Ultrametric Semantics of Reactive Programs

Neelakantan R. Krishnaswami <neelk@microsoft.com>
Nick Benton <nick@microsoft.com>

LICS 2011

Functional Reactive Programming in a Nutshell

» Goal: Write interactive programs in a pure style

» |dea: Mutable state of type X becomes stream of values S(X)
[Eliot & Hudak 1997]

1/18

Functional Reactive Programming in a Nutshell

» Goal: Write interactive programs in a pure style

» |dea: Mutable state of type X becomes stream of values S(X)
[Eliot & Hudak 1997]

> Interactive program has type S(In) — S(Out)

1/18

Trouble in Paradise

profit :: S(stockprice) — S(order)
profit prices =

if today < tomorrow

then cons(Buy, profit (tl prices))

else cons(Sell, profit (tl prices))
where

today = hd prices

tomorrow = hd (tl prices)

2/18

Trouble in Paradise

profit :: S(stockprice) — S(order)
profit prices =

if today < tomorrow

then cons(Buy, profit (tl prices))

else cons(Sell, profit (tl prices))
where

today = hd prices

tomorrow = hd (tl prices)

2/18

Causal Stream Functions

A function f : S(A) — S(B) is causal, when for all n, as, as’:

las|, = Las’J , = |f as|, = Lfas’J ,

3/18

Causal Stream Functions

A function f : S(A) — S(B) is causal, when for all n, as, as’:

las|, = Las’J , = |f as|, = Lfas’J ,

» First n outputs of f depend only on first n inputs

3/18

Causal Stream Functions

A function f : S(A) — S(B) is causal, when for all n, as, as’:

las], = |as'|, = |f as], = |fas'|,

» First n outputs of f depend only on first n inputs

» tail not causal: element n of tail xs = element n+ 1 of xs

3/18

Causal Stream Functions

A function f : S(A) — S(B) is causal, when for all n, as, as’:

las], = |as'|, = |f as], = |fas'|,

» First n outputs of f depend only on first n inputs
» tail not causal: element n of tail xs = element n+ 1 of xs

» But what about higher-order?

3/18

The Category of Ultrametric Spaces

A pair (X,d : X x X — [0,1]) is a complete 1-bounded ultrametric
space:

» d(x,y)=0iff x=y

> d(Xy)/) = d(y,X)

» d(x,z) < max(d(x,y),d(y, z))
» All Cauchy sequences converge

4/18

The Category of Ultrametric Spaces

A pair (X,d : X x X — [0,1]) is a complete 1-bounded ultrametric
space:

» d(x,y)=0iff x=y

> d(x,y) =d(y,x)
> d(x,z) < max(d(x,y),d(y,2))
» All Cauchy sequences converge

A function f : A — B is nonexpansive, when for all a and &
dB(f 4, f a/) < dA(aa a/)

So f is non-distance-increasing

4/18

Streams as Ultrametric Spaces

Streams S(X) can be equipped with an ultrametric

d(xs,xs') =2~ min{n€N | xs,7#xs;}

5/18

Streams as Ultrametric Spaces

Streams S(X) can be equipped with an ultrametric

d(xs,xs') =2~ min{n€N | xs,7#xs;}

Distance increases, as xs and xs’ differ sooner:
» Differ at time 0 — distance 1

» Differ at time 1 — distance

Bl N=

» Differ at time 2 — distance

» Never differ — distance 0

5/18

Nonexpansive Functions and Causality

Theorem
The nonexpansive functions S(X) — S(Y) are exactly the causal
functions

6/18

Nonexpansive Functions and Causality

Theorem

The nonexpansive functions S(X) — S(Y) are exactly the causal
functions

Idea as follows:

» Suppose xs and xs’ first differ at position n

6/18

Nonexpansive Functions and Causality

Theorem

The nonexpansive functions S(X) — S(Y) are exactly the causal
functions

Idea as follows:

» Suppose xs and xs’ first differ at position n
» Then d(xs,xs’) =27"

6/18

Nonexpansive Functions and Causality

Theorem

The nonexpansive functions S(X) — S(Y) are exactly the causal
functions

Idea as follows:
» Suppose xs and xs’ first differ at position n
» Then d(xs,xs’) =27"
» So d(f xs,f xs') <277

6/18

Nonexpansive Functions and Causality

Theorem
The nonexpansive functions S(X) — S(Y) are exactly the causal
functions

Idea as follows:
» Suppose xs and xs’ first differ at position n
» Then d(xs,xs’) =27"
» So d(f xs,f xs') <277
» So at least the first n positions of f xs and f xs’ agree

6/18

The Payoff, Part 1

What are the consequences of this abstract view?

7/18

The Payoff, Part 1

What are the consequences of this abstract view?

» The category of complete 1-bounded ultrmetric spaces is
Cartesian closed

7/18

The Payoff, Part 1

What are the consequences of this abstract view?

» The category of complete 1-bounded ultrmetric spaces is
Cartesian closed

» The lambda calculus can be interpreted in any CCC. ..

7/18

The Payoff, Part 1

What are the consequences of this abstract view?

» The category of complete 1-bounded ultrmetric spaces is
Cartesian closed

» The lambda calculus can be interpreted in any CCC. ..

» ...so a good DSL for reactive programming is functional
programming!

7/18

The Payoff, Part 2

Banach's Contraction Map Theorem

Every strictly contractive function f : A — A on a nonempty
metric space A has a unique fixed point.

8/18

The Payoff, Part 2

Banach's Contraction Map Theorem

Every strictly contractive function f : A — A on a nonempty
metric space A has a unique fixed point.

» “Strictly contractive” = “well-founded feedback”

8/18

The Payoff, Part 2

Banach's Contraction Map Theorem

Every strictly contractive function f : A — A on a nonempty
metric space A has a unique fixed point.

» “Strictly contractive” = “well-founded feedback”

» So p(Axs. 0 :: map succ xs) =0,1,2,3,. ..

8/18

The Payoff, Part 2

Banach's Contraction Map Theorem

Every strictly contractive function f : A — A on a nonempty
metric space A has a unique fixed point.

v

“Strictly contractive” = “well-founded feedback”

v

So p(Axs. 0 :: mapsucc xs) =0,1,2,3,...

v

Semantic intepretation of feedback. ..

... which ensures it is well-founded and deterministic

v

8/18

From Semantics to Type Theory

P|A—=B | S(A) | «A Types
x| M.e | eé€

cons(e, e’) | hd(e) | tl(e)

ec | await(e) | fixx:A. e Terms

9/18

From Semantics to Type Theory

= P | A= B | S(A) | A Types
= x| Ax.e | eé

| cons(e,e’) | hd(e) | tl(e)

| ee | await(e) | fixx: A.e Terms

e

> oA is the delay modality

9/18

From Semantics to Type Theory

= P | A= B | S(A) | A Types
= x| Ax.e | eé

| cons(e,e’) | hd(e) | tl(e)

| ee | await(e) | fixx: A.e Terms

e

> oA is the delay modality
» o(A,d) = (A,d') where
> dl(av a/) = % ! d(aa a/)

9/18

From Semantics to Type Theory

= P | A= B | S(A) | A Types
= x| Ax.e | eé

| cons(e,e’) | hd(e) | tl(e)

| ee | await(e) | fixx: A.e Terms

e

> oA is the delay modality
» o(A,d) = (A,d") where
> d'(a,a') =3 d(a,d)

> o5(A) are “streams starting on the next time step”

9/18

From Semantics to Type Theory

= P | A= B | S(A) | A Types
= x| Ax.e | eé

| cons(e,e’) | hd(e) | tl(e)

| ee | await(e) | fixx: A.e Terms

e

> oA is the delay modality
» o(A,d) = (A,d") where
> d'(a,a') =3 d(a,d)

> o5(A) are “streams starting on the next time step”
> c:0A—>B~eA —+eBand (:eAX B~eA X eB

9/18

From Semantics to Type Theory

= P | A= B | S(A) | A Types
= x| Ax.e | eé

| cons(e,e’) | hd(e) | tl(e)

| ee | await(e) | fixx: A.e Terms

e

v

oA is the delay modality
» o(A,d) = (A,d") where
> d'(a,a') =3 d(a,d)

eS(A) are “streams starting on the next time step”
> c:0A—>B~eA —+eBand (:eAX B~eA X eB
Banach’s theorem has type (e A — A) — A

v

v

9/18

The Typing Judgement

> Key judgement e :;; A

10/18

The Typing Judgement

> Key judgement e :;; A
» Read e has type A at time i

10/18

The Typing Judgement

> Key judgement e :;; A
» Read e has type A at time i

» Context annotated with times I :=- | T, x;; A

10/18

Typing Rules

IS] F,x:,-+1AFe:,-A
MNx:;iAFEx:; A N-fixx:A. e A
Nx:;AkFe:; B le:;; A—> B rFe i A

l)Xx.e;;A— B lFeé:; B

NN-e:;; A e 1 S(A)
[+ cons(e, €') :; S(A)

M'-e:i S(A) I-e:i S(A)
l-hd(e) :; A M tl(e) :ix1 S(A)
Ne:;1 A [Fe: oA
[Hee:jeA [+ await(e) :j+1 A

11/18

Interpreting the Syntax

[TEe:A]

[FEx:i Al
[THAx.e:;; A— B]
[T F cons(e, €) :; S(A)]
[T = hd(e) :; Al
[FEti(e) :iv1 S(A)]

[l ee:; 0A]

[T F await(e) :j41 A]
[FFfixx:A et Al

VT O O

I +(1A)

0" om, when x;; AcTl

e oN[[l,x:; Ak e B])

o'(cons) o ("o ([e], [¢'])

o'(head) oI+ e:; S(A)]

oi(tail) o [T+ e:; S(A)]

|[F Fe 41 A]]

[TEe:oA]

Ay, w(Av. [T x i1 A e Al (v, v))

12/18

Example 1: fibs

fibs : S(N) // t =0
fibs = fix xs:S(N). // t =1
let ys = tl(xs) in //t =2

cons(1l, cons(l, map (+) (zip xs ys)))

13/18

Example 1: fibs

fibs : S(N) // t =0
fibs = fix xs:S(N). //t =1
let ys = tl(xs) in // t =2

cons(1l, cons(l, map (+) (zip xs ys)))

> Looks like a lazy functional program

13/18

Example 1: fibs

fibs : S(N) // t =0
fibs = fix xs:S(N). //t =1
let ys = tl(xs) in // t =2

cons(1l, cons(l, map (+) (zip xs ys)))

> Looks like a lazy functional program

» Note xs and ys are at different times

13/18

Example 2: map

map : (A — B) — S(A) — S(B)

fix r : () — S(B).
Axs:S(A). cons(f (hd xs), r (tl xs))

14/18

Example 2: map

map : (A — B) — S(A) — S(B)
fix r : () — S(B).
Axs:S(A). cons(f (hd xs), r (tl xs))

» Looks like a functional program

14/18

Example 2: map

map : (A — B) — S(A) — S(B)

fix r : () — S(B).
Axs:S(A). cons(f (hd xs), r (tl xs))

» Looks like a functional program

> Note higher-type recursion

14/18

Non-Example: illfounded

illfounded / S(N)
illfounded = fix xs:S(N). xs

15/18

Non-Example: illfounded

illfounded / S(N)
illfounded = fix xs:S(N). xs

» lll-founded feedback

15/18

Non-Example: illfounded

illfounded / S(N)
illfounded = fix xs:S(N). xs

» lll-founded feedback

> “Time-checking” error: xs is at time 1, not 0

15/18

Non-Example: illfounded

illfounded / S(N)
illfounded = fix xs:S(N). xs

> lll-founded feedback
> “Time-checking” error: xs is at time 1, not 0

» Typing rules block unguarded recursion

15/18

How Can We Implement This

» Imperative implementation based on dataflow propagation
[TLDI 2010]

16/18

How Can We Implement This

» Imperative implementation based on dataflow propagation
[TLDI 2010]

> Idea similar to spreadsheets, self-adjusting computation [Acar
et al.], subject-observer

16/18

How Can We Implement This

» Imperative implementation based on dataflow propagation
[TLDI 2010]

> Idea similar to spreadsheets, self-adjusting computation [Acar
et al.], subject-observer

» Correctness proof via logical relation between imperative code
and ultrametric semantics

16/18

How Can We Implement This

» Imperative implementation based on dataflow propagation
[TLDI 2010]

> Idea similar to spreadsheets, self-adjusting computation [Acar
et al.], subject-observer

» Correctness proof via logical relation between imperative code
and ultrametric semantics

> Proof uses ideas similar to Dreyer and Hur [POPL 2011]

16/18

Demo

Demo!

17/18

Conclusions

» Ultrametric semantics give a simple denotational semantics to
reactive programs

» The lambda calculus is the correct DSL for this domain
» We can implement this!

» Look at our upcoming LICS 2011 paper
<http://research.microsoft.com/ nick/frp-licsil.pdf>

» Look at our upcoming ICFP 2011 paper

<http://research.microsoft.com/ nick/guisemantics.pdf>

18/18

