
A tetrachotomy for positive first-order logic
without equality

Florent Madelaine Barnaby Martin

Université d’Auvergne

LICS’11
Toronto, Thursday the 23rd of June 2011

Model Checking problem

We are interested in the parameterisation of the model checking
problem by the model. Fix a logic L and fix D.

The problem “L (D)” has

I Input: a sentence ϕ of L .

I Question: does D |= ϕ?

We consider syntactic fragments L of FO and structures D that
are relational and finite.

Complexity of Model Checking
Fragment Dual Classification?
{∃,∨} {∀,∧}

Logspace{∃,∨,=} {∀,∧, 6=}
{∃,∧,∨} {∀,∧,∨}

Logspace if there is some element a s.t. all relations are a-valid, and NP-complete otherwise{∃,∧,∨,=} {∀,∧,∨, 6=}
{∃,∧} {∀,∨}

CSP dichotomy conjecture: P or NP-complete{∃,∧,=} {∀,∨, 6=}
{∃,∧, 6=} {∀,∨,=} NP-complete for |D| ≥ 3, reduces to Schaefer classes other-

wise.
{∃,∀,∧} {∃,∀,∨}

QCSP polychotomy: P, NP-complete, or Pspace-complete ?{∃,∀,∧,=} {∃,∀,∨, 6=}
{∃,∀,∧, 6=} {∃,∀,∨,=} Pspace-complete for |D| ≥ 3, reduces to Schaefer classes for

Quantified Sat otherwise.
{∀,∃,∧,∨} Positive equality free: the rest of this talk

{∀,∃,∧,∨,=} {∀,∃,∧,∨, 6=}
P when |D| ≤ 1, Pspace-complete otherwise{¬,∃,∀,∧,∨,=}

{¬,∃,∀,∧,∨} P when D contains only empty or full relations, Pspace-
complete otherwise

I See B. Martin’s paper on this for more details (CiE’08)

Tetrachotomy for {∃,∀,∧,∨}-FO

When |D| ≤ 4, we obtained a tetrachotomy between

Pspace-complete

NP-complete co-NP-complete

Logspace

Our approach was algebraic but direct : i.e. direct complexity
classification in suitable finite lattices [LICS’09, CSL’10].

I It turns out that we knew the “tractable” cases.

I We complete the classification by proving that all other cases
are Pspace-complete.

Tetrachotomy for {∃,∀,∧,∨}-FO

When |D| ≤ 4, we obtained a tetrachotomy between

Pspace-complete

NP-complete co-NP-complete

Logspace

Our approach was algebraic but direct : i.e. direct complexity
classification in suitable finite lattices [LICS’09, CSL’10].

I It turns out that we knew the “tractable” cases.

I We complete the classification by proving that all other cases
are Pspace-complete.

Tetrachotomy for {∃,∀,∧,∨}-FO

When |D| ≤ 4, we obtained a tetrachotomy between

Pspace-complete

NP-complete co-NP-complete

Logspace

Our approach was algebraic but direct : i.e. direct complexity
classification in suitable finite lattices [LICS’09, CSL’10].

I It turns out that we knew the “tractable” cases.

I We complete the classification by proving that all other cases
are Pspace-complete.

Some Ingredients of our approach

I Galois Connection

I “Tractability” via relativisation of quantifiers

Ferdinand Börner’s tips for Galois Connections

relation closed under preserved by “operation”

absence of ∃ partial

presence of ∀ “surjective”

presence of ∨ unary

presence of = functions
absence of = hyperfunctions

presence of 6= injective

presence of atomic ¬ full

For {∃,∀,∧,∨}-FO, we will need to consider the surjective hyper
endomorphisms of the structure D.

Surjective hyper endomorphisms

A surjective hyper-operation (shop) on a set D is a function

f : D → P(D)

that satisfies

I for all x ∈ D, f (x) 6= ∅ (totality).

I for all y ∈ D, there exists x ∈ D s.t. y ∈ f (x) (surjectivity).

A surjective hyper-endomorphism (she) of D is a surjective
hyper-operation f on D that preserves all extensional relations R
of D,

I if R(x1, . . . , xi) ∈ D then, for all y1 ∈ f (x1), . . . , yi ∈ f (xi),
R(y1, . . . , yi) ∈ D.

Example

preserves
0 {0}
1 {1}
2 {1, 2}

does not preserve
0 {0}
1 {1, 2}
2 {1, 2}

1 20

Example

preserves
0 {0}
1 {1}
2 {1, 2}

does not preserve
0 {0}
1 {1, 2}
2 {1, 2}

1 20

Example

preserves
0 {0}
1 {1}
2 {1, 2}

does not preserve
0 {0}
1 {1, 2}
2 {1, 2}

1 20

Example

preserves
0 {0}
1 {1}
2 {1, 2}

does not preserve
0 {0}
1 {1, 2}
2 {1, 2}

1 20

Example

preserves
0 {0}
1 {1}
2 {1, 2}

does not preserve
0 {0}
1 {1, 2}
2 {1, 2}

1 20

Example

preserves
0 {0}
1 {1}
2 {1, 2}

does not preserve
0 {0}
1 {1, 2}
2 {1, 2}

1 20

Monoid

1 20

D

has the following set of surjective hyper endomorphisms:

shE(D)=

{ 0 0

1 1

2 2

,
0 0

1 1

2 12

,
0 01

1 1

2 2

,
0 01

1 1

2 12

}

which forms in fact a monoid:

shE(D)=

〈 0 01

1 1

2 12

〉.

Monoid

1 20

D

has the following set of surjective hyper endomorphisms:

shE(D)={ 0 0

1 1

2 2

,
0 0

1 1

2 12

,
0 01

1 1

2 2

,
0 01

1 1

2 12

}

which forms in fact a monoid:

shE(D)=〈 0 01

1 1

2 12

〉.

Down Shop Monoid

I A set of shops on D is a down-shop-monoid, if it contains idD ,
and is closed under composition and sub-shops.

I We write 〈F 〉 for the down-shop-monoid generated by a set of
surjective hyper-operations F .

Down Shop Monoid

I A set of shops on D is a down-shop-monoid, if it contains idD ,
and is closed under composition and sub-shops.

I We write 〈F 〉 for the down-shop-monoid generated by a set of
surjective hyper-operations F .

The identity shop idS is defined by x 7→ {x}.

Down Shop Monoid

I A set of shops on D is a down-shop-monoid, if it contains idD ,
and is closed under composition and sub-shops.

I We write 〈F 〉 for the down-shop-monoid generated by a set of
surjective hyper-operations F .

Given shops f and g , define the composition g ◦ f by

x 7→ {z : ∃y z ∈ g(y) ∧ y ∈ f (x)}.

Down Shop Monoid

I A set of shops on D is a down-shop-monoid, if it contains idD ,
and is closed under composition and sub-shops.

I We write 〈F 〉 for the down-shop-monoid generated by a set of
surjective hyper-operations F .

A shop f is a sub-shop of g if f (x) ⊆ g(x), for all x .

Down Shop Monoid

I A set of shops on D is a down-shop-monoid, if it contains idD ,
and is closed under composition and sub-shops.

I We write 〈F 〉 for the down-shop-monoid generated by a set of
surjective hyper-operations F .

A suitable Galois Connection

Let shE(D) be the set of surjective hyper-endomorphisms of a
structure D.

Theorem (Madelaine, Martin ’09)

A relation is {∃,∀,∧,∨}-FO-expressible in a finite structure D, if
and only if, it is invariant under the surjective hyper
endomorphisms of D.

For finite D and D′ (s.t. D = D ′),
shE(D) ⊆ shE(D′) ⇒
{∃,∀,∧,∨}-FO(D′) ≤Logspace {∃,∀,∧,∨}-FO(D).

Motto. surjective hyper-endomorphisms control expressive power
and complexity.

A suitable Galois Connection

Let shE(D) be the set of surjective hyper-endomorphisms of a
structure D.

Theorem (Madelaine, Martin ’09)

A relation is {∃,∀,∧,∨}-FO-expressible in a finite structure D, if
and only if, it is invariant under the surjective hyper
endomorphisms of D.

For finite D and D′ (s.t. D = D ′),
shE(D) ⊆ shE(D′) ⇒
{∃,∀,∧,∨}-FO(D′) ≤Logspace {∃,∀,∧,∨}-FO(D).

Motto. surjective hyper-endomorphisms control expressive power
and complexity.

A suitable Galois Connection

Let shE(D) be the set of surjective hyper-endomorphisms of a
structure D.

Theorem (Madelaine, Martin ’09)

A relation is {∃,∀,∧,∨}-FO-expressible in a finite structure D, if
and only if, it is invariant under the surjective hyper
endomorphisms of D.

For finite D and D′ (s.t. D = D ′),
shE(D) ⊆ shE(D′) ⇒
{∃,∀,∧,∨}-FO(D′) ≤Logspace {∃, ∀,∧,∨}-FO(D).

Motto. surjective hyper-endomorphisms control expressive power
and complexity.

A suitable Galois Connection

Let shE(D) be the set of surjective hyper-endomorphisms of a
structure D.

Theorem (Madelaine, Martin ’09)

A relation is {∃,∀,∧,∨}-FO-expressible in a finite structure D, if
and only if, it is invariant under the surjective hyper
endomorphisms of D.

For finite D and D′ (s.t. D = D ′),
shE(D) ⊆ shE(D′) ⇒
{∃,∀,∧,∨}-FO(D′) ≤Logspace {∃, ∀,∧,∨}-FO(D).

Motto. surjective hyper-endomorphisms control expressive power
and complexity.

A suitable Galois Connection

Let shE(D) be the set of surjective hyper-endomorphisms of a
structure D.
If F is a set of surjective hyper-operations then Inv(F) is the set of
relations of which F are surjective hyper-endomorphisms.

Theorem (Madelaine, Martin ’10)

For a finite structure D and a set of shops F , the following holds,

I 〈D〉{∃,∀,∧,∨}-FO = Inv(shE(D)); and,

I 〈F 〉 = shE(Inv(F)).

Surjective hyper operations of special interest

Let D be a finite set with elements c , d . We define the following
types of surjective hyper operations.

Ac(x) :=

{
D if x = c
{?} otherwise.

e.g.
0 0

1 3

2 0123

3 12

i.e. Ac(c) = D

Ec(x) := {?, c} e.g.
0 012

1 1

2 12

3 13

i.e. Ec
−1(c) = D

∀∃c,d(x) :=

{
D if x = c
{d} otherwise.

e.g.
0 0123

1 2

2 2

3 2

Quantifier Elimination

Ac(c) = D Ed
−1(d) = D

∀∃c,d(c) = D ∀∃c,d−1(d) = D

presence of complexity drops to “algorithm”

Ac NP evaluate all ∀ to c

Ed co-NP evaluate all ∃ to d

∀∃c,d Logspace simultaneously do both

I We shall see that these special surjective hyper operations
characterise fully the complexity.

I For example, if a relational structure D is preserved by an
A-shop but no ∀∃-shop, the model checking problem
{∃,∀,∧,∨}-FO(D) is NP-complete

Warm-up: the boolean case
There are five monoids in this case.〈

0 01

1 01

〉
〈

0 0

1 01

〉
::uuuuuuuuu 〈

0 1

1 0

〉
OO

〈
0 01

1 1

〉
ddIIIIIIIII

〈
0 0

1 1

〉
ddIIIIIIIII

OO ::uuuuuuuuu

Theorem
If shE(D) is green above, then {∃, ∀,∧,∨}-fo(D) is in Logspace;
otherwise it is Pspace-complete.

The three-element case

The lattice is considerably richer. The problem class
{∃,∀,∧,∨}-fo(D) displays tetrachotomy, between

Logspace

NP-complete co-NP-complete

Pspace-complete

lattice in the 3 element case

��
��
��

�

� � �

�� � �

��
��
��

�

� � �

�� �� �

��
��
��

�

� � �

�� � ��

��
��

��
�	

� � �

��
� � �

��
��

��
��

��
�

� � �

�� � �
�

� � �

� � ��
�

��
��

��
��

��
	�

� � �

�� � �
�

� � �

��
� � �

�	
	�

��
��

��
��

� � �

��
� � �

�
� � �

�� � �

��
��
��

�

� � �

�� �� ��
�

��
��

��
�	

� � �

��
�

��
� �

��
��

��
��

��
��

�

� � �

� � ��
�

� � �

�� �� �

��
��
��

�

� � �

� � �

��
��
��

	

� � �

� �� �

�	
��
��

�

� � �

� � ��

��
��

��
�	

� � �

� � ��

��
��

��
��

� � �

�� � �

��
��

��
��

� � �

� �� �

��
��

��

�

� � �

� � �

�	
��

��
	�

� � �

��
� � �

�

��

��
��

� � �

��
� � �

��
	�

��

� � �

� ��
� �

��
��

��
	�

� � �

� ��
� �

��
��

��

� � �

� � �

��

�

��
�	

� � �

� � ��
�

��
��

��
�

� � �

� � ��
�

��
��

��
�

� � �

� � �

��
�

��
��

��
��

� � �

� � �
�

� � �

� � �

�

��
��

�

� � �

� �� ��

��
��

��
��

� � �

� ��
� �

�	
��

��
�	

��
�	

� � �

� �� �
�

� � �

� � ��
�

��
��

��
	�

��
�	

� � �

� ��
� �

�
� � �

� �� �

��
�	

��
��

	�
�

� � �

� �� �
�

� � �

� ��
� �

��
��

��
��

� � �

� � ��
�

��
	�

��
��

� � �

�� � ��

��
��

��
��

��
�	

� � �

� � ��
�

� � �

� � ��
�

�	
��

��
��

��
�

� � �

� � ��
�

� � �

� � ��
�

��
��

��
	�

��
��

� � �

� ��
� �

�
� � �

� � ��
��

��
��

	�
��

��

� � �

� ��
� �

�
� � �

� �� ��

��
��

��
�

��
��

�

� � �

� �� ��
�

� � �

� �� ��

��
��

��
��

��
��

	

� � �

� �� ��
�

� � �

� � ��
�

�	
��

��
��

��
��

� � �

�� � ��
�

� � �

�� � ��

��

�

��
��

��
�

� � �

�� � ��
�

� � �

� � ��
�

��
��

��
��

��
��

�

� � �

��
� � �

�
� � �

�� � ��

��
��
��

�

� � �

�� � ��
�

��
��

��
��

� � �

��
� � ��
�

��
��

�	
��

� � �

��
�

��
�

��
�

��
��

��
��

� � �

� �� ��

��
��

��
�	

��
�	

� � �

� � ��
�

�
� � �

� � ��

��
��

��
�	

��
�

� � �

� � ��
�

� � �

� � ��
�

��
��

��
��

��
��

	

� � �

��
� � �

�
� � �

� � ��

��
��

��
�	

��
��

� � �

� � ��
�

�
� � �

� � ��
�

��
��

��
��

��
�

� � �

� � ��
�

�
� � �

� � ��
�

��
��

��
��

��
��

�

� � �

� � ��
�

�
� � �

� � ��
�

��
��

��
��

� � �

� �� ��
�

��
��

��
��

� � �

� ��
�

��
�

��
	�

��
�	

��
	�

� � �

��
� � �

�
� � �

��
�

� �

�	

�

��
��

��
�	

� � �

��
� � �

�
� � �

��
�

� �

��
��

��
��

��
�	

� � �

��
� � �

�
� � �

��
� � �

��
	�

��

	

� � �

�� �� �

�

��

��
��

��
��

� � �

��
� � �

�
� � �

�� � �

��
��

��
��

��

� � �

�� � �
�

� � �

� ��
� �

��
��

��
��

��
	�

� � �

�� � �
�

� � �

��
� � �

��
��

��
��

� � �

�� ��
�

��

��
��

��
��

��
��

� � �

� �� �
�

� � �

�� � ��

��

�

��
��

� � �

��
� � ��

��
��

�	
�	

� � �

��
�

�� ��

��
��

��
��

��
	�

� � �

� �� �
�

� � �

��
� � �

��
��

��
��

��

� � �

� �� �
�

� � �

� ��
� �

��
��

��
	�

��
��

� � �

� ��
� �

�
� � �

� �� �

�	
��

��
��

��

� � �

� ��
� �

�
� � �

� ��
�

�

��
��

��
	�

��
��

� � �

� ��
� �

�
� � �

� ��
�

�

��
��

��
��

��
��

� � �

� ��
� �

�
� � �

� ��
� �

��
��

��
��

� � �

� ��
�

��

��
��

��
��

��
�

� � �

�� � �
�

� � �

� �� ��

��
��

��
��

� � �

��
�

�� �

�	
��

��

	

��

� � �

�� �� �
�

� � �

� ��
� �

��
��

��
	�

��

	

� � �

�� �� �
�

� � �

�� �� �

��
��

��
�	

��
�

	

� � �

��
� � �

�
� � �

�� �� �

��

�

��

�

� � �

�� ��
� �

��
��

��
�	

��
��

��
�

� � �

� � ��
�

�
� � �

� � ��
�

�
� � �

� � ��
�

��
��

��
��

	�
��

	�
��

� � �

� � ��
�

�
� � �

� � ��
�

� � �

� � ��
�

��
��

��
	�

��

�

��
�	

� � �

� ��
� �

�
� � �

� � �
�

� � �

� � ��
�

�

��

��
	�

��

�

��
��

��
�	

� � �

� ��
� �

�
� � �

� �� ��
�

� � �

� �� ��
�

� � �

� � ��
�

��
��

��
	�

��
��

��
�	

� � �

� ��
� �

�
� � �

� �� ��
�

� � �

� � ��
�

��
	�

��
��

��
�	

��
	�

� � �

��
� � �

�
� � �

��
� � �

�
� � �

��
� � �

��

�

��
��

��
��

��
�	

��
	�

� � �

��
� � �

�
� � �

��
� � �

�
� � �

��
� � �

�
� � �

��
� � �

��

�

��
	�

��
��

��
��

��

� � �

� ��
� �

�
� � �

� ��
� �

�
� � �

� ��
� �

�
� � �

� ��
� �

��
	�

��
��

��
��

��
�

� � �

��
� � �

�
� � �

�� � �
�

� � �

� � ��
�

�

��

��
��

��
��

��
	�

� � �

��
� � �

�
� � �

�� � �
�

� � �

��
� � �

��
��

��
	�

��
	�

��

	

��

� � �

��
� � �

�
� � �

�� �� �
�

� � �

�� �� �
�

� � �

� ��
� �

��
��

��

��
	�

��

� � �

� � �
�

� � �

��
� � �

�
� � �

� ��
� �

��
��

��
��

��
�	

��
�

� � �

� �� �
�

� � �

��
�

� �
�

� � �

� ��
� �

�

��

��
�	

��
��

��
��

��
�

� � �

� � ��
�

�
� � �

� � ��
�

�
� � �

� � ��
�

�
� � �

� � ��
�

�

	�

��
��

��

�

��
	�

� � �

��
� � �

�
� � �

� � �
�

� � �

��
� � �

��
	�

��
��

��
��

��
��

�
��

� � �

� � �
�

� � �

� � �
�

� � �

� � �
�

� � �

� � �
�

� � �

� � �

��

�

��
��

��
�	

��
�

� � �

� � ��
�

� � �

� � ��
�

�
� � �

� � ��
�

�

�

��
	�

��
��

��
�	

� � �

� ��
� �

�
� � �

� � ��
�

� � �

� � ��
�

��
��

��
��

��
�

� � �

��
� � �

�
� � �

� � ��
�

��
��

��
��

��
�	

��
�

� � �

��
� � �

�
� � �

� � ��
�

� � �

� � ��
�

��
��

��
��

��
��

��

� � �

� � �
�

� � �

��
� � �

�
� � �

� � ��
�

��
��

��
	�

��
��

��

� � �

� ��
� �

�
� � �

� �� �
�

� � �

� ��
� �

��
��

��
��

��
��

��
��

� � �

��
� � �

�
� � �

�� � ��
�

� � �

� � ��
�

��
��

��
�	

��
�

	�
�

� � �

��
� � �

�
� � �

�� �� �
�

� � �

� ��
� �

��
��

��
��

��
	�

� � �

��
� � �

�
� � �

��
�

� �

��
�	

��
�	

��
�

� � �

��
� � �

�
� � �

� ��
�

�

�	
��

��

��
�	

��
�

� � �

� � �
�

� � �

� � ��
�

�
� � �

� � ��
�

�

��

��
��

��
��

��
��

��
�

� � �

��
� � �

�
� � �

�� � ��
�

� � �

�� � ��
�

� � �

� � ��
�

��
��

��
	�

��
��

��

� � �

� ��
� �

�
� � �

� ��
� �

�
� � �

� ��
� �

�	
��

��
	�

��
�	

��

� � �

� ��
� �

�
� � �

� �� �
�

� � �

� ��
� �

�

��

��
	�

��
�	

��
�	

� � �

� ��
� �

�
� � �

� �� �
�

� � �

� � ��
�

�

��

��
	�

��

� � �

� ��
� �

�
� � �

� ��
�

�

��
��

��
��

�	
��

�

� � �

� � �
�

� � �

� ��
� �

�
� � �

� ��
� �

��
��

��
��

��
��

��
	�

� � �

��
� � �

�
� � �

�� � �
�

� � �

��
� � �

��
��

��
��

��
	�

��

� � �

�� � �
�

� � �

��
�

� �
�

� � �

� ��
� �

��
��

��
�	

��
��

	

� � �

� ��
� �

�
� � �

� � ��
�

��
��

��
��

	�
��

� � �

� � ��
�

�
� � �

� � ��
�

Most of these are green “L” cases. The bottom of the lattice is

〈
0 0

1 0

2 012

〉 〈
0 1

1 1

2 012

〉 〈
0 2

1 012

2 2

〉

〈
0 0

1 012

2 0

〉 〈
0 012

1 1

2 1

〉 〈
0 012

1 2

2 2

〉

〈
0 0

1 02

2 01

〉 〈
0 0

1 01

2 02

〉
oo

〈
0 012

1 1

2 2

〉
//
〈

0 012

1 2

2 1

〉

〈
0 12

1 1

2 10

〉 〈
0 01

1 1

2 12

〉
oo

〈
0 0

1 1

2 2

〉

		

��

��

����������������������

���������������������������������

		���

�� ��66666666666666666666

��...............................

��***

ZZ66666666666666666666

OO DD��������������������

WW...............................

HH GG������������������������������� 〈
0 0

1 012

2 2

〉
//
〈

0 2

1 012

2 0

〉

〈
0 12

1 02

2 2

〉 〈
0 02

1 12

2 2

〉
oo

〈
0 0

1 1

2 012

〉
//
〈

0 1

1 0

2 012

〉

〈
0 0

1 1

2 12

〉

ZZ

44

		

〈
0 0

1 1

2 02

〉

\\

66

��

〈
0 0

1 01

2 2

〉

\\

EE

		

〈
0 0

1 12

2 2

〉

YY

AA

		

〈
0 02

1 1

2 2

〉

ZZ

FF

��

〈
0 01

1 1

2 2

〉

]]

LL

		

〈
0 0

1 2

2 1

〉

RR II

��

��

〈
0 2

1 1

2 0

〉

UU JJ

��

��

〈
0 1

1 0

2 2

〉

aa II

��

��

〈
0 1

1 2

2 0

〉

��〈
0 1

1 2

2 0

,
0 0

1 2

2 1

〉

〈
0 0

1 12

2 12

〉

��

〈
0 02

1 1

2 02

〉

��

〈
0 01

1 01

2 2

〉

��〈
0 12

1 0

2 0

〉 〈
0 1

1 02

2 1

〉 〈
0 2

1 2

2 10

〉

Theorem (Madelaine & Martin 2009)

If shE(D) is green, blue or red, above, then {∃,∀,∧,∨}-fo(D) is
in L, is NP-complete or is co-NP-complete, respectively; otherwise
it is Pspace-complete.

Maximal Pspace-complete monoids

There are four maximal Pspace-complete monoids in the 3 element
case (drawn boxed below).〈

0 0

1 0

2 012

〉 〈
0 1

1 1

2 012

〉 〈
0 2

1 012

2 2

〉

〈
0 0

1 012

2 0

〉 〈
0 012

1 1

2 1

〉 〈
0 012

1 2

2 2

〉

〈
0 0

1 02

2 01

〉 〈
0 0

1 01

2 02

〉
oo

〈
0 012

1 1

2 2

〉
//
〈

0 012

1 2

2 1

〉

〈
0 12

1 1

2 10

〉 〈
0 01

1 1

2 12

〉
oo

〈
0 0

1 1

2 2

〉

		

��

��

�����������������������

���������������������������������

		��

�� ��777777777777777777777

��///////////////////////////////

��++

[[777777777777777777777

OO CC���������������������

WW///////////////////////////////

HH GG������������������������������� 〈
0 0

1 012

2 2

〉
//
〈

0 2

1 012

2 0

〉

〈
0 12

1 02

2 2

〉 〈
0 02

1 12

2 2

〉
oo

〈
0 0

1 1

2 012

〉
//
〈

0 1

1 0

2 012

〉

〈
0 0

1 1

2 12

〉

[[

44

〈
0 0

1 1

2 02

〉

]]

66

��

〈
0 0

1 01

2 2

〉

]]

EE

〈
0 0

1 12

2 2

〉

YY

@@

〈
0 02

1 1

2 2

〉

[[

EE

��

〈
0 01

1 1

2 2

〉

^^

KK

〈
0 0

1 2

2 1

〉

RR II

��

��

〈
0 2

1 1

2 0

〉

UU II

��

��

〈
0 1

1 0

2 2

〉

bb II

��

��

〈
0 1

1 2

2 0

〉

��〈
0 1

1 2

2 0

,
0 0

1 2

2 1

〉

〈
0 0

1 12

2 12

〉

��

〈
0 02

1 1

2 02

〉

��

〈
0 01

1 01

2 2

〉

��〈
0 12

1 0

2 0

〉 〈
0 1

1 02

2 1

〉 〈
0 2

1 2

2 10

〉

Maximal Pspace-complete monoids

There are four maximal Pspace-complete monoids in the 3 element
case (drawn boxed below).〈

0 0

1 0

2 012

〉 〈
0 1

1 1

2 012

〉 〈
0 2

1 012

2 2

〉

〈
0 0

1 012

2 0

〉 〈
0 012

1 1

2 1

〉 〈
0 012

1 2

2 2

〉

〈
0 0

1 02

2 01

〉 〈
0 0

1 01

2 02

〉
oo

〈
0 012

1 1

2 2

〉
//
〈

0 012

1 2

2 1

〉

〈
0 12

1 1

2 10

〉 〈
0 01

1 1

2 12

〉
oo

〈
0 0

1 1

2 2

〉

		

��

��

�����������������������

���������������������������������

		��

�� ��777777777777777777777

��///////////////////////////////

��++

[[777777777777777777777

OO CC���������������������

WW///////////////////////////////

HH GG������������������������������� 〈
0 0

1 012

2 2

〉
//
〈

0 2

1 012

2 0

〉

〈
0 12

1 02

2 2

〉 〈
0 02

1 12

2 2

〉
oo

〈
0 0

1 1

2 012

〉
//
〈

0 1

1 0

2 012

〉

〈
0 0

1 1

2 12

〉

[[

44

〈
0 0

1 1

2 02

〉

]]

66

��

〈
0 0

1 01

2 2

〉

]]

EE

〈
0 0

1 12

2 2

〉

YY

@@

〈
0 02

1 1

2 2

〉

[[

EE

��

〈
0 01

1 1

2 2

〉

^^

KK

〈
0 0

1 2

2 1

〉

RR II

��

��

〈
0 2

1 1

2 0

〉

UU II

��

��

〈
0 1

1 0

2 2

〉

bb II

��

��

〈
0 1

1 2

2 0

〉

��〈
0 1

1 2

2 0

,
0 0

1 2

2 1

〉

〈
0 0

1 12

2 12

〉

��

〈
0 02

1 1

2 02

〉

��

〈
0 01

1 01

2 2

〉

��〈
0 12

1 0

2 0

〉 〈
0 1

1 02

2 1

〉 〈
0 2

1 2

2 10

〉

Maximal Pspace-complete monoids

There are 20 maximal Pspace-complete monoids in the 4 element
case.

Class I Class II Class III Class IV Class V

〈
0 1

1 0

2 012

3 013

,
0 0

1 1

2 013

3 012

〉 〈
0 23

1 23

2 01

3 01

〉 〈
0 3

1 3

2 3

3 012

〉 〈
0 2

1 2

2 01

3 3

,
0 01

1 01

2 3

3 2

〉 〈
0 1

1 0

2 2

3 3

,
0 0

1 2

2 1

3 3

,
0 0

1 1

2 3

3 2

〉

〈
0 2

1 012

2 0

3 023

,
0 0

1 023

2 2

3 012

〉 〈
0 13

1 02

2 13

3 02

〉 〈
0 2

1 2

2 013

3 2

〉 〈
0 1

1 02

2 1

3 3

,
0 02

1 3

2 02

3 1

〉

〈
0 3

1 013

2 023

3 0

,
0 0

1 023

2 013

3 3

〉 〈
0 12

1 03

2 03

3 12

〉 〈
0 1

1 023

2 1

3 1

〉 〈
0 1

1 03

2 2

3 1

,
0 03

1 2

2 1

3 03

〉

〈
0 012

1 2

2 1

3 123

,
0 123

1 1

2 2

3 012

〉 〈
0 123

1 0

2 0

3 0

〉 〈
0 12

1 0

2 0

3 3

,
0 3

1 12

2 12

3 0

〉

〈
0 013

1 3

2 123

3 1

,
0 123

1 1

2 013

3 3

〉 〈
0 13

1 0

2 2

3 0

,
0 2

1 13

2 0

3 13

〉

〈
0 023

1 123

2 3

3 2

,
0 123

1 023

2 2

3 3

〉 〈
0 23

1 1

2 0

3 0

,
0 1

1 0

2 23

3 23

〉

The hard part is in proving there are no others.

Limitation of the “classification by lattice” method

Domain Classification Method Maximally hard monoids

2 done by hand 1

3 done by hand,
computer
checked

4

4 done by computer 20

5 failed attempt by computer 161

Stuck. We need to move away from the lattice.

Tetrachotomy for all finite domains

Theorem (Madelaine & Martin 2011)

Let D be any finite structure.

I. If shE(D) contains both an A-shop and an E-shop, then
{∃,∀,∧,∨}-FO(D) is in Logspace.

II. If shE(D) contains an A-shop but no E-shop, then
{∃,∀,∧,∨}-FO(D) is NP-complete.

III. If shE(D) contains an E-shop but no A-shop, then
{∃,∀,∧,∨}-FO(D) is co-NP-complete.

IV. If shE(D) contains neither an A-shop nor an E-shop, then
{∃, ∀,∧,∨}-FO(D) is in Pspace-complete.

Proved for domain size 2,3,4 (using the lattice).

Settled for larger domains (without the lattice).

Ingredients of our approach

Previous ingredients:

I Galois Connection

I “Tractability” via relativisation of quantifiers

New ingredients:

I A suitable notion of core for {∃,∀,∧,∨}-FO
I Normal form for the monoid associated with the core of a

structure D
I Generic hardness proof

Core

For CSP there is the well-established notion
of core. The core of a structure D is a
minimal induced substructure X ⊆ D all of
whose endomorphisms are automorphisms.

It is well-known that X is unique and CSP(D) = CSP(X).

Core and relativisation

Another way to define the core is as a minimal subset X ⊆ D such
that for all positive conjunctive φ(x):

D |= ∃x φ(x) iff D |= ∃x∈ X φ(x).

Does there exist a “core”-like notion for {∃,∀,∧,∨}-fo?

Yes.
But we need 2 relativising sets U (universal) and X (existential).

Core and relativisation

Another way to define the core is as a minimal subset X ⊆ D such
that for all positive conjunctive φ(x):

D |= ∃x φ(x) iff D |= ∃x∈ X φ(x).

Does there exist a “core”-like notion for {∃,∀,∧,∨}-fo?

Yes.
But we need 2 relativising sets U (universal) and X (existential).

Core and relativisation

Another way to define the core is as a minimal subset X ⊆ D such
that for all positive conjunctive φ(x):

D |= ∃x φ(x) iff D |= ∃x∈ X φ(x).

Does there exist a “core”-like notion for {∃,∀,∧,∨}-fo?

Yes.
But we need 2 relativising sets U (universal) and X (existential).

U-X -core

Theorem (Madelaine & Martin, 2011)

The following are equivalent

1. There is f ∈ shE(D) s.t. f (U) = D and f −1(X) = D

2. for all positive equality-free φ, D |= φ⇔ D |= φ[∀/U,∃/X].

We may minimise X and U, then maximise their intersection to
obtain a monoid we call reduced.

The substructure of D induced by U ∪ X satisfies the same
sentences of {∃,∀,∧,∨}-FO as D. We call it the U − X -core (as
it is unique up to isomorphism).

U-X -core

Theorem (Madelaine & Martin, 2011)

The following are equivalent

1. There is f ∈ shE(D) s.t. f (U) = D and f −1(X) = D

2. for all positive equality-free φ, D |= φ⇔ D |= φ[∀/U,∃/X].

We may minimise X and U, then maximise their intersection to
obtain a monoid we call reduced.

The substructure of D induced by U ∪ X satisfies the same
sentences of {∃,∀,∧,∨}-FO as D. We call it the U − X -core (as
it is unique up to isomorphism).

Example of a reduced monoid

Consider the domain 5 maximal monoid 〈
0 0

1 0234

2 024

3 0124

4 4

,
0 4

1 0124

2 024

3 0234

4 0

〉.

0 0

1 0234

2 024

3 0124

4 0

,

0 0

1 0234

2 024

3 0124

4 44

U := {1, 3} and X := {0, 4}.

Thus we are equivalent to the reduced monoid

〈
0 0

1 034

3 014

4 4

,

0 4

1 014

3 034

4 0

〉.

Tractable cases

Case Complexity A-shop E -shop U-X -core Relativises into Dual

I Logspace yes yes |U| = 1, |X | = 1 {∧,∨}-fo I

II NP-complete yes no |U| = 1, |X | ≥ 2 {∃,∧,∨}-fo III

III co-NP-complete no yes |U| ≥ 2, |X | = 1 {∀,∨,∧}-fo II

Remaining case. when both |U| ≥ 2 and |X | ≥ 2.

Canonical shop and normal form of the reduced monoid

U X

U X

Canonical shop

3-permuted form

All shops in the reduced monoid are in a similar form up to
permutation of U ∩ X , X \ U and U \ X , or sub-shops thereof.

Canonical shop and normal form of the reduced monoid

U X U X

Canonical shop 3-permuted form

All shops in the reduced monoid are in a similar form up to
permutation of U ∩ X , X \ U and U \ X , or sub-shops thereof.

Pspace-hardness
U and X have both size at least 2.
We consider three cases:

I U = X .

I shops are necessarily “permutations”.
I We know from previous results that this case is

Pspace-complete.

I U 6= X and U ∩ X 6= ∅.

I one set can not be included in another.
I We complete the monoid by adding more shops to blur U ∩ X

to a single element and U∆X to a single element.
I This amounts to consider a Pspace-hard monoid from the

2-element case.

I U ∩ X = ∅.

I we are unable to exhibit such a simple proof.
I we complete the monoid by adding all shops in the 3-permuted

form.
I thanks to the relative simplicity of this completed monoid, we

can provide a generic hardness proof inspired from the 4
element case

Pspace-hardness
U and X have both size at least 2.
We consider three cases:

I U = X .
I shops are necessarily “permutations”.
I We know from previous results that this case is

Pspace-complete.

I U 6= X and U ∩ X 6= ∅.

I one set can not be included in another.
I We complete the monoid by adding more shops to blur U ∩ X

to a single element and U∆X to a single element.
I This amounts to consider a Pspace-hard monoid from the

2-element case.

I U ∩ X = ∅.

I we are unable to exhibit such a simple proof.
I we complete the monoid by adding all shops in the 3-permuted

form.
I thanks to the relative simplicity of this completed monoid, we

can provide a generic hardness proof inspired from the 4
element case

Pspace-hardness
U and X have both size at least 2.
We consider three cases:

I U = X .

I shops are necessarily “permutations”.
I We know from previous results that this case is

Pspace-complete.

I U 6= X and U ∩ X 6= ∅.
I one set can not be included in another.
I We complete the monoid by adding more shops to blur U ∩ X

to a single element and U∆X to a single element.
I This amounts to consider a Pspace-hard monoid from the

2-element case.

I U ∩ X = ∅.

I we are unable to exhibit such a simple proof.
I we complete the monoid by adding all shops in the 3-permuted

form.
I thanks to the relative simplicity of this completed monoid, we

can provide a generic hardness proof inspired from the 4
element case

Pspace-hardness
U and X have both size at least 2.
We consider three cases:

I U = X .

I shops are necessarily “permutations”.
I We know from previous results that this case is

Pspace-complete.

I U 6= X and U ∩ X 6= ∅.

I one set can not be included in another.
I We complete the monoid by adding more shops to blur U ∩ X

to a single element and U∆X to a single element.
I This amounts to consider a Pspace-hard monoid from the

2-element case.

I U ∩ X = ∅.
I we are unable to exhibit such a simple proof.
I we complete the monoid by adding all shops in the 3-permuted

form.
I thanks to the relative simplicity of this completed monoid, we

can provide a generic hardness proof inspired from the 4
element case

Tetrachotomy for all domains

Tetrachotomy for {∃,∀,∧,∨}-FO(D)

Case Complexity A-shop E -shop U-X -core Relativises into Dual

I Logspace yes yes |U| = 1, |X | = 1 {∧,∨}-fo I

II NP-complete yes no |U| = 1, |X | ≥ 2 {∃,∧,∨}-fo III

III co-NP-complete no yes |U| ≥ 2, |X | = 1 {∀,∨,∧}-fo II

IV Pspace-complete no no |U| ≥ 2, |X | ≥ 2 {∃, ∀,∨,∧}-fo IV

Bonus. A notion of core for quantified constraints.

The meta problem is NP-complete.

The {∃, ∀,∧,∨}-FO(σ) meta-problem takes as input a finite
σ-structure D and answers L, NP-complete, co-NP-complete or
Pspace-complete, according to the complexity of
{∃,∀,∧,∨}-fo(D).
It is NP-hard even for some fixed and finite signature σ0.

Conclusion

Fragment Dual Classification?

{∃,∧} {∀,∨} CSP Dichotomy conjecture (P or NP-complete).
solved for (undirected) graphs (Hell & Nešeťril), in
the boolean case (Schaefer), the 3 element case (Bu-
latov) and the conservative case (Bulatov, Barto).

{∃,∧,=} {∀,∨, 6=}

{∃,∀,∧} {∃,∀,∨} P/Pspace-complete dichotomy in the boolean case
(Schaefer). In general, no precise conjecture. Par-
tial results exhibit P, NP-complete, and Pspace-
complete complexities: via the algebraic approach by
Chen et. al. or a combinatorial approach for graphs
and digraphs (Madelaine & Martin). Even the case
of (undirected) graphs remains open.

{∃,∀,∧,=} {∃,∀,∨, 6=}

{∀,∃,∧,∨} Tetrachotomy

	Introduction
	Tetrachotomy
	Galois Connection
	Relativisation

