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Part I

Program Logics, Type Systems, and Relative
Completeness



Floyd-Hoare Logics

� Judgments:
{P}C{Q}

precondition postcondition

program

� Some rules:

tP rE{xsu x :� E tP u tP u skip tP u

tP u C tQu tQu D tRu

tP u C;D tRu

Rñ P tP u C tQu Qñ S

tRu C tSu
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Relative Completeness

� The axiom system is sound.
� If true formulas of PA are used as side-conditions.

� It’s also relatively complete [Cook78].
� All true assertions can be derived if all true PA formulas
can be used as side-conditions.

� Concrete axiom systems can be derived by throwing in a
concrete sound formal system F for PA.

� They are sound.
� They are incomplete, due to Gödel incompleteness.
� F is solely responsible for their incompleteness.

� A variety of FH logics enjoy the properties above.
� Including some for higher-order programs [Honda2000]...
� ... and some in which the complexity of programs and not
only their extensional behavior is taken into account.
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Some Examples

� Simply Types
� “Well-typed programs do not go wrong”.
� Type inference and type checking are often decidable.

� Dependent Types
� Type checking is decidable.
� Interesting, extensional properties can be specified.

� Intersection Types
� Sound and complete for termination.
� Type inference is not decidable.
� Studying programs as functions requires considering an
infinite family of type derivations.



A Notable Exception: Bounded Linear Logic

� One of the earliest examples of a system capturing
polynomial time functions [GSS1992].

� Extensionally!
� For every polytime function there is at least one proof in
BLL computing it.

� Types:

A ::� αpp1, . . . , pnq | AbA | A( A | @α.A | !x pA

� How many “polytime proofs” does BLL capture?
� There’s evidence they are many [DLHofmann2010].

� Type checking can be problematic. As an example:

Γ, !x pA, !y qAtp� y{xu $ B p� q ¤ r

Γ, !x rA $ B
X



This Work
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BLL

d`PCF



Why?

� d`PCF captures both:
� Extensional properties of programs: what function a
program computes.

� Intensional properties of programs: the time
complexity of programs.

� Implicit Computational Complexity
� Many type-theoretical characterizations of complexity
classes.

� Most of them have decidable type inference...
� ... and poor expressive power.

� Idea: drop decidability constraints, and concentrate on
expressivity.

� Recover decidability by considering proper fragments.
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Part II

d`PCF



d`PCF: a Bird’s Eye View

� A type system for the lambda calculus with constants and
full higher-order recursion. (i.e. PCF).

� Greatly inspired by BLL.
� Indices are not necessarily polynomials, but terms from a
signature Σ.

� Symbols in Σ are given a meaning by an equational
program E .

� Side conditions in the form:

φ; Φ |ùE I ¤ J

� Types and modal types are defined as follows:

σ, τ ::� NatrI, Js | A( σ basic types
A,B ::� ra   Is � σ modal types
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d`PCF: Some Rules

Bounded Sum of Modal Types
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d`PCF: Intended Meaning

a;H;H $I t : rb   Js � Natras( NatrKs

What does this mean?

� t computes a function from natural numbers to natural
numbers.

� Something extensional:
� On input a natural number n, t returns a natural number

Ktn{au

� Something more intensional:
� The cost of evaluation of t on an input n is pI � Jqtn{au.

� Two questions:
� Is this correct?
� How many programs can be captured this way?
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Intensional Soundness

� A generalization of KAM which takes constants and
fixpoints into account.

� Lift the type system to closures, stack and environments.

Lemma (Measure Decreasing)

Suppose pt, ε, εq Ñ� D Ñ E and let D have weight I. Then one
of the following holds:
1. E has weight J, φ; Φ |ù I � J but |D| ¡ |E|;
2. E has weight J, φ; Φ |ù I ¡ J and |E|   |D| � |t|;

Theorem

Let H;H;H $I t : NatrJ,Ks and t ón m. Then n ¤ |t| � JIKEρ
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Completeness for Programs

� The following holds only when E is universal.
� p|σ|q is the PCF type underlying σ, i.e. its skeleton.

Lemma (Weighted Subject Expansion)

If D has weight I and type σ and C is typable with type p|σ|q.
Then, C Ñ D implies that C has weight J and type σ, where
φ; Φ |ù J ¤ I� 1.

Theorem (Relative Completeness for Programs)

Let t be a PCF program such that t ón m. Then, there exist two
index terms I and J such that JIKU ¤ n and JJKU � m and such
that the term t is typable in d`PCF as H;H;H $U

I t : NatrJs.
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Completeness for Functions

� It strongly relies on the universality of U .
� Suppose that tπnunPN is an r.e. family of type derivations:

� For the same term t;
� Having the same PCF skeleton (as type derivations);

Then we can turn them into a single, parametric type
derivation.

Theorem (Relative Completeness for Functions)

Suppose that t is a PCF term such that $ t : NatÑ Nat.
Moreover, suppose that there are two (total and computable)
functions f, g : NÑ N such that t n ógpnq fpnq. Then there are
terms I, J,K with JI� JK ¤ g and JKK � f , such that

a;H;H $U
I t : rb   Js � Natras( NatrKs.
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Conclusions

� A relatively complete type system d`PCF.
� Type inference, type checking and derivation checking are
undecidable, in general.

� ... but can become manageable if E is simple enough.
� Light Logics!

� Current work: relative decidability of type inference.

t
E
A

{φi; Φi |= Ii ≤ Ji}i∈F

T



Thank you!

Questions?



d`PCF: Some Rules

φ, b; Φ, b   L; Γ, x : ra   Is � σ $E
K t : τ

φ; Φ $E τt0{bu � µ
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Ïb�1,a

b I� 1{bu � σ
φ; Φ $E Σ �

°
b L�1 Γ

φ; Φ |ùE Ï0,1
b I ¤ L

φ; Φ; Σ $E
L�
°

b L K fix x.t : µ
R
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Forest Cardinalities
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