Ultrametric Semantics of Reactive Programs

Neelakantan R. Krishnaswami neelk@microsoft.com
Nick Benton nick@microsoft.com

LICS 2011

Functional Reactive Programming in a Nutshell

- Goal: Write interactive programs in a pure style
- Idea: Mutable state of type X becomes stream of values $S(X)$ [Eliot \& Hudak 1997]

Functional Reactive Programming in a Nutshell

- Goal: Write interactive programs in a pure style
- Idea: Mutable state of type X becomes stream of values $S(X)$ [Eliot \& Hudak 1997]
- Interactive program has type $S($ In $) \rightarrow S$ (Out)

Trouble in Paradise

```
profit :: S(stockprice) -> S(order)
profit prices =
    if today < tomorrow
    then cons(Buy, profit (tl prices))
    else cons(Sell, profit (tl prices))
where
    today = hd prices
    tomorrow = hd (tl prices)
```


Trouble in Paradise

```
profit :: S(stockprice) -> S(order)
profit prices =
    if today < tomorrow
    then cons(Buy, profit (tl prices))
    else cons(Sell, profit (tl prices))
where
    today = hd prices
    tomorrow = hd (tl prices)
```


Causal Stream Functions

A function $f: S(A) \rightarrow S(B)$ is causal, when for all n, as, as':

$$
\lfloor a s\rfloor_{n}=\left\lfloor a s^{\prime}\right\rfloor_{n} \Longrightarrow\lfloor f a s\rfloor_{n}=\left\lfloor f a s^{\prime}\right\rfloor_{n}
$$

Causal Stream Functions

A function $f: S(A) \rightarrow S(B)$ is causal, when for all n, as, as':

$$
\lfloor a s\rfloor_{n}=\left\lfloor a s^{\prime}\right\rfloor_{n} \Longrightarrow\lfloor f a s\rfloor_{n}=\left\lfloor f a s^{\prime}\right\rfloor_{n}
$$

- First n outputs of f depend only on first n inputs

Causal Stream Functions

A function $f: S(A) \rightarrow S(B)$ is causal, when for all n, as, as':

$$
\lfloor a s\rfloor_{n}=\left\lfloor a s^{\prime}\right\rfloor_{n} \Longrightarrow\lfloor f a s\rfloor_{n}=\left\lfloor f a s^{\prime}\right\rfloor_{n}
$$

- First n outputs of f depend only on first n inputs
- tail not causal: element n of tail $x s=$ element $n+1$ of $x s$

Causal Stream Functions

A function $f: S(A) \rightarrow S(B)$ is causal, when for all n, as, as':

$$
\lfloor a s\rfloor_{n}=\left\lfloor a s^{\prime}\right\rfloor_{n} \Longrightarrow\lfloor f a s\rfloor_{n}=\left\lfloor f a s^{\prime}\right\rfloor_{n}
$$

- First n outputs of f depend only on first n inputs
- tail not causal: element n of tail $x s=$ element $n+1$ of $x s$
- But what about higher-order?

The Category of Ultrametric Spaces

A pair $(X, d: X \times X \rightarrow[0,1])$ is a complete 1-bounded ultrametric space:

- $d(x, y)=0$ iff $x=y$
- $d(x, y)=d(y, x)$
- $d(x, z) \leq \max (d(x, y), d(y, z))$
- All Cauchy sequences converge

The Category of Ultrametric Spaces

A pair $(X, d: X \times X \rightarrow[0,1])$ is a complete 1-bounded ultrametric space:

- $d(x, y)=0$ iff $x=y$
- $d(x, y)=d(y, x)$
- $d(x, z) \leq \max (d(x, y), d(y, z))$
- All Cauchy sequences converge

A function $f: A \rightarrow B$ is nonexpansive, when for all a and a^{\prime}

$$
d_{B}\left(f a, f a^{\prime}\right) \leq d_{A}\left(a, a^{\prime}\right)
$$

So f is non-distance-increasing

Streams as Ultrametric Spaces

Streams $S(X)$ can be equipped with an ultrametric

$$
d\left(x s, x s^{\prime}\right)=2^{-\min \left\{n \in \mathbb{N} \mid x s_{n} \neq x s_{n}^{\prime}\right\}}
$$

Streams as Ultrametric Spaces

Streams $S(X)$ can be equipped with an ultrametric

$$
d\left(x s, x s^{\prime}\right)=2^{-\min \left\{n \in \mathbb{N} \mid x s_{n} \neq x s_{n}^{\prime}\right\}}
$$

Distance increases, as $x s$ and $x s^{\prime}$ differ sooner:

- Differ at time 0 - distance 1
- Differ at time 1 - distance $\frac{1}{2}$
- Differ at time 2 - distance $\frac{1}{4}$
- Never differ - distance 0

Nonexpansive Functions and Causality

Theorem
The nonexpansive functions $S(X) \rightarrow S(Y)$ are exactly the causal functions

Nonexpansive Functions and Causality

Theorem
The nonexpansive functions $S(X) \rightarrow S(Y)$ are exactly the causal functions

Idea as follows:

- Suppose xs and $x s^{\prime}$ first differ at position n

Nonexpansive Functions and Causality

Theorem
The nonexpansive functions $S(X) \rightarrow S(Y)$ are exactly the causal functions

Idea as follows:

- Suppose xs and $x s^{\prime}$ first differ at position n
- Then $d\left(x s, x s^{\prime}\right)=2^{-n}$

Nonexpansive Functions and Causality

Theorem
The nonexpansive functions $S(X) \rightarrow S(Y)$ are exactly the causal functions

Idea as follows:

- Suppose xs and $x s^{\prime}$ first differ at position n
- Then $d\left(x s, x s^{\prime}\right)=2^{-n}$
- So $d\left(f x s, f x s^{\prime}\right) \leq 2^{-n}$

Nonexpansive Functions and Causality

Theorem

The nonexpansive functions $S(X) \rightarrow S(Y)$ are exactly the causal functions

Idea as follows:

- Suppose xs and $x s^{\prime}$ first differ at position n
- Then $d\left(x s, x s^{\prime}\right)=2^{-n}$
- So $d\left(f x s, f x s^{\prime}\right) \leq 2^{-n}$
- So at least the first n positions of $f x s$ and $f x s^{\prime}$ agree

The Payoff, Part 1

What are the consequences of this abstract view?

The Payoff, Part 1

What are the consequences of this abstract view?

- The category of complete 1-bounded ultrmetric spaces is Cartesian closed

The Payoff, Part 1

What are the consequences of this abstract view?

- The category of complete 1-bounded ultrmetric spaces is Cartesian closed
- The lambda calculus can be interpreted in any CCC. . .

The Payoff, Part 1

What are the consequences of this abstract view?

- The category of complete 1-bounded ultrmetric spaces is Cartesian closed
- The lambda calculus can be interpreted in any CCC. . .
- ...so a good DSL for reactive programming is functional programming!

The Payoff, Part 2

Banach's Contraction Map Theorem

Every strictly contractive function $f: A \rightarrow A$ on a nonempty metric space A has a unique fixed point.

The Payoff, Part 2

Banach's Contraction Map Theorem

Every strictly contractive function $f: A \rightarrow A$ on a nonempty metric space A has a unique fixed point.

- "Strictly contractive" = "well-founded feedback"

The Payoff, Part 2

Banach's Contraction Map Theorem

Every strictly contractive function $f: A \rightarrow A$ on a nonempty metric space A has a unique fixed point.

- "Strictly contractive" = "well-founded feedback"
- So $\mu(\lambda x s .0$:: map succ $x s)=0,1,2,3, \ldots$

The Payoff, Part 2

Banach's Contraction Map Theorem

Every strictly contractive function $f: A \rightarrow A$ on a nonempty metric space A has a unique fixed point.

- "Strictly contractive" = "well-founded feedback"
- So $\mu(\lambda x s .0$:: map succ $x s)=0,1,2,3, \ldots$
- Semantic intepretation of feedback...
- ... which ensures it is well-founded and deterministic

From Semantics to Type Theory

$$
\begin{array}{rlrl}
A & ::= & P|A \rightarrow B| S(A) \mid \bullet A \text { Types } \\
e & ::= & x|\lambda x \cdot e| e e^{\prime} \\
& \operatorname{cons}\left(e, e^{\prime}\right)|\operatorname{hd}(e)| \mathrm{tl}(e) \\
& \bullet e|\operatorname{await}(e)| \text { fix } x: A . e \text { Terms }
\end{array}
$$

From Semantics to Type Theory

$$
\begin{array}{rlrl}
A: & := & P|A \rightarrow B| S(A) \mid \bullet A \text { Types } \\
e & := & x|\lambda x \cdot e| e e^{\prime} \\
& \operatorname{cons}\left(e, e^{\prime}\right)|\operatorname{hd}(e)| \mathrm{tl}(e) \\
& \bullet e|\operatorname{await}(e)| \text { fix } x: A . e \text { Terms }
\end{array}
$$

- $\bullet A$ is the delay modality

From Semantics to Type Theory

$$
\begin{aligned}
& A::=P|A \rightarrow B| S(A) \mid \bullet A \text { Types } \\
& e::=x|\lambda x \cdot e| e e^{\prime} \\
& \operatorname{cons}\left(e, e^{\prime}\right)|\operatorname{hd}(e)| \operatorname{tl}(e) \\
& \bullet e|\operatorname{await}(e)| \text { fix } x: A . e \text { Terms }
\end{aligned}
$$

- \bullet is the delay modality
- $(A, d)=\left(A, d^{\prime}\right)$ where
- $d^{\prime}\left(a, a^{\prime}\right)=\frac{1}{2} \cdot d\left(a, a^{\prime}\right)$

From Semantics to Type Theory

$$
\begin{array}{rlrl}
A: & := & P|A \rightarrow B| S(A) \mid \bullet A \text { Types } \\
e & ::= & x|\lambda x \cdot e| e e^{\prime} \\
& \operatorname{cons}\left(e, e^{\prime}\right)|\operatorname{hd}(e)| \mathrm{tl}(e) \\
& \bullet e|\operatorname{await}(e)| \text { fix } x: A . e \text { Terms }
\end{array}
$$

- $\bullet A$ is the delay modality
- $(A, d)=\left(A, d^{\prime}\right)$ where
- $d^{\prime}\left(a, a^{\prime}\right)=\frac{1}{2} \cdot d\left(a, a^{\prime}\right)$
- $\bullet(A)$ are "streams starting on the next time step"

From Semantics to Type Theory

$$
\begin{array}{rlrl}
A & := & P|A \rightarrow B| S(A) \mid \bullet A \text { Types } \\
e & ::= & x|\lambda x \cdot e| e e^{\prime} \\
& \operatorname{cons}\left(e, e^{\prime}\right)|\operatorname{hd}(e)| \mathrm{t} \mid(e) \\
& \bullet e|\operatorname{await}(e)| \text { fix } x: A . e \text { Terms }
\end{array}
$$

- \bullet is the delay modality
- $(A, d)=\left(A, d^{\prime}\right)$ where
- $d^{\prime}\left(a, a^{\prime}\right)=\frac{1}{2} \cdot d\left(a, a^{\prime}\right)$
- $\bullet(A)$ are "streams starting on the next time step"
- $\epsilon: \bullet A \rightarrow B \simeq \bullet A \rightarrow \bullet B$ and $\zeta: \bullet A \times B \simeq \bullet A \times \bullet B$

From Semantics to Type Theory

$$
\begin{aligned}
& A::=P|A \rightarrow B| S(A) \mid \bullet A \text { Types } \\
& e::=x|\lambda x \cdot e| e e^{\prime} \\
& \operatorname{cons}\left(e, e^{\prime}\right)|\operatorname{hd}(e)| \operatorname{tl}(e) \\
& \bullet e|\operatorname{await}(e)| \text { fix } x: A . e \text { Terms }
\end{aligned}
$$

- $\bullet A$ is the delay modality
- $(A, d)=\left(A, d^{\prime}\right)$ where
- $d^{\prime}\left(a, a^{\prime}\right)=\frac{1}{2} \cdot d\left(a, a^{\prime}\right)$
- $\bullet(A)$ are "streams starting on the next time step"
- $\epsilon: \bullet A \rightarrow B \simeq \bullet A \rightarrow \bullet B$ and $\zeta: \bullet A \times B \simeq \bullet A \times \bullet B$
- Banach's theorem has type $(\bullet A \rightarrow A) \rightarrow A$

The Typing Judgement

- Key judgement $\Gamma \vdash e:_{j} A$

The Typing Judgement

- Key judgement $\Gamma \vdash e:_{j} A$
- Read e has type A at time i

The Typing Judgement

- Key judgement $\Gamma \vdash e:_{j} A$
- Read e has type A at time i
- Context annotated with times $\Gamma::=\cdot \mid \Gamma, x: ; A$

Typing Rules

$$
\begin{array}{cc}
\frac{i \leq j}{\Gamma, x:_{i} A \vdash x:_{j} A} & \frac{\Gamma, x:_{i+1} A \vdash e:_{i} A}{\Gamma \vdash f i x x: A \cdot e:_{i} A} \\
\frac{\Gamma, x:_{i} A \vdash e:_{i} B}{\Gamma \vdash \lambda x . e}:_{i} A \rightarrow B & \frac{\Gamma \vdash e:_{i} A \rightarrow B \quad \Gamma \vdash e^{\prime}:_{i} A}{\Gamma \vdash e e^{\prime}:{ }_{i} B} \\
\frac{\Gamma \vdash e:_{i} A}{\Gamma \vdash \operatorname{cons}\left(e, e^{\prime}\right):_{i} S(A)} \\
\frac{\Gamma \vdash e:_{i} S(A)}{\Gamma \vdash h d(e):_{i} A} & \frac{\Gamma \vdash e:_{i} S(A)}{\Gamma \vdash \operatorname{tl}(e):_{i+1} S(A)} \\
\frac{\Gamma \vdash e:_{i+1} A}{\Gamma \vdash \bullet e:_{i} \bullet A} & \frac{\Gamma \vdash e:_{i} \bullet A}{\Gamma \vdash \operatorname{await}(e):_{i+1} A}
\end{array}
$$

Interpreting the Syntax

$$
\begin{aligned}
& \llbracket\ulcorner\vdash e: i A \rrbracket \\
& \llbracket \Gamma \vdash x: ; A \rrbracket \\
& \llbracket\left\ulcorner\vdash \lambda x . e: ; A \rightarrow B \rrbracket=\epsilon^{i} \circ \lambda(\llbracket \Gamma, x: ; A \vdash e: ; B \rrbracket)\right. \\
& \llbracket \Gamma \vdash \operatorname{cons}\left(e, e^{\prime}\right):_{i} S(A) \rrbracket=\bullet^{i}(\text { cons }) \circ \zeta^{i} \circ\left\langle\llbracket e \rrbracket, \llbracket e^{\prime} \rrbracket\right\rangle \\
& \llbracket \Gamma \vdash \operatorname{hd}(e): i A \rrbracket=\bullet^{i}(\text { head }) \circ \llbracket \Gamma \vdash e: ; i S(A) \rrbracket \\
& \llbracket \Gamma \vdash \mathrm{tl}(e):_{i+1} S(A) \rrbracket=\bullet^{i}(\text { tail }) \circ \llbracket\left\ulcorner\vdash e:_{i} S(A) \rrbracket\right. \\
& \llbracket\left\ulcorner\vdash \bullet e:_{;} \bullet A \rrbracket=\llbracket \Gamma \vdash e:_{i+1} A \rrbracket\right. \\
& \llbracket\left\ulcorner\vdash \operatorname{await}(e)::_{i+1} A \rrbracket=\llbracket \Gamma \vdash e: ; \bullet A \rrbracket\right. \\
& \llbracket\left\ulcorner\vdash \mathrm{fix} x: A . e:_{i+1} A \rrbracket=\lambda \gamma \cdot \mu\left(\lambda v . \llbracket \Gamma, x:_{i+1} A \vdash e:_{i} A \rrbracket(\gamma, v)\right)\right.
\end{aligned}
$$

Example 1: fibs

fibs : $S(\mathbb{N})$
fibs = fix xs:S(N).
$/ / \mathrm{t}=0$
let $y s=t l(x s)$ in
// t = 1
cons(1, cons(1, map (+) (zip xs ys)))

Example 1: fibs

- Looks like a lazy functional program

Example 1: fibs

fibs : $S(\mathbb{N})$
fibs = fix xs:S(N).
$/ / t=0$
let ys = tl(xs) in
// t = 1
cons(1, cons(1, map (+) (zip xs ys)))

- Looks like a lazy functional program
- Note xs and ys are at different times

Example 2: map

$$
\begin{aligned}
\operatorname{map}: & (A \rightarrow B) \rightarrow S(A) \rightarrow S(B) \\
\operatorname{map}= & \rightarrow \mathrm{f}: A \rightarrow B . \\
& \rightarrow \mathrm{fix} \mathrm{r}: S(A) \rightarrow S(B) . \\
& \lambda \mathrm{xs}: S(A) . \operatorname{cons}(\mathrm{f}(\mathrm{hd} \mathrm{xs}), \mathrm{r}(\mathrm{tl} \mathrm{xs}))
\end{aligned}
$$

Example 2: map

$$
\begin{aligned}
\operatorname{map}: & (A \rightarrow B) \rightarrow S(A) \rightarrow S(B) \\
\operatorname{map}= & \rightarrow \mathrm{f}: A \rightarrow B . \\
& \rightarrow \mathrm{fix} \mathrm{r}: S(A) \rightarrow S(B) . \\
& \lambda \mathrm{xs}: S(A) . \operatorname{cons}(\mathrm{f}(\mathrm{hd} \mathrm{xs}), \mathrm{r}(\mathrm{tl} \mathrm{xs}))
\end{aligned}
$$

- Looks like a functional program

Example 2: map

$$
\begin{aligned}
\operatorname{map}: & (A \rightarrow B) \rightarrow S(A) \rightarrow S(B) \\
\operatorname{map}= & \rightarrow \mathrm{f}: A \rightarrow B . \\
& \rightarrow \mathrm{fix} \mathrm{r}: S(A) \rightarrow S(B) . \\
& \lambda \mathrm{xs}: S(A) . \operatorname{cons}(\mathrm{f}(\mathrm{hd} \mathrm{xs}), \mathrm{r}(\mathrm{tl} \mathrm{xs}))
\end{aligned}
$$

- Looks like a functional program
- Note higher-type recursion

Non-Example: illfounded

illfounded $\% S(\mathbb{N})$
illfounded = fix xs:S(N). xs

Non-Example: illfounded

illfounded $/ . S(\mathbb{N})$
illfounded $=$ fix xs:S(N). xs

- III-founded feedback

Non-Example: illfounded

illfounded $\% S(\mathbb{N})$
illfounded $=$ fix xs:S(N). xs

- III-founded feedback
- "Time-checking" error: xs is at time 1 , not 0

Non-Example: illfounded

illfounded $\% S(\mathbb{N})$
illfounded $=$ fix xs:S(N). xs

- III-founded feedback
- "Time-checking" error: xs is at time 1, not 0
- Typing rules block unguarded recursion

How Can We Implement This

- Imperative implementation based on dataflow propagation [TLDI 2010]

How Can We Implement This

- Imperative implementation based on dataflow propagation [TLDI 2010]
- Idea similar to spreadsheets, self-adjusting computation [Acar et al.], subject-observer

How Can We Implement This

- Imperative implementation based on dataflow propagation [TLDI 2010]
- Idea similar to spreadsheets, self-adjusting computation [Acar et al.], subject-observer
- Correctness proof via logical relation between imperative code and ultrametric semantics

How Can We Implement This

- Imperative implementation based on dataflow propagation [TLDI 2010]
- Idea similar to spreadsheets, self-adjusting computation [Acar et al.], subject-observer
- Correctness proof via logical relation between imperative code and ultrametric semantics
- Proof uses ideas similar to Dreyer and Hur [POPL 2011]

Demo

Demo!

Conclusions

- Ultrametric semantics give a simple denotational semantics to reactive programs
- The lambda calculus is the correct DSL for this domain
- We can implement this!
- Look at our upcoming LICS 2011 paper http://research.microsoft.com/~nick/frp-lics11.pdf
- Look at our upcoming ICFP 2011 paper
http://research.microsoft.com/~nick/guisemantics.pdf

