Linear Dependent Types
and Relative Completeness

Ugo Dal Lago
(Joint Work with Marco Gaboardi)

ki el ALMA MATER STUDIORUM
j=f UNIVERSITA DI BOLOGNA

LICS 2011, Toronto, June 22nd 2011

Part I

Program Logics, Type Systems, and Relative
Completeness

Floyd-Hoare Logics

» Judgments:
{PYC{Q)

» : Y
precondition : postcondition

v
program

» Some rules:

(PlE/]} e =E (P} (P} skip (P}

(P} c{Q} {Q} D{R}
{P} C:D {R}

R=P {P}C{Q} Q=S
{R} C {5}

Floyd-Hoare Logics

» Judgments:
{PYC{Q)

» : Y
precondition : postcondition

v
program

» Some rules:

(PlE/]} e =E (P} (P} skip (P}

(P} c{Q} {Q} D{R}
{P} C:D {R}

R=P {P}C{Q} Q=5
{7} C {S}

Relative Completeness

» The axiom system is sound.
» If true formulas of PA are used as side-conditions.
» It’s also relatively complete [CookT78|.
» All true assertions can be derived if all true PA formulas
can be used as side-conditions.
» Concrete axiom systems can be derived by throwing in a
concrete sound formal system F for PA.

» They are sound.
» They are incomplete, due to Godel incompleteness.
» F is solely responsible for their incompleteness.

» A variety of FH logics enjoy the properties above.

» Including some for higher-order programs [Honda2000]...
> ... and some in which the complexity of programs and not
only their extensional behavior is taken into account.

Program Logics

>

Property Complexity

Degree of Completeness

Program Logics

>

Property Complexity

Degree of Completeness

Type Systems

>

Property Complexity

(¢]

Degree of Completeness

Type Systems

>

Property Complexity

Degree of Completeness

Type Systems

>

Property Complexity

Degree of Completeness

Some Examples

» Simply Types

» “Well-typed programs do not go wrong”.

» Type inference and type checking are often decidable.
» Dependent Types

» Type checking is decidable.

» Interesting, extensional properties can be specified.
» Intersection Types

» Sound and complete for termination.

» Type inference is not decidable.

» Studying programs as functions requires considering an
infinite family of type derivations.

A Notable Exception: Bounded Linear Logic

» One of the earliest examples of a system capturing
polynomial time functions [GSS1992].

» Extensionally!
» For every polytime function there is at least one proof in
BLL computing it.

» Types:
Az=opr,....pn) | AQA| A —o A|Va.A| A

» How many “polytime proofs” does BLL capture?
» There’s evidence they are many [DLHofmann2010].

» Type checking can be problematic. As an example:

I lecpA lycgAlp+y/z} =B p+q<r
I'estAr- B

This Work

>

Property Complexity

Degree of Completeness

Why?

» d¢PCF captures both:

» Extensional properties of programs: what function a
program computes.

Why?

» d¢PCF captures both:

» Extensional properties of programs: what function a
program computes.

» Intensional properties of programs: the time
complexity of programs.

Why?

» d¢PCF captures both:

» Extensional properties of programs: what function a
program computes.

» Intensional properties of programs: the time
complexity of programs.

» Implicit Computational Complexity

» Many type-theoretical characterizations of complexity
classes.
» Most of them have decidable type inference...

Why?

» d¢PCF captures both:

» Extensional properties of programs: what function a
program computes.

» Intensional properties of programs: the time
complexity of programs.

» Implicit Computational Complexity

» Many type-theoretical characterizations of complexity
classes.

» Most of them have decidable type inference...

» ... and poor expressive power.

Why?

» d¢PCF captures both:

» Extensional properties of programs: what function a
program computes.

» Intensional properties of programs: the time
complexity of programs.

» Implicit Computational Complexity

» Many type-theoretical characterizations of complexity
classes.

» Most of them have decidable type inference...

» ... and poor expressive power.

» Idea: drop decidability constraints, and concentrate on
expressivity.

» Recover decidability by considering proper fragments.

Part 11
d/PCF

d/PCF: a Bird’s Eye View

» A type system for the lambda calculus with constants and
full higher-order recursion. (i.e. PCF).
» Greatly inspired by BLL.

» Indices are not necessarily polynomials, but terms from a
signature X.

» Symbols in ¥ are given a meaning by an equational
program &.
» Side conditions in the form:

G0 I
» Types and modal types are defined as follows:

o,7 :=Nat[[,J] | A — 0o basic types
A/Bu=la<]I] 0o modal types

d/PCF: a Bird’s Eye View

» A type system for the lambda calculus with constants and
full higher-order recursion. (i.e. PCF).
» Greatly inspired by BLL.

» Indices are not necessarily polynomials, but terms from a
signature X.

» Symbols in ¥ are given a meaning by an equational
program &.
» Side conditions in the form:

;K1 <Hy,....K, <H, ':51<J
» Types and modal types are defined as follows:

o,7 :=Nat[[,J] | A — 0o basic types
A/Bu=la<]I] 0o modal types

The Meaning of Types

la<I]-0—T

The Meaning of Types

la<I]-0—T

U
(0{0/a} ®...@a{l—1/a}) —o 7

d/PCF: Subtyping

$; P EEK<I
6;dEET<H

¢; ® € Nat[L, J] € Nat[K, H]

$;dFEBC A
p;dFE o T

G PHEA—o0 =B —oT

ba;®a<IJF o T
¢; @ = I <1

¢; 0 [a<Il-0C[a<]]-T

d/PCF: Subtyping

¢;® = K<I
6;d =T <H

¢; ® ¢ Nat[L, J] € Nat[K, H]

¢ BC A
pP-CoCT

G P A—o0=ZB—oT

ba;Pa<IJF o T
¢; @ = I <1

o; 0 [a<Il-cC[a<]]-T

d/PCF: Some Rules

Constraints

p:;® - [a<I]-o=[a<1]-7

;0,2 [a<1] 0§ z:7{0/a}

Weight

d/PCF: Some Rules

¢; ® € Nat[I 4 1,J + 1] = Nat[K, H]
¢; ®;T £ t 2 Nat[I,J]

¢; ®; T £ s(t) : Nat[K, H]

d/PCF: Some Rules

;@ Tz fa<I]-or§t:r
;0T -5 At i [a<I]-0—oT

d/PCF: Some Rules

;@Y ET WY, A
¢;0; P H5tila<]]-0—r7
¢,a;P,a <I; A l—%u:a

. P £ .
¢; ;% |_J+ZG<IK+1 tu:T

d/PCF: Some Rules

Sum of Modal Types

e YET WY, A
¢;0; P +5t:fa<]-0—r7
o,a;P,a <I; A l—%u:a

P £ .
o; ;% |_J+Za<1K+I tu:T

d/PCF: Some Rules

Bounded Sum of Modal Types

b; @ I—SEEFW%:KIA
¢;0; P +5t:fa<]-0—r7
o,a;P,a <; A l—%u:a

. PH- & .
(]5,@,2 |_J+Za<IK+I tu:T

d/PCF: Intended Meaning

a; s F 1t [b< J]-Nat|a] —o Nat|[K]

d/PCF: Intended Meaning

a; s F 1t [b< J]-Nat|a] —o Nat|[K]

What does this mean?

d/PCF: Intended Meaning

a; s F 1t [b< J]-Nat|a] —o Nat|[K]

What does this mean?

» t computes a function from natural numbers to natural
numbers.

» Something extensional:

> On input a natural number n, t returns a natural number
K{n/a}
» Something more intensional:

» The cost of evaluation of ¢ on an input n is (I+ J){n/a}.

d/PCF: Intended Meaning

a; s F 1t [b< J]-Nat|a] —o Nat|[K]

What does this mean?

» t computes a function from natural numbers to natural
numbers.
» Something extensional:
> On input a natural number n, t returns a natural number
K{n/a}
» Something more intensional:
» The cost of evaluation of ¢ on an input n is (I+ J){n/a}.
» Two questions:

> Is this correct?
» How many programs can be captured this way?

Intensional Soundness

» A generalization of KAM which takes constants and
fixpoints into account.

» Lift the type system to closures, stack and environments.
Lemma (Measure Decreasing)

Suppose (t,e,e) >* D — E and let D have weight 1. Then one
of the following holds:

1. E has weight J, ¢;® =1=1J but |D| > |E|;
2. E has weight J, ¢;® =1>J and |E| < |D| + |t|;

Intensional Soundness

» A generalization of KAM which takes constants and
fixpoints into account.

» Lift the type system to closures, stack and environments.

Lemma (Measure Decreasing)

Suppose (t,e,e) >* D — E and let D have weight 1. Then one
of the following holds:

1. E has weight J, ¢;® =1=1J but |D| > |E|;

2. E has weight J, ¢;® =1>J and |E| < |D| + |t|;

Theorem

Let &; ;& 1t : Nat[J,K] and t " m. Then n < |t|- [[I]]g

Completeness for Programs

» The following holds only when £ is universal.

» (jo)) is the PCF type underlying o, i.e. its skeleton.

Lemma (Weighted Subject Expansion)

If D has weight 1 and type o and C' is typable with type (o|).
Then, C'— D implies that C' has weight J and type o, where
PP E=EI<I+1.

Completeness for Programs

» The following holds only when £ is universal.

» (jo)) is the PCF type underlying o, i.e. its skeleton.

Lemma (Weighted Subject Expansion)

If D has weight 1 and type o and C' is typable with type (o|).
Then, C'— D implies that C' has weight J and type o, where
PP E=EI<I+1.

Theorem (Relative Completeness for Programs)

Let t be a PCF program such that t | m. Then, there exist two
index terms 1 and J such that [I]¥ < n and [J]¥ = m and such
that the term t is typable in d¢PCF as &; &F; & I—Zf’ t : Nat[J].

v

Completeness for Functions

» It strongly relies on the universality of U.
» Suppose that {7, }nen is an r.e. family of type derivations:
» For the same term t;
» Having the same PCF skeleton (as type derivations);
Then we can turn them into a single, parametric type
derivation.

Completeness for Functions

» It strongly relies on the universality of U.

» Suppose that {7, }nen is an r.e. family of type derivations:
» For the same term t;
» Having the same PCF skeleton (as type derivations);

Then we can turn them into a single, parametric type
derivation.

Theorem (Relative Completeness for Functions)

Suppose that t is a PCF term such that - t : Nat — Nat.
Moreover, suppose that there are two (total and computable)
functions f,g: N — N such that t n |9 £(n). Then there are
terms I, J, K with [I +J] < g and [K] = f, such that

a; @ F Yt [b < J] - Nat[a] —o Nat[K].

Conclusions

» A relatively complete type system d¢PCF.

» Type inference, type checking and derivation checking are
undecidable, in general.

» ... but can become manageable if £ is simple enough.
» Light Logics!

» Current work: relative decidability of type inference.
_E,’/>

t A
—» T —»

{0i;0; =1, < Ji}ier

Thank you!

(Questions?

d/PCF: Some Rules

¢, b; @, b<LiT,x:fa<I]-orft:T
¢; ® € 7{0/b} T
¢, a,b;®,0 <Lb <L 1 {@ 1+ 1/b} S o
O e Yy R
0@ = @y 1< L

. d- & : .
¢; D% |_L+Zb<LK fixz.t:p

d/PCF: Some Rules

Forest Cardinalities

O, b; @b < LTy w:[al<T]-o-§t:T
¢ @ = {04} €
¢, a,b;®,0 <Lb <L €@ I+ 1b}Co
GOHE Ty T
$:® @, I<L

¢; ;2 l_f+2b<LK fixzt:p

Forest Cardinalities

(] I{0/a} =3

Forest Cardinalities

T I{1/a} =2

Forest Cardinalities

I{2/a} =0

Forest Cardinalities

I{3/a} =0

Forest Cardinalities

I{4/a} =1

Forest Cardinalities

I{5/a} =0

Forest Cardinalities

I{6/a} =0

Forest Cardinalities

I{6/a} =0

	Program Logics, Type Systems, and Relative Completeness
	dPCF

