A tetrachotomy for positive first-order logic without equality

Florent Madelaine Barnaby Martin

LICS'11
Toronto, Thursday the 23rd of June 2011

Model Checking problem

We are interested in the parameterisation of the model checking problem by the model. Fix a logic \mathscr{L} and fix \mathcal{D}.

The problem " $\mathscr{L}(\mathcal{D})$ " has

- Input: a sentence φ of \mathscr{L}.
- Question: does $\mathcal{D} \models \varphi$?

We consider syntactic fragments \mathscr{L} of FO and structures \mathcal{D} that are relational and finite.

Complexity of Model Checking

Fragment	Dual	Classification?
$\begin{aligned} & \{\exists, \vee\} \\ & \{\exists, \vee,=\} \end{aligned}$	$\begin{aligned} & \{\forall, \wedge\} \\ & \{\forall, \wedge, \neq\} \end{aligned}$	Logspace
$\begin{aligned} & \{\exists, \wedge, \vee\} \\ & \{\exists, \wedge, \vee,=\} \end{aligned}$	$\begin{aligned} & \{\forall, \wedge, \vee\} \\ & \{\forall, \wedge, \vee, \neq\} \end{aligned}$	Logspace if there is some element a s.t. all relations are a-valid
$\begin{aligned} & \{\exists, \wedge\} \\ & \{\exists, \wedge,=\} \end{aligned}$	$\begin{aligned} & \{\forall, \vee\} \\ & \{\forall, \vee, \neq\} \end{aligned}$	CSP dichotomy conjecture: P or NP-complete
$\{\exists, \wedge, \neq\}$	$\{\forall, \mathrm{V},=\}$	NP-complete for $\|\mathcal{D}\| \geq 3$, reduces to Schaefer classes otherwise.
$\begin{aligned} & \{\exists, \forall, \wedge\} \\ & \{\exists, \forall, \wedge,=\} \end{aligned}$	$\begin{aligned} & \{\exists, \forall, \vee \vee \\ & \{\exists, \forall, \vee, \neq\} \end{aligned}$	QCSP polychotomy: P, NP-complete, or Pspace-complete ?
$\{\exists, \forall, \wedge, \neq\}$	$\{\exists, \forall, \vee,=\}$	Pspace-complete for $\|\mathcal{D}\| \geq 3$, reduces to Schaefer classes for Quantified Sat otherwise.
$\{\forall, \exists, \wedge, \vee$ \}		Positive equality free: the rest of this talk
$\begin{gathered} \{\forall, \exists, \wedge, \vee,=\}\{\forall, \exists, \wedge, \vee, \neq\} \\ \{\neg, \exists, \forall, \wedge, \vee,=\} \end{gathered}$		P when $\|\mathcal{D}\| \leq 1$, Pspace-complete otherwise
$\{\neg, \exists, \forall, \wedge, \vee\}$		P when \mathcal{D} contains only empty or full relations, Pspacecomplete otherwise

- See B. Martin's paper on this for more details (CiE'08)

Tetrachotomy for $\{\exists, \forall, \wedge, \vee\}$-FO

When $|\mathcal{D}| \leq 4$, we obtained a tetrachotomy between
Pspace-complete
NP-complete co-NP-complete

Logspace

Our approach was algebraic but direct : i.e. direct complexity classification in suitable finite lattices [LICS'09, CSL'10].

Tetrachotomy for $\{\exists, \forall, \wedge, \vee\}$-FO

When $|\mathcal{D}| \leq 4$, we obtained a tetrachotomy between
Pspace-complete NP-complete co-NP-complete

Logspace

Our approach was algebraic but direct : i.e. direct complexity classification in suitable finite lattices [LICS'09, CSL'10].

- It turns out that we knew the "tractable" cases.

Tetrachotomy for $\{\exists, \forall, \wedge, \vee\}$-FO

When $|\mathcal{D}| \leq 4$, we obtained a tetrachotomy between
Pspace-complete
NP-complete co-NP-complete

Logspace

Our approach was algebraic but direct : i.e. direct complexity classification in suitable finite lattices [LICS'09, CSL'10].

- It turns out that we knew the "tractable" cases.
- We complete the classification by proving that all other cases are Pspace-complete.

Some Ingredients of our approach

- Galois Connection
- "Tractability" via relativisation of quantifiers

Ferdinand Börner's tips for Galois Connections

relation closed under	preserved by "operation"
absence of \exists	partial
presence of \forall	"surjective"
presence of \vee	unary
presence of $~$ absence of $=$	functions
hyperfunctions	
presence of \neq	injective
presence of atomic \neg	full

For $\{\exists, \forall, \wedge, \vee\}$-FO, we will need to consider the surjective hyper endomorphisms of the structure \mathcal{D}.

Surjective hyper endomorphisms

A surjective hyper-operation (shop) on a set D is a function

$$
f: D \rightarrow \mathcal{P}(D)
$$

that satisfies

- for all $x \in D, f(x) \neq \emptyset$ (totality).
- for all $y \in D$, there exists $x \in D$ s.t. $y \in f(x)$ (surjectivity).

A surjective hyper-endomorphism (she) of \mathcal{D} is a surjective hyper-operation f on D that preserves all extensional relations R of \mathcal{D},

- if $R\left(x_{1}, \ldots, x_{i}\right) \in \mathcal{D}$ then, for all $y_{1} \in f\left(x_{1}\right), \ldots, y_{i} \in f\left(x_{i}\right)$, $R\left(y_{1}, \ldots, y_{i}\right) \in \mathcal{D}$.

Example

preserves

0	$\{0\}$
1	$\{1\}$
2	$\{1,2\}$

does not preserve | 0 | $\{0\}$ |
| :---: | :---: |
| 1 | $\{1,2\}$ |
| 2 | $\{1,2\}$ |

Example

preserves

0	$\{0\}$
1	$\{1\}$
2	$\{1,2\}$

does not preserve | 0 | $\{0\}$ |
| :---: | :---: |
| 1 | $\{1,2\}$ |
| 2 | $\{1,2\}$ |

Example

preserves

0	$\{0\}$
1	$\{1\}$
2	$\{1,2\}$

does not preserve | 0 | $\{0\}$ |
| :---: | :---: |
| 1 | $\{1,2\}$ |
| 2 | $\{1,2\}$ |

Example

preserves

0	$\{0\}$
1	$\{1\}$
2	$\{1,2\}$

does not preserve | 0 | $\{0\}$ |
| :---: | :---: |
| 1 | $\{1,2\}$ |
| 2 | $\{1,2\}$ |

Example

preserves

0	$\{0\}$
1	$\{1\}$
2	$\{1,2\}$

does not preserve \quad| 0 | $\{0\}$ |
| :---: | :---: |
| 1 | $\{1,2\}$ |
| 2 | $\{1,2\}$ |

Example

preserves
does not preserve
1

Monoid

has the following set of surjective hyper endomorphisms:

$$
\left\{\begin{array}{l|l|l}
0 & 0 \\
\hline \frac{1}{2} & 1 \\
\hline & 2
\end{array}, \begin{array}{l|l|l|l}
\hline & 0 & 0 \\
\hline & 12
\end{array}, \left.\begin{array}{l}
0 \\
\hline
\end{array} \right\rvert\, \begin{array}{l}
0 \\
\hline
\end{array}, \begin{array}{l|l|l}
\hline & 1 \\
\hline & 12
\end{array}\right\}
$$

which forms in fact a monoid:

$$
\left\langle\frac{0 \mid 01}{\frac{1}{2} \left\lvert\, \frac{1}{12}\right.}\right\rangle .
$$

Monoid

has the following set of surjective hyper endomorphisms:
$\operatorname{sh} E(\mathcal{D})=\left\{\frac{0 \mid 0}{\frac{1}{2} \frac{1}{2}}, \frac{0}{1} \frac{0}{\frac{1}{2} \frac{1}{12}}, \frac{0}{1} \frac{0}{2} \frac{1}{2}, \frac{0}{2}, \frac{1}{\frac{1}{2}} \frac{1}{12}\right\}$
which forms in fact a monoid:
$\operatorname{shE}(\mathcal{D})=\left\langle\frac{0}{}=\frac{01}{1} \begin{array}{l}1 \\ \frac{1}{2} \frac{1}{12}\end{array}\right.$.

Down Shop Monoid

- A set of shops on D is a down-shop-monoid, if it contains $i d_{D}$, and is closed under composition and sub-shops.

Down Shop Monoid

- A set of shops on D is a down-shop-monoid, if it contains $i d_{D}$, and is closed under composition and sub-shops.

The identity shop ids is defined by $x \mapsto\{x\}$.

Down Shop Monoid

- A set of shops on D is a down-shop-monoid, if it contains $i d_{D}$, and is closed under composition and sub-shops.

Given shops f and g, define the composition $g \circ f$ by

$$
x \mapsto\{z: \exists y z \in g(y) \wedge y \in f(x)\} .
$$

Down Shop Monoid

- A set of shops on D is a down-shop-monoid, if it contains $i d_{D}$, and is closed under composition and sub-shops.

A shop f is a sub-shop of g if $f(x) \subseteq g(x)$, for all x.

Down Shop Monoid

- A set of shops on D is a down-shop-monoid, if it contains $i d_{D}$, and is closed under composition and sub-shops.
- We write $\langle F\rangle$ for the down-shop-monoid generated by a set of surjective hyper-operations F.

A suitable Galois Connection

Theorem (Madelaine, Martin '09)
A relation is $\{\exists, \forall, \wedge, \vee\}$-FO-expressible in a finite structure \mathcal{D}, if and only if, it is invariant under the surjective hyper endomorphisms of \mathcal{D}.

A suitable Galois Connection

Let $\operatorname{sh} E(\mathcal{D})$ be the set of surjective hyper-endomorphisms of a structure \mathcal{D}.

Theorem (Madelaine, Martin '09)
A relation is $\{\exists, \forall, \wedge, \vee\}$-FO-expressible in a finite structure \mathcal{D}, if and only if, it is invariant under the surjective hyper endomorphisms of \mathcal{D}.

A suitable Galois Connection

Let $\operatorname{sh} E(\mathcal{D})$ be the set of surjective hyper-endomorphisms of a structure \mathcal{D}.

Theorem (Madelaine, Martin '09)
A relation is $\{\exists, \forall, \wedge, \vee\}$-FO-expressible in a finite structure \mathcal{D}, if and only if, it is invariant under the surjective hyper endomorphisms of \mathcal{D}.

For finite \mathcal{D} and \mathcal{D}^{\prime} (s.t. $D=D^{\prime}$), $\operatorname{shE}(\mathcal{D}) \subseteq \operatorname{shE}\left(\mathcal{D}^{\prime}\right) \Rightarrow$
$\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}\left(\mathcal{D}^{\prime}\right) \leq_{\text {Logspace }}\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}(\mathcal{D})$.

A suitable Galois Connection

Let $\operatorname{shE}(\mathcal{D})$ be the set of surjective hyper-endomorphisms of a structure \mathcal{D}.

Theorem (Madelaine, Martin '09)
A relation is $\{\exists, \forall, \wedge, \vee\}$-FO-expressible in a finite structure \mathcal{D}, if and only if, it is invariant under the surjective hyper endomorphisms of \mathcal{D}.

For finite \mathcal{D} and \mathcal{D}^{\prime} (s.t. $D=D^{\prime}$), $\operatorname{shE}(\mathcal{D}) \subseteq \operatorname{shE}\left(\mathcal{D}^{\prime}\right) \Rightarrow$
$\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}\left(\mathcal{D}^{\prime}\right) \leq_{\text {Logspace }}\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}(\mathcal{D})$.

Motto. surjective hyper-endomorphisms control expressive power and complexity.

A suitable Galois Connection

Let $\operatorname{sh} E(\mathcal{D})$ be the set of surjective hyper-endomorphisms of a structure \mathcal{D}.
If F is a set of surjective hyper-operations then $\operatorname{Inv}(F)$ is the set of relations of which F are surjective hyper-endomorphisms.

Theorem (Madelaine, Martin '10)
For a finite structure \mathcal{D} and a set of shops F, the following holds,

- $\langle\mathcal{D}\rangle_{\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}}=\operatorname{Inv}(\operatorname{shE}(\mathcal{D}))$; and,
- $\langle F\rangle=\operatorname{shE}(\operatorname{Inv}(F))$.

Surjective hyper operations of special interest

Let D be a finite set with elements c, d. We define the following types of surjective hyper operations.

$$
\begin{aligned}
& A_{c}(x):=\left\{\begin{array}{cl}
D & \text { if } x=c \\
\{?\} & \text { otherwise. }
\end{array} \quad \text { e.g. } \frac{0 \quad 0}{\frac{0}{\frac{1}{2} \frac{3}{3} 123}} \begin{array}{l}
\frac{2}{3} \frac{12}{12}
\end{array} \text { i.e. } A_{c}(c)=D\right. \\
& E_{c}(x):=\{?, c\} \quad \text { e.g. } \frac{\frac{0}{1} \frac{012}{1}}{\frac{1}{2} \frac{12}{3}} \text { i. } 13 . E_{c}^{-1}(c)=D
\end{aligned}
$$

Quantifier Elimination

$$
\begin{array}{rrr}
A_{c}(c)=D & E_{d}^{-1}(d) & =D \\
\forall \exists_{c, d}(c)=D & \forall \exists_{c, d}-1 \\
(d) & =D
\end{array}
$$

presence of	complexity drops to	"algorithm"
A_{c}	NP	evaluate all \forall to c
E_{d}	co-NP	evaluate all \exists to d
$\forall \exists_{c, d}$	Logspace	simultaneously do both

- We shall see that these special surjective hyper operations characterise fully the complexity.
- For example, if a relational structure \mathcal{D} is preserved by an A-shop but no $\forall \exists$-shop, the model checking problem $\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}(\mathcal{D})$ is NP-complete

Warm-up: the boolean case

There are five monoids in this case.

Theorem
If $\operatorname{sh} \mathrm{E}(\mathcal{D})$ is green above, then $\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}(\mathcal{D})$ is in Logspace; otherwise it is Pspace-complete.

The three-element case

The lattice is considerably richer. The problem class $\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}(\mathcal{D})$ displays tetrachotomy, between

Logspace
NP-complete co-NP-complete
Pspace-complete

lattice in the 3 element case

Most of these are green " L " cases. The bottom of the lattice is

Theorem (Madelaine \& Martin 2009)
If $\operatorname{shE}(\mathcal{D})$ is green, blue or red, above, then $\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}(\mathcal{D})$ is in L , is NP-complete or is co-NP-complete, respectively; otherwise it is Pspace-complete.

Maximal Pspace-complete monoids

There are four maximal Pspace-complete monoids in the 3 element case (drawn boxed below).

Maximal Pspace-complete monoids

Maximal Pspace-complete monoids

There are 20 maximal Pspace-complete monoids in the 4 element case.

Class				Class 1		Class II		Class IV				Class V					
0	1	0	0	0	23	0	3	0	2	0	01	0	1	0		0	0
$\left\langle\frac{1}{2}\right.$	$\frac{0}{012}$,	1	$\frac{1}{013}>$	< ${ }^{1}$	$\left.\frac{23}{01}\right\rangle$	< ${ }^{1}$	$\left.\frac{3}{3}\right\rangle$	< $\frac{1}{2}$	$\frac{2}{01}$,	1	$\left.\frac{01}{3}\right\rangle$	< $\frac{1}{2}$	$\frac{0}{2}$,	1	$\frac{2}{1}$,	1	$\left.\frac{1}{3}\right\rangle$
3	013	3	012	3	01	3	012	3	3	3	2	3	3	3	3	3	2
0	2	0	0	0	13	0	2	0	1	0	02						
< $\frac{1}{2}$	$\frac{012}{0}$,	1	$\left.\frac{023}{2}\right\rangle$	< ${ }^{1}$	$\frac{02}{13}>$	< ${ }^{1}$	$\frac{2}{013}>$	< $\frac{1}{2}$	$\frac{02}{1}$,	1	$\frac{3}{02}$ >						
3	023	3	012	3	02	3	2	3	3	3	1						
0	3	0	0	0	12	0	1	0	1	0	03						
< $\frac{1}{2}$	$\frac{013}{023}$,	1	$\frac{023}{013}>$	< ${ }^{1}$	$\frac{03}{03}$ >	< ${ }^{1}$	$\left.\frac{023}{1}\right\rangle$	< $\frac{1}{2}$	$\frac{03}{2}$,	1	$\left.\frac{2}{1}\right\rangle$						
3	0	3	3	3	12	3	1	3	1	3	03						
0	012	0	123			0	123	0	12	0	3						
< ${ }^{1}$	2	1	$\left.\frac{1}{2}\right\rangle$			< 1	$\left.0{ }^{0}\right\rangle$	$\left\langle\begin{array}{l}1 \\ \hline 2\end{array}\right.$	0 0 ,	1	$\left.\frac{12}{12}\right\rangle$						
$\frac{2}{3}$	1	2						$\frac{1}{3}$	3	2							
0	123	0	123			3		0	13	0	2						
$\left\langle\frac{1}{2}\right.$	$\frac{3}{123}$,	1	$\left.\frac{1}{013}\right\rangle$					$\left\langle\frac{1}{1}\right.$	$\frac{0}{2}$,	1	$\left.\frac{13}{0}\right\rangle$						
3	1	3	3					3	0	3	13						
0	023	0	123					0	23	0	1						
< ${ }^{1}$	$\frac{123}{3}$	2	$\frac{023}{2}>$					< $\frac{1}{2}$	$\frac{1}{0}$,	1	0 ${ }^{23}$ >						
$\frac{2}{3}$	3	2	$\frac{2}{3}$					$\frac{3}{3}$	0	$\frac{2}{3}$	23						

The hard part is in proving there are no others.

Limitation of the "classification by lattice" method

Domain	Classification	Method	Maximally hard monoids
2	done	by hand	1
3	done	by hand, computer checked	4
4	done	by computer	20
5	failed attempt	by computer	161

Stuck. We need to move away from the lattice.

Tetrachotomy for all finite domains

Theorem (Madelaine \& Martin 2011)
Let \mathcal{D} be any finite structure.
I. If $\operatorname{shE}(\mathcal{D})$ contains both an A -shop and an E -shop, then $\{\exists, \forall, \wedge, \vee\}-\operatorname{FO}(\mathcal{D})$ is in Logspace.
II. If $\operatorname{sh} \mathrm{E}(\mathcal{D})$ contains an A -shop but no E -shop, then $\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}(\mathcal{D})$ is NP-complete.
III. If $\operatorname{shE}(\mathcal{D})$ contains an E -shop but no A -shop, then $\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}(\mathcal{D})$ is co-NP-complete.
IV. If $\operatorname{shE}(\mathcal{D})$ contains neither an A -shop nor an E -shop, then $\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}(\mathcal{D})$ is in Pspace-complete.

Proved for domain size 2,3,4 (using the lattice).
Settled for larger domains (without the lattice).

Ingredients of our approach

Previous ingredients:

- Galois Connection
- "Tractability" via relativisation of quantifiers

New ingredients:

- A suitable notion of core for $\{\exists, \forall, \wedge, \vee\}$-FO
- Normal form for the monoid associated with the core of a structure \mathcal{D}
- Generic hardness proof

Core

For CSP there is the well-established notion of core. The core of a structure \mathcal{D} is a minimal induced substructure $\mathcal{X} \subseteq \mathcal{D}$ all of whose endomorphisms are automorphisms.

It is well-known that \mathcal{X} is unique and $\operatorname{CSP}(\mathcal{D})=\operatorname{CSP}(\mathcal{X})$.

Core and relativisation

Another way to define the core is as a minimal subset $X \subseteq D$ such that for all positive conjunctive $\phi(\bar{x})$:

$$
\mathcal{D} \models \exists \bar{x} \phi(\bar{x}) \text { iff } \mathcal{D} \models \exists \bar{x} \in X \phi(\bar{x}) \text {. }
$$

Core and relativisation

Another way to define the core is as a minimal subset $X \subseteq D$ such that for all positive conjunctive $\phi(\bar{x})$:

$$
\mathcal{D} \models \exists \bar{x} \phi(\bar{x}) \text { iff } \mathcal{D} \models \exists \bar{x} \in X \phi(\bar{x}) .
$$

Does there exist a "core"-like notion for $\{\exists, \forall, \wedge, \vee\}$-FO?

Core and relativisation

Another way to define the core is as a minimal subset $X \subseteq D$ such that for all positive conjunctive $\phi(\bar{x})$:

$$
\mathcal{D} \models \exists \bar{x} \phi(\bar{x}) \text { iff } \mathcal{D} \models \exists \bar{x} \in X \phi(\bar{x}) .
$$

Does there exist a "core"-like notion for $\{\exists, \forall, \wedge, \vee\}$-FO?
Yes.
But we need 2 relativising sets U (universal) and X (existential).

$U-X$-core

Theorem (Madelaine \& Martin, 2011)
The following are equivalent

1. There is $f \in \operatorname{shE}(\mathcal{D})$ s.t. $f(U)=D$ and $f^{-1}(X)=D$
2. for all positive equality-free $\phi, \mathcal{D} \models \phi \Leftrightarrow \mathcal{D} \models \phi_{[\forall / U, \exists / X]}$.

$U-X$-core

Theorem (Madelaine \& Martin, 2011)
The following are equivalent

1. There is $f \in \operatorname{shE}(\mathcal{D})$ s.t. $f(U)=D$ and $f^{-1}(X)=D$
2. for all positive equality-free $\phi, \mathcal{D} \models \phi \Leftrightarrow \mathcal{D} \models \phi_{[\forall / U, \exists / X]}$.

We may minimise X and U, then maximise their intersection to obtain a monoid we call reduced.

The substructure of \mathcal{D} induced by $U \cup X$ satisfies the same sentences of $\{\exists, \forall, \wedge, \vee\}$-FO as \mathcal{D}. We call it the $U-X$-core (as it is unique up to isomorphism).

Example of a reduced monoid

$$
\begin{array}{c|c}
0 & 0 \\
\hline 1 & 0234 \\
\hline 2 & 024 \\
\hline 3 & 0124 \\
\hline 4 & 0
\end{array}, \begin{array}{c|c}
0 & 0 \\
\hline 1 & 0234 \\
\hline 2 & 024 \\
\hline 3 & 0124 \\
\hline 4 & 44
\end{array} \quad U:=\{1,3\} \text { and } X:=\{0,4\} .
$$

Thus we are equivalent to the reduced monoid

$$
\left\langle\begin{array}{c|c}
0 & 0 \\
\hline 1 & 034 \\
\hline 3 & 014 \\
\hline 4 & 4
\end{array}, \begin{array}{c|c}
0 & 4 \\
\hline 1 & 014 \\
\hline 3 & 034 \\
\hline 4 & 0
\end{array}\right\rangle .
$$

Tractable cases

Case	Complexity	A-shop	E-shop	U - X-core	Relativises into	Dual
I	Logspace	yes	yes	$\|U\|=1,\|X\|=1$	$\{\wedge, \vee\}$-FO	I
II	NP-complete	yes	no	$\|U\|=1,\|X\| \geq 2$	$\{\exists, \wedge, \vee\}$-FO	III
III	co-NP-complete	no	yes	$\|U\| \geq 2,\|X\|=1$	$\{\forall, \vee, \wedge\}$-FO	II

Remaining case. when both $|U| \geq 2$ and $|X| \geq 2$.

Canonical shop and normal form of the reduced monoid

Canonical shop

Canonical shop and normal form of the reduced monoid

All shops in the reduced monoid are in a similar form up to permutation of $U \cap X, X \backslash U$ and $U \backslash X$, or sub-shops thereof.

Pspace-hardness

U and X have both size at least 2 .
We consider three cases:

- $U=X$.
- $U \neq X$ and $U \cap X \neq \emptyset$.
- $U \cap X=\emptyset$.

Pspace-hardness

U and X have both size at least 2 .
We consider three cases:

- $U=X$.
- shops are necessarily "permutations".
- We know from previous results that this case is Pspace-complete.
- $U \neq X$ and $U \cap X \neq \emptyset$.
- $U \cap X=\emptyset$.

Pspace-hardness

U and X have both size at least 2 .
We consider three cases:

- $U=X$.
- $U \neq X$ and $U \cap X \neq \emptyset$.
- one set can not be included in another.
- We complete the monoid by adding more shops to blur $U \cap X$ to a single element and $U \Delta X$ to a single element.
- This amounts to consider a Pspace-hard monoid from the 2-element case.
- $U \cap X=\emptyset$.

Pspace-hardness

U and X have both size at least 2.

We consider three cases:

- $U=X$.
- $U \neq X$ and $U \cap X \neq \emptyset$.
- $U \cap X=\emptyset$.
- we are unable to exhibit such a simple proof.
- we complete the monoid by adding all shops in the 3 -permuted form.
- thanks to the relative simplicity of this completed monoid, we can provide a generic hardness proof inspired from the 4 element case

Tetrachotomy for all domains

Tetrachotomy for $\{\exists, \forall, \wedge, \vee\}$-FO (\mathcal{D})							
Case	Complexity	A-shop	E-shop	$U-X$-core	Relativises into	Dual	
I	Logspace	yes	yes	$\|U\|=1,\|X\|=1$	$\{\wedge, \vee\}$-FO	I	
II	NP-complete	yes	no	$\|U\|=1,\|X\| \geq 2$	$\{\exists, \wedge, \vee\}$-FO	III	
III	co-NP-complete	no	yes	$\|U\| \geq 2,\|X\|=1$	$\{\forall, \vee, \wedge\}$-FO	II	
IV	Pspace-complete	no	no	$\|U\| \geq 2,\|X\| \geq 2$	$\{\exists, \forall, \vee, \wedge\}$-FO	IV	

Bonus. A notion of core for quantified constraints.

The meta problem is NP-complete.

The $\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}(\sigma)$ meta-problem takes as input a finite σ-structure \mathcal{D} and answers L, NP-complete, co-NP-complete or Pspace-complete, according to the complexity of $\{\exists, \forall, \wedge, \vee\}-\mathrm{FO}(\mathcal{D})$.
It is NP-hard even for some fixed and finite signature σ_{0}.

Conclusion

Fragment	Dual	Classification?		
$\{\exists, \wedge\}$ $\{\exists, \wedge,=\}$	$\{\forall, \vee\}$	CSP Dichotomy conjecture (P or NP-complete). solved for (undirected) graphs (Hell \& Nešetřil), in the boolean case (Schaefer), the 3 element case (Bu- latov) and the conservative case (Bulatov, Barto).		
$\{\exists, \forall, \wedge, \neq\}$ $\{\exists, \forall, \wedge,=\}$	$\{\exists, \forall, \vee\}$	P/Pspace-complete dichotomy in the boolean case (Schaefer). In general, no precise conjecture. Par- tial results exhibit P, NP-complete, and Pspace- complete complexities: via the algebraic approach by Chen et. al. or a combinatorial approach for graphs and digraphs (Madelaine \& Martin). Even the case of (undirected) graphs remains open.		
$\{\forall, \wedge, \vee\}$				Tetrachotomy

