# Rigorous Approximated Determinization of Weighted Automata

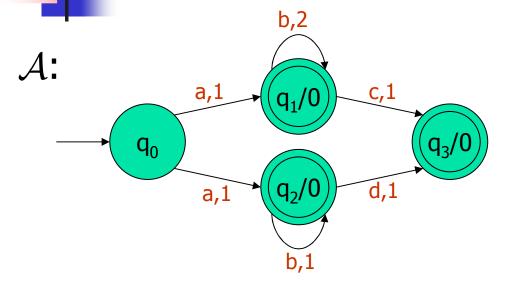
Benjamin Aminof (Hebrew University)
Orna Kupferman (Hebrew University)
Robby Lampert (Weizmann Institute)
Israel

## Outline

- Weighted automata
- Determinizability of weighted automata
- Mohri's determinization algorithm
- Approximated-determinization algorithm
- Correctness and termination
- Summary
- <sub>n</sub> Future work

## 4

## Weighted Automata (WFA)



weight functions

c: transitions  $\to \mathbb{R}^{\geq 0}$ 

f: accepting states  $\to \mathbb{R}^{\geq 0}$ 

$$cost(w)=(1+2+1)+0=4$$

$$cost(w)=(1+1+1+1)+0=4$$

$$cost(w) = min\{5,3\} = 3$$

## Weighted Automata – language

- A run of  $\mathcal{A}$  on a word  $w=w_1...w_n$  is a sequence  $r=r_0\,r_1\,r_2\,...\,r_n$  over Q such that  $r_0\in Q_0$  and for all  $1\leq i\leq n$ , we have  $r_{i-1}\stackrel{w_i}{\longrightarrow} r_i$ .
- A run r is accepting  $\leftrightarrow$  r<sub>n</sub> is accepting. (standard finite-word accepting condition)
- <sub>n</sub>  $L(A) = \{w: A \text{ has an accepting run on } w\}$

## W

#### Weighted Automata – costs

A cost of a run  $r=r_0 r_1 r_2 ... r_n$  is  $cost(r) = \sum_{i=1}^{n} c(r_{i-1} w_i r_i) + f(r_n)$ 

defined only for accepting runs

A cost of a word  $w=w_1...w_n$  is  $cost(w)=min_{accepting runs r of A on w} cost(r)$ If  $w \notin L(A)$  then  $cost(w)=\infty$ .



A WFA  $\mathcal{A}$  is trim if each of its states is reachable from some initial state, and has a reachable accepting state.

A WFA  $\mathcal{A}$  is unambiguous (single-run) if it has at most one accepting run on every word.

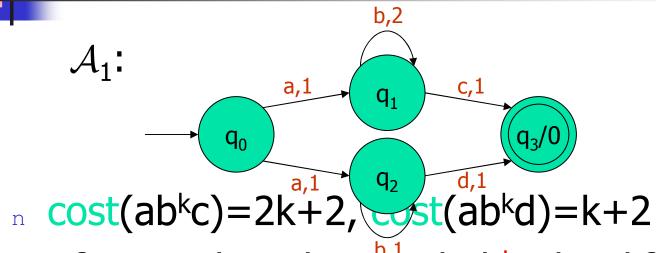


#### **Applications of WFA**

- formal verification of quantitative properties
- n automatic speech recognition
- n image compression
- pattern matching (widely used in computational biology)

n ...

## $A_1$ is non-determinizable



- After reading the word abk, the difference between the costs of reading c and d is k.
- For i≠j, a deterministic WFA must be in different states after reading abi and abj.
- <sub>n</sub> A deterministic WFA must have  $\infty$  states.

### Determinizability

- Weighted automata are not necessarily determinizable.
- n To decide whether a given weighted automaton is determinizable is an open question.
- A sufficient condition for determinizability + algorithm [Mohri '97].

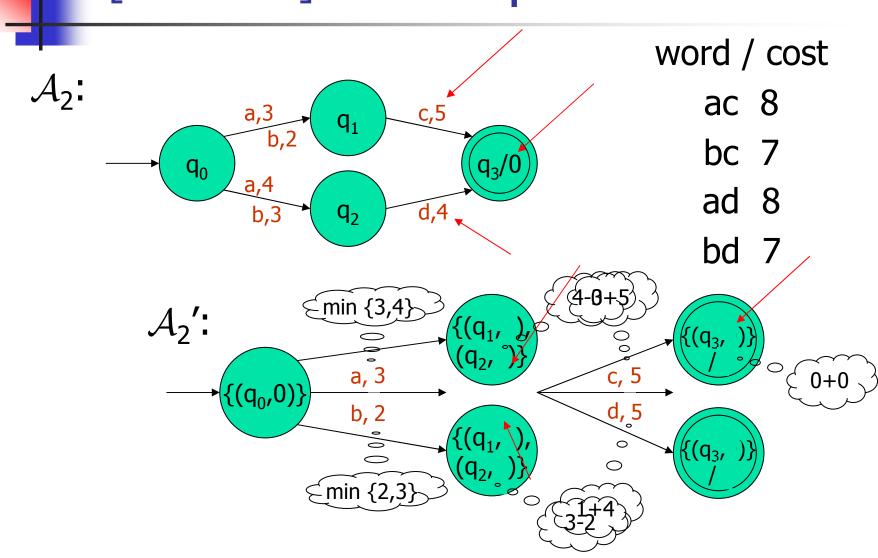


#### A sufficient condition [Mohri '97]

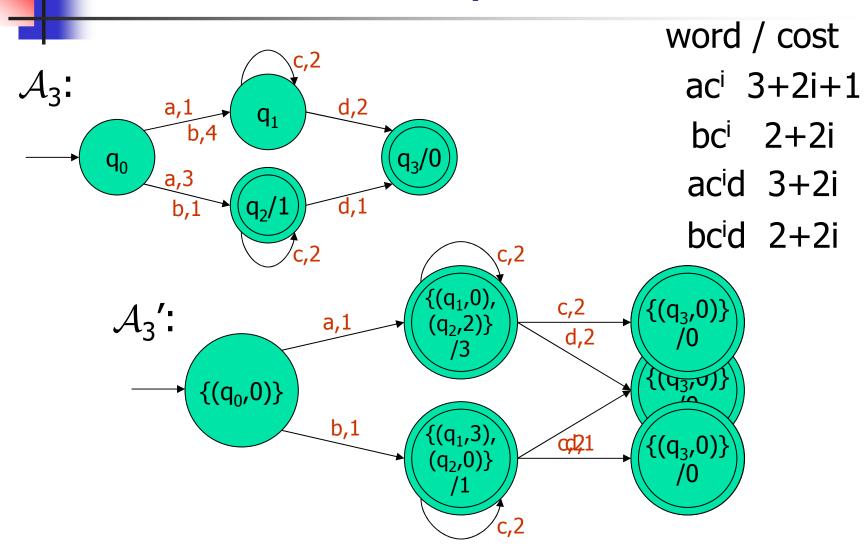
- The twins property: For every two states  $q,q' \in Q$ , and two words  $u,v \in \Sigma^*$ , if  $q,q' \in \delta(Q_0,u)$ ,  $q \in \delta(q,v)$ , and then  $cost(q,v,q) = cost(q',v,q')' \in \delta(q',v)$ ,
- In case the automaton is trim (no empty states) and unaming ous (single-run), the two property characterization.

## Determinization algorithm

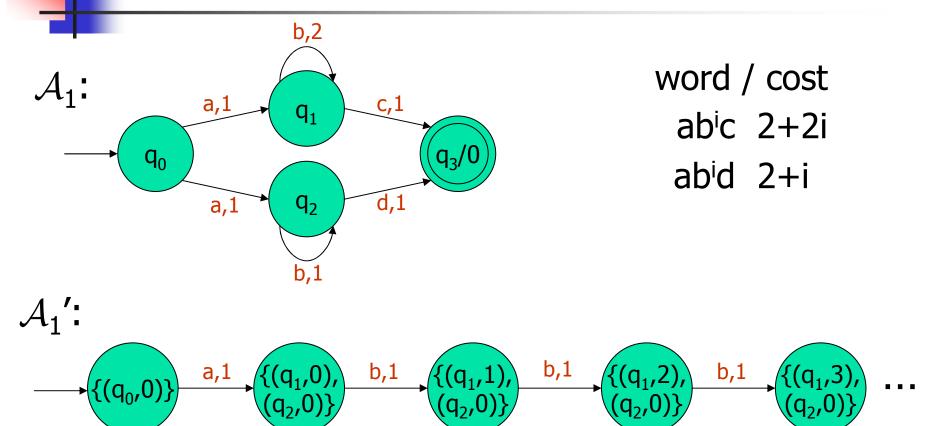
[Mohri '97] - example



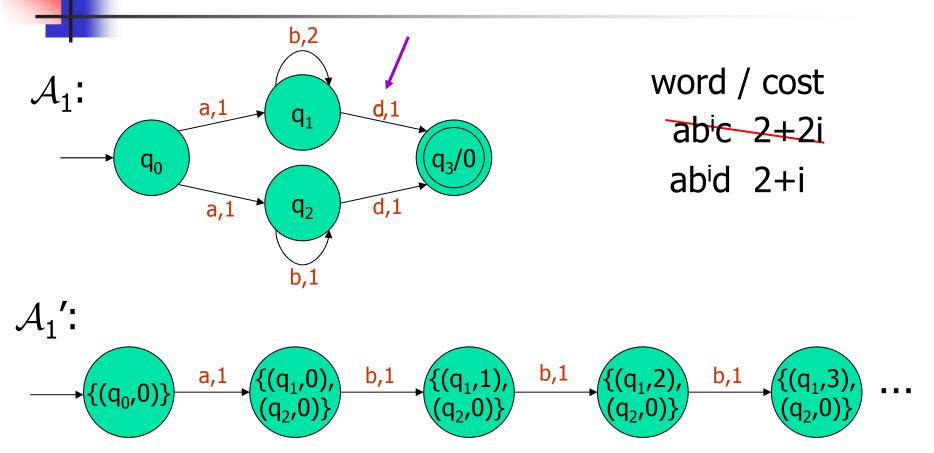
## Determinization algorithm - another example



## Determinization algorithm - non-determinizable example



# Determinization algorithm - a bad determinizable example





## Mohri's algorithm - remarks

- Mohri's algorithm terminates iff the original automaton has the twins property.
- For trim and unambiguous WFAs, there is a polynomial algorithm for testing the twins property.
- There are determinizable WFAs that do not satisfy the twins property.

## 4

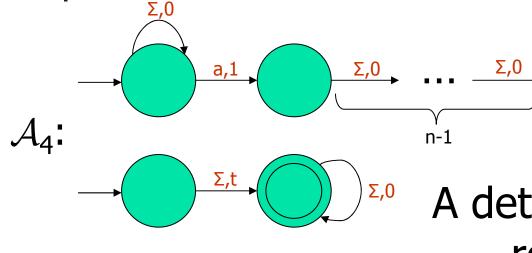
### Approximated determinization

Given a WFA  $\mathcal{A}$  and an approximation factor  $t\geq 1$ , construct a deterministic WFA  $\mathcal{A}'$ , such that for every word w we have  $cost(\mathcal{A},w) \leq cost(\mathcal{A}',w) \leq t \cdot cost(\mathcal{A},w)$ .

- When exact determinization is impossible.
- When the result of exact determinization is too large.



#### Succinctness



$$L(\mathcal{A}_{A}) = \Sigma^{+}$$

$$cost(w) = \begin{cases} \infty & w = \epsilon \\ 1t & w \in L_n \\ t & w \in \Sigma^+ \setminus L_n \end{cases}$$

A deterministic equivalent requires 2<sup>n</sup> states

 $L_n = \{ \Sigma^* \cdot a \cdot \Sigma^{n-1} \}$ 

A t-approximate deterministic?

2 states



## Approx. determinization algorithm [Buchsbaum-Giancarlo-Westbrook '01]

- Based on Mohri's algorithm.
- Relaxes the condition for unification of states rather than requiring residuals of corresponding states to be identical, requires them to be close (within  $1+\epsilon$  of the smaller one).
- No guarantees about the new costs.
- No sufficient condition for termination.



#### Determinization up to a factor t

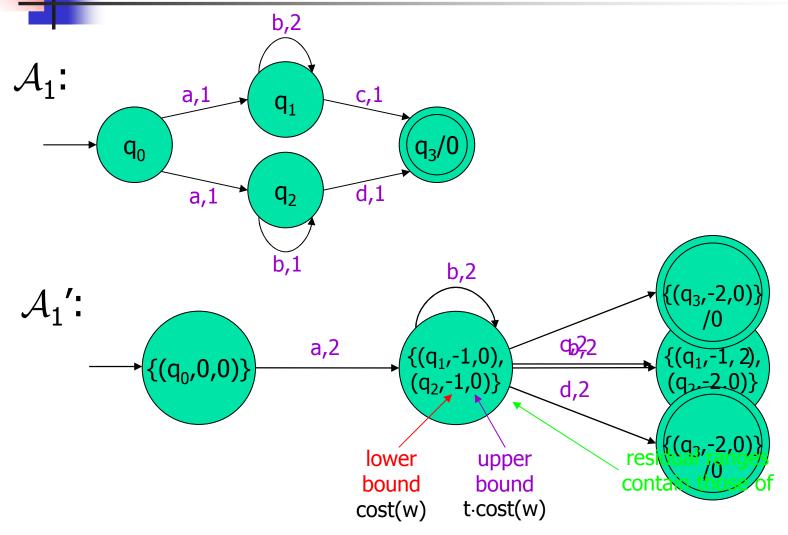
The new cost of any accepted word w is between cost(w) and t.cost(w).

#### n differs from Mohri's algorithm

- Weights are multiplied by t.
- For each state in a subset we maintain a range of residues rather than one.
- The criterion for unification of states is relaxed (they may be non-identical).

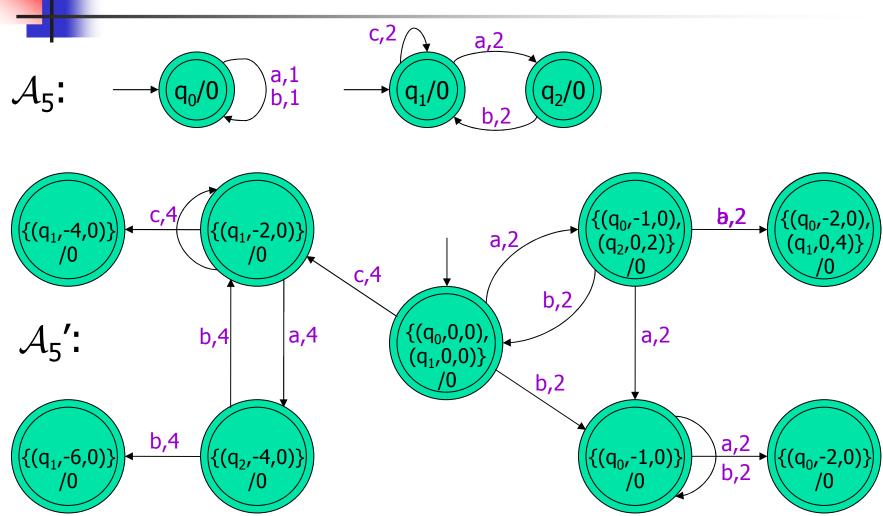


## 2-determinization of $A_1$



## 4

## 2-determinization of $A_2$





## Correctness of the algorithm

Thm: If the algorithm terminates on a given WFA A, with the result A', then for every word w we have

 $cost(A, w) \le cost(A', w) \le t \cdot cost(A, w)$ .



## Termination of the algorithm

- Thm: If a WFA has the t-twins property, then the algorithm terminates on it.
  - The weights and the factor t are rational.
- Thm: For trim unambiguous WFAs, a WFA is t-determinizable iff it has the t-twins property.
- Thm: Deciding the t-twins property for trim unambiguous WFAs can be done in polynomial time.

## Summary

- Why approximate determinization?
  - Non-determinizable WFA
  - Equivalent deterministic is large
- t-determinization algorithm
  - Weights multiplied by t
  - Use ranges rather than single residues
  - Collapse to a state whose ranges are contained in mine
- n A sufficient condition
  - The t-twins property
  - For unambiguous WFAs characterizes determinizability
  - Decidable in polynomial time

#### Future work

- Generalize the termination proof to the case where the weights and the factor t are real numbers ( $\mathbb{R}^{\geq 0}$ ).
- An algorithm to decide whether a WFA is determinizable. Alternatively prove that it is undecidable.



# Thank you!