, Pspace-complete otherwise
{—,3,V,A,V} P when D contains only empty or full relations, Pspace-

complete otherwise

> See B. Martin's paper on this for more details (CiE'08)



Tetrachotomy for {4,V, A, V}-FO

When |D| < 4, we obtained a tetrachotomy between
Pspace-complete
NP-complete co-NP-complete
Logspace

Our approach was algebraic but direct : i.e. direct complexity
classification in suitable finite lattices [LICS'09, CSL'10].
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Tetrachotomy for {4,V, A, V}-FO

When |D| < 4, we obtained a tetrachotomy between
Pspace-complete

NP-complete co-NP-complete

Our approach was algebraic but direct : i.e. direct complexity
classification in suitable finite lattices [LICS'09, CSL'10].

» It turns out that we knew the “tractable” cases.

» We complete the classification by proving that all other cases
are Pspace-complete.



Some Ingredients of our approach

» Galois Connection

» "“Tractability” via relativisation of quantifiers



Ferdinand Borner's tips for Galois Connections

relation closed under ‘ preserved by “operation” ‘

absence of 4 partial
presence of V “surjective”
presence of V unary
presence of = functions
absence of = hyperfunctions
presence of £ injective
presence of atomic — | full

For {3,¥, A, V}-FO, we will need to consider the surjective hyper
endomorphisms of the structure D.



Surjective hyper endomorphisms

A surjective hyper-operation (shop) on a set D is a function
f:D — P(D)

that satisfies
» for all x € D, f(x) # ) (totality).
» for all y € D, there exists x € D s.t. y € f(x) (surjectivity).

A surjective hyper-endomorphism (she) of D is a surjective
hyper-operation f on D that preserves all extensional relations R
of D,

> if R(x1,...,x)) € D then, for all y; € f(x1),...,yi € f(x),
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Monoid
0 ]/\2
./\Q.) °

has the following set of surjective hyper endomorphisms:
00 0|0 001 001
{ jt, 1|1, 11 , 1[1 }
22 212 2] 2 212

which forms in fact a monoid:



Monoid

¢ e e
O
D

has the following set of surjective hyper endomorphisms:

shE(D):{%‘%, L 1Y
2|2 2 2

1
12 2 2|12

which forms in fact a monoid:

0|01

ShE(D):< 11 >

2|12



Down Shop Monoid

> A set of shops on D is a down-shop-monoid, if it contains idp,
and is closed under composition and sub-shops.



Down Shop Monoid

» A set of shops on D is a down-shop-monoid, if it contains idp,
and is closed under composition and sub-shops.

The identity shop ids is defined by x — {x}.



Down Shop Monoid

> A set of shops on D is a down-shop-monoid, if it contains idp,
and is closed under composition and sub-shops.

Given shops f and g, define the composition g o f by

x—{z:dyzegly) Ny e f(x)}



Down Shop Monoid

> A set of shops on D is a down-shop-monoid, if it contains idp,
and is closed under composition and sub-shops.

A shop f is a sub-shop of g if f(x) C g(x), for all x.



Down Shop Monoid

> A set of shops on D is a down-shop-monoid, if it contains idp,
and is closed under composition and sub-shops.

» We write (F) for the down-shop-monoid generated by a set of
surjective hyper-operations F.



A suitable Galois Connection
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and only if, it is invariant under the surjective hyper
endomorphisms of D.
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A suitable Galois Connection

Let shE(D) be the set of surjective hyper-endomorphisms of a
structure D.

Theorem (Madelaine, Martin '09)
A relation is {3,V, A\, V}-FO-expressible in a finite structure D, if

and only if, it is invariant under the surjective hyper
endomorphisms of D.

For finite D and D' (s.t. D = D’),
shE(D) C shE(D') =
{3,¥,A,V}-FO(D') <iogspace {3, V, A\, V}-FO(D).

Motto. surjective hyper-endomorphisms control expressive power
and complexity.



A suitable Galois Connection

Let shE(D) be the set of surjective hyper-endomorphisms of a
structure D.
If F is a set of surjective hyper-operations then Inv(F) is the set of
relations of which F are surjective hyper-endomorphisms.
Theorem (Madelaine, Martin '10)
For a finite structure D and a set of shops F, the following holds,
> (D)3v,avi-Fo = Inv(shE(D)), and,
» (F) = shE(Inv(F)).



Surjective hyper operations of special interest

Let D be a finite set with elements ¢, d. We define the following

types of surjective hyper operations.

D ifx=c g 1 ie Afc)=D

Ac(¥) :_{ {?} otherwise. & 2oz

Ec(x) :={7c} esg L

00123

(x) = D ifx=c cp IE
=\ {d} otherwise. & 2z




Quantifier Elimination

Ac(c)=D E; Y (d)=D

(c)=D Hd)y=D
presence of \ complexity drops to \ “algorithm”
Ac NP evaluate all V to ¢
Ey4 co-NP evaluate all 3 to d

simultaneously do both

» We shall see that these special surjective hyper operations
characterise fully the complexity.

» For example, if a relational structure D is preserved by an
A-shop but no V3-shop, the model checking problem
{3,¥, A, V}-FO(D) is NP-complete



Warm-up: the boolean case
There are five monoids in this case.

()

()
(4F)

E
/N
N/

Theorem
If shE(D) is green above, then {3,V, A, V}-FO(D) is in Logspace,
otherwise it is Pspace-complete.



The three-element case

The lattice is considerably richer. The problem class
{3,V, A, V}-FO(D) displays tetrachotomy, between
Logspace
NP-complete co-NP-complete

Pspace-complete



lattice in the 3 element case

il ﬂ il W
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Most of these are green “L" cases. The bottom of the lattice is

O
¥ow w

Theorem (Madelaine & Martin 2009)

If shE(D) is green, blue or red, above, then {3,V, A, V}-FO(D) is

in L, is NP-complete or is co-NP-complete, respectively; otherwise
it is Pspace-complete.



Maximal Pspace-complete monoids

There are four maximal Pspace-complete monoids in the 3 element
case (drawn boxed below).

® e G




Maximal Pspace-complete monoids

A
W




Maximal Pspace-complete monoids

There are 20 maximal Pspace-complete monoids in the 4 element

case.
Class | Class Il Class Il Class IV Class V
0] 1 0] o 023 0] 3 0] 2 0]o1 0|1 0|0 0|0
<1o 11) <T?> <T3> <TTTT> <1o 12 11>
2]012 7 2013 2]01 203 2701 7 2[3 2[2 7 2]1 7 23
3013 3]012 301 3012 313 32 33 33 32
0| 2 0| o 013 0| 2 01 002
( 1012 1[023 ) <TOT> (TT> <TOT TT>
20 ? 2] 2 2[13 2013 201 0 202
3023 3012 302 32 313 31
0| 3 0| 0 0|12 0| 1 0|1 0|03
< 1]013 1]023 > <TW> <TW> <TW TT>
2]023 7 2013 2[03 21 22 ) 21
31 0 3 3 312 31T 31 3[03
0012 0123 0123 0|12 0|3
(1 2 11 ) (TT> <TT TT>
21 7 2] 2 2] 0 2]0 ) 2]12
3123 3012 370 313 3]0
0013 0123 0|13 0|2
<1 3 1)1 > <TT TT>
2[123 7 2013 22 7 2]0
301 3] 3 370 313
0023 0123 023 01
( 1]123 1[023 ) <TT TT>
23 7 2] 2 2]0 ) 223
32 33 370 323

The hard part is in proving there are no others.



Limitation of the “classification by lattice” method

Domain ‘ Classification | Method ‘ Maximally hard monoids
2 done by hand 1
3 done by hand, 4
computer
checked
4 done by computer 20
5 failed attempt | by computer 161

Stuck. We need to move away from the lattice.



Tetrachotomy for all finite domains

Theorem (Madelaine & Martin 2011)

Let D be any finite structure.

|. If shE(D) contains both an A-shop and an E-shop, then
{3,¥,\,V}-FO(D) is in Logspace.
[I. If ShE(D) contains an A-shop but no E-shop, then
{3,¥, A, V}-FO(D) is NP-complete.
IIl. If shE(D) contains an E-shop but no A-shop, then
{3,¥, A, V}-FO(D) is co-NP-complete.

IV. If shE(D) contains neither an A-shop nor an E-shop, then
{3,V, A, V}-FO(D) is in Pspace-complete.

Proved for domain size 2,3,4 (using the lattice).

Settled for larger domains (without the lattice).



Ingredients of our approach

Previous ingredients:
» Galois Connection

» "“Tractability” via relativisation of quantifiers

New ingredients:
» A suitable notion of core for {3,V, A, V}-FO

» Normal form for the monoid associated with the core of a
structure D

» Generic hardness proof



Core

For CSP there is the well-established notion \ °

of core. The core of a structure D is a /

minimal induced substructure X C D all of
whose endomorphisms are automorphisms. o d

It is well-known that X is unique and CSP(D) = CSP(X).



Core and relativisation

Another way to define the core is as a minimal subset X C D such
that for all positive conjunctive ¢(x):

D E 3x ¢(x) iff D = Ixe X ¢(x).



Core and relativisation

Another way to define the core is as a minimal subset X C D such
that for all positive conjunctive ¢(x):

D E 3x ¢(x) iff D = Ixe X ¢(x).

Does there exist a “core”-like notion for {3,V, A, V}-FO?



Core and relativisation

Another way to define the core is as a minimal subset X C D such
that for all positive conjunctive ¢(x):

D E 3x ¢(x) iff D = Ixe X ¢(x).

Does there exist a “core”-like notion for {3,V, A, V}-FO?

Yes.
But we need 2 relativising sets U (universal) and X (existential).



U-X-core

Theorem (Madelaine & Martin, 2011)
The following are equivalent
1. There is f € shE(D) s.t. f(U) =D and f~1(X) =D
2. for all positive equality-free ¢, D = ¢ < D = dv/u,3/x]-



U-X-core

Theorem (Madelaine & Martin, 2011)
The following are equivalent
1. There is f € shE(D) s.t. f(U) =D and f~1(X) =D
2. for all positive equality-free ¢, D = ¢ < D = dv/u,3/x]-

We may minimise X and U, then maximise their intersection to
obtain a monoid we call reduced.

The substructure of D induced by U U X satisfies the same
sentences of {3,V, A, V}-FO as D. We call it the U — X-core (as
it is unique up to isomorphism).



Example of a reduced monoid

0234
024
0124

0124
024
0234

Consider the domain 5 maximal monoid (

»lw|ol=o
»lw|vl=]o

0| O 0] O

1023 1]0234

2[ 024 , 2024 U:={1,3} and X :={0,4}.
30124 30124

4] 0 4| 44

Thus we are equivalent to the reduced monoid

0] 0 0 4

< 1034 1014 >
31014 > 3|034
4] 4 41 0




Tractable cases

Case Complexity A-shop | E-shop U-X-core Relativises into | Dual
I yes yes |Ul=1, |X|=1 I
1l NP-complete yes no U =1, |X|>2 {3,A,V}-Fo | I
Il | co-NP-complete no yes U >2,|X|=1 {V,v,A}-FO | |l

Remaining case. when both |U| > 2 and |X| > 2.




Canonical shop and normal form of the reduced monoid

Canonical shop



Canonical shop and normal form of the reduced monoid

Canonical shop 3-permuted form

All shops in the reduced monoid are in a similar form up to
permutation of UN X, X \ U and U\ X, or sub-shops thereof.



Pspace-hardness

U and X have both size at least 2.
We consider three cases:
» U=X

» U# X and UNX £ 0.

» UN X =0.



Pspace-hardness
U and X have both size at least 2.
We consider three cases:
» U=X
> shops are necessarily “permutations”.

» We know from previous results that this case is
Pspace-complete.

» U# X and UNX £ 0.

» UN X =0.



Pspace-hardness

U and X have both size at least 2.
We consider three cases:
» U= X.

» U# X and UNX £ 0.

> one set can not be included in another.

» We complete the monoid by adding more shops to blur U N X
to a single element and UAX to a single element.

» This amounts to consider a Pspace-hard monoid from the
2-element case.

» UN X =0.



Pspace-hardness

U and X have both size at least 2.
We consider three cases:
» U= X.

» U# X and UNX £ 0.

» UNX =0.
» we are unable to exhibit such a simple proof.
» we complete the monoid by adding all shops in the 3-permuted
form.
» thanks to the relative simplicity of this completed monoid, we
can provide a generic hardness proof inspired from the 4
element case



Tetrachotomy for all domains

Tetrachotomy for {3,V, A, V}-FO(D)

Case Complexity A-shop | E-shop U-X-core Relativises into | Dual
I yes yes |Ul=1, | X|=1 I
I NP-complete yes no Ul =1, |X|>2 {3,A,V}-Fo | I
Il | co-NP-complete no yes U >2, |X|=1 {V,v,A}-Fo | I
IV | Pspace-complete no no |U >2,|X]|>2|{3,V,V,A}-FO | IV

Bonus. A notion of core for quantified constraints.




The meta problem is NP-complete.

The {3.V, A, V}-FO(o) meta-problem takes as input a finite
o-structure D and answers L, NP-complete, co-NP-complete or
Pspace-complete, according to the complexity of

{3,¥, A, V}-FO(D).

It is NP-hard even for some fixed and finite signature og.



Conclusion

| Fragment | Dual

Classification? \

{37}

{v, v}

{Ela/\7:} {V,\/,#}

CSP Dichotomy conjecture (P or NP-complete).
solved for (undirected) graphs (Hell & Ne3etfil), in
the boolean case (Schaefer), the 3 element case (Bu-
latov) and the conservative case (Bulatov, Barto).

{3, ¥, A} {3,V,Vv}
{3,v,A,=} | {3,V,V,#}

P /Pspace-complete dichotomy in the boolean case
(Schaefer). In general, no precise conjecture. Par-
tial results exhibit P, NP-complete, and Pspace-
complete complexities: via the algebraic approach by
Chen et. al. or a combinatorial approach for graphs
and digraphs (Madelaine & Martin). Even the case
of (undirected) graphs remains open.

{V,3, A\, V}

Tetrachotomy
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