
Ultrametric Semantics of Reactive Programs

Neelakantan R. Krishnaswami <neelk@microsoft.com>
Nick Benton <nick@microsoft.com>

LICS 2011

Functional Reactive Programming in a Nutshell

I Goal: Write interactive programs in a pure style

I Idea: Mutable state of type X becomes stream of values S(X)
[Eliot & Hudak 1997]

I Interactive program has type S(In)→ S(Out)

1/18

Functional Reactive Programming in a Nutshell

I Goal: Write interactive programs in a pure style

I Idea: Mutable state of type X becomes stream of values S(X)
[Eliot & Hudak 1997]

I Interactive program has type S(In)→ S(Out)

1/18

Trouble in Paradise

profit :: S(stockprice) → S(order)

profit prices =

if today < tomorrow

then cons(Buy, profit (tl prices))

else cons(Sell, profit (tl prices))

where

today = hd prices

tomorrow = hd (tl prices)

2/18

Trouble in Paradise

profit :: S(stockprice) → S(order)

profit prices =

if today < tomorrow

then cons(Buy, profit (tl prices))

else cons(Sell, profit (tl prices))

where

today = hd prices

tomorrow = hd (tl prices)

2/18

Causal Stream Functions

A function f : S(A)→ S(B) is causal, when for all n, as, as ′:

bascn =
⌊
as ′

⌋
n

=⇒ bf ascn =
⌊
fas ′

⌋
n

I First n outputs of f depend only on first n inputs

I tail not causal: element n of tail xs = element n + 1 of xs

I But what about higher-order?

3/18

Causal Stream Functions

A function f : S(A)→ S(B) is causal, when for all n, as, as ′:

bascn =
⌊
as ′

⌋
n

=⇒ bf ascn =
⌊
fas ′

⌋
n

I First n outputs of f depend only on first n inputs

I tail not causal: element n of tail xs = element n + 1 of xs

I But what about higher-order?

3/18

Causal Stream Functions

A function f : S(A)→ S(B) is causal, when for all n, as, as ′:

bascn =
⌊
as ′

⌋
n

=⇒ bf ascn =
⌊
fas ′

⌋
n

I First n outputs of f depend only on first n inputs

I tail not causal: element n of tail xs = element n + 1 of xs

I But what about higher-order?

3/18

Causal Stream Functions

A function f : S(A)→ S(B) is causal, when for all n, as, as ′:

bascn =
⌊
as ′

⌋
n

=⇒ bf ascn =
⌊
fas ′

⌋
n

I First n outputs of f depend only on first n inputs

I tail not causal: element n of tail xs = element n + 1 of xs

I But what about higher-order?

3/18

The Category of Ultrametric Spaces

A pair (X , d : X ×X → [0, 1]) is a complete 1-bounded ultrametric
space:

I d(x , y) = 0 iff x = y

I d(x , y) = d(y , x)

I d(x , z) ≤ max(d(x , y), d(y , z))

I All Cauchy sequences converge

A function f : A→ B is nonexpansive, when for all a and a′

dB(f a, f a′) ≤ dA(a, a′)

So f is non-distance-increasing

4/18

The Category of Ultrametric Spaces

A pair (X , d : X ×X → [0, 1]) is a complete 1-bounded ultrametric
space:

I d(x , y) = 0 iff x = y

I d(x , y) = d(y , x)

I d(x , z) ≤ max(d(x , y), d(y , z))

I All Cauchy sequences converge

A function f : A→ B is nonexpansive, when for all a and a′

dB(f a, f a′) ≤ dA(a, a′)

So f is non-distance-increasing

4/18

Streams as Ultrametric Spaces

Streams S(X) can be equipped with an ultrametric

d(xs, xs ′) = 2−min{n∈N | xsn 6=xs′n}

Distance increases, as xs and xs ′ differ sooner:

I Differ at time 0 — distance 1

I Differ at time 1 — distance 1
2

I Differ at time 2 — distance 1
4

I Never differ — distance 0

5/18

Streams as Ultrametric Spaces

Streams S(X) can be equipped with an ultrametric

d(xs, xs ′) = 2−min{n∈N | xsn 6=xs′n}

Distance increases, as xs and xs ′ differ sooner:

I Differ at time 0 — distance 1

I Differ at time 1 — distance 1
2

I Differ at time 2 — distance 1
4

I Never differ — distance 0

5/18

Nonexpansive Functions and Causality

Theorem
The nonexpansive functions S(X)→ S(Y) are exactly the causal
functions

Idea as follows:

I Suppose xs and xs ′ first differ at position n

I Then d(xs, xs ′) = 2−n

I So d(f xs, f xs ′) ≤ 2−n

I So at least the first n positions of f xs and f xs ′ agree

6/18

Nonexpansive Functions and Causality

Theorem
The nonexpansive functions S(X)→ S(Y) are exactly the causal
functions

Idea as follows:

I Suppose xs and xs ′ first differ at position n

I Then d(xs, xs ′) = 2−n

I So d(f xs, f xs ′) ≤ 2−n

I So at least the first n positions of f xs and f xs ′ agree

6/18

Nonexpansive Functions and Causality

Theorem
The nonexpansive functions S(X)→ S(Y) are exactly the causal
functions

Idea as follows:

I Suppose xs and xs ′ first differ at position n

I Then d(xs, xs ′) = 2−n

I So d(f xs, f xs ′) ≤ 2−n

I So at least the first n positions of f xs and f xs ′ agree

6/18

Nonexpansive Functions and Causality

Theorem
The nonexpansive functions S(X)→ S(Y) are exactly the causal
functions

Idea as follows:

I Suppose xs and xs ′ first differ at position n

I Then d(xs, xs ′) = 2−n

I So d(f xs, f xs ′) ≤ 2−n

I So at least the first n positions of f xs and f xs ′ agree

6/18

Nonexpansive Functions and Causality

Theorem
The nonexpansive functions S(X)→ S(Y) are exactly the causal
functions

Idea as follows:

I Suppose xs and xs ′ first differ at position n

I Then d(xs, xs ′) = 2−n

I So d(f xs, f xs ′) ≤ 2−n

I So at least the first n positions of f xs and f xs ′ agree

6/18

The Payoff, Part 1

What are the consequences of this abstract view?

I The category of complete 1-bounded ultrmetric spaces is
Cartesian closed

I The lambda calculus can be interpreted in any CCC. . .

I . . . so a good DSL for reactive programming is functional
programming!

7/18

The Payoff, Part 1

What are the consequences of this abstract view?

I The category of complete 1-bounded ultrmetric spaces is
Cartesian closed

I The lambda calculus can be interpreted in any CCC. . .

I . . . so a good DSL for reactive programming is functional
programming!

7/18

The Payoff, Part 1

What are the consequences of this abstract view?

I The category of complete 1-bounded ultrmetric spaces is
Cartesian closed

I The lambda calculus can be interpreted in any CCC. . .

I . . . so a good DSL for reactive programming is functional
programming!

7/18

The Payoff, Part 1

What are the consequences of this abstract view?

I The category of complete 1-bounded ultrmetric spaces is
Cartesian closed

I The lambda calculus can be interpreted in any CCC. . .

I . . . so a good DSL for reactive programming is functional
programming!

7/18

The Payoff, Part 2

Banach’s Contraction Map Theorem

Every strictly contractive function f : A→ A on a nonempty
metric space A has a unique fixed point.

I “Strictly contractive” = “well-founded feedback”

I So µ(λxs. 0 :: map succ xs) = 0, 1, 2, 3, . . .

I Semantic intepretation of feedback. . .

I . . . which ensures it is well-founded and deterministic

8/18

The Payoff, Part 2

Banach’s Contraction Map Theorem

Every strictly contractive function f : A→ A on a nonempty
metric space A has a unique fixed point.

I “Strictly contractive” = “well-founded feedback”

I So µ(λxs. 0 :: map succ xs) = 0, 1, 2, 3, . . .

I Semantic intepretation of feedback. . .

I . . . which ensures it is well-founded and deterministic

8/18

The Payoff, Part 2

Banach’s Contraction Map Theorem

Every strictly contractive function f : A→ A on a nonempty
metric space A has a unique fixed point.

I “Strictly contractive” = “well-founded feedback”

I So µ(λxs. 0 :: map succ xs) = 0, 1, 2, 3, . . .

I Semantic intepretation of feedback. . .

I . . . which ensures it is well-founded and deterministic

8/18

The Payoff, Part 2

Banach’s Contraction Map Theorem

Every strictly contractive function f : A→ A on a nonempty
metric space A has a unique fixed point.

I “Strictly contractive” = “well-founded feedback”

I So µ(λxs. 0 :: map succ xs) = 0, 1, 2, 3, . . .

I Semantic intepretation of feedback. . .

I . . . which ensures it is well-founded and deterministic

8/18

From Semantics to Type Theory

A ::= P | A→ B | S(A) | • A Types
e ::= x | λx . e | e e ′

| cons(e, e ′) | hd(e) | tl(e)
| •e | await(e) | fix x : A. e Terms

I •A is the delay modality
I •(A, d) = (A, d ′) where
I d ′(a, a′) = 1

2 · d(a, a′)

I •S(A) are “streams starting on the next time step”

I ε : •A→ B ' •A→ •B and ζ : •A× B ' •A× •B
I Banach’s theorem has type (•A→ A)→ A

9/18

From Semantics to Type Theory

A ::= P | A→ B | S(A) | • A Types
e ::= x | λx . e | e e ′

| cons(e, e ′) | hd(e) | tl(e)
| •e | await(e) | fix x : A. e Terms

I •A is the delay modality

I •(A, d) = (A, d ′) where
I d ′(a, a′) = 1

2 · d(a, a′)

I •S(A) are “streams starting on the next time step”

I ε : •A→ B ' •A→ •B and ζ : •A× B ' •A× •B
I Banach’s theorem has type (•A→ A)→ A

9/18

From Semantics to Type Theory

A ::= P | A→ B | S(A) | • A Types
e ::= x | λx . e | e e ′

| cons(e, e ′) | hd(e) | tl(e)
| •e | await(e) | fix x : A. e Terms

I •A is the delay modality
I •(A, d) = (A, d ′) where
I d ′(a, a′) = 1

2 · d(a, a′)

I •S(A) are “streams starting on the next time step”

I ε : •A→ B ' •A→ •B and ζ : •A× B ' •A× •B
I Banach’s theorem has type (•A→ A)→ A

9/18

From Semantics to Type Theory

A ::= P | A→ B | S(A) | • A Types
e ::= x | λx . e | e e ′

| cons(e, e ′) | hd(e) | tl(e)
| •e | await(e) | fix x : A. e Terms

I •A is the delay modality
I •(A, d) = (A, d ′) where
I d ′(a, a′) = 1

2 · d(a, a′)

I •S(A) are “streams starting on the next time step”

I ε : •A→ B ' •A→ •B and ζ : •A× B ' •A× •B
I Banach’s theorem has type (•A→ A)→ A

9/18

From Semantics to Type Theory

A ::= P | A→ B | S(A) | • A Types
e ::= x | λx . e | e e ′

| cons(e, e ′) | hd(e) | tl(e)
| •e | await(e) | fix x : A. e Terms

I •A is the delay modality
I •(A, d) = (A, d ′) where
I d ′(a, a′) = 1

2 · d(a, a′)

I •S(A) are “streams starting on the next time step”

I ε : •A→ B ' •A→ •B and ζ : •A× B ' •A× •B

I Banach’s theorem has type (•A→ A)→ A

9/18

From Semantics to Type Theory

A ::= P | A→ B | S(A) | • A Types
e ::= x | λx . e | e e ′

| cons(e, e ′) | hd(e) | tl(e)
| •e | await(e) | fix x : A. e Terms

I •A is the delay modality
I •(A, d) = (A, d ′) where
I d ′(a, a′) = 1

2 · d(a, a′)

I •S(A) are “streams starting on the next time step”

I ε : •A→ B ' •A→ •B and ζ : •A× B ' •A× •B
I Banach’s theorem has type (•A→ A)→ A

9/18

The Typing Judgement

I Key judgement Γ ` e :j A

I Read e has type A at time i

I Context annotated with times Γ ::= · | Γ, x :i A

10/18

The Typing Judgement

I Key judgement Γ ` e :j A

I Read e has type A at time i

I Context annotated with times Γ ::= · | Γ, x :i A

10/18

The Typing Judgement

I Key judgement Γ ` e :j A

I Read e has type A at time i

I Context annotated with times Γ ::= · | Γ, x :i A

10/18

Typing Rules

i ≤ j

Γ, x :i A ` x :j A

Γ, x :i+1 A ` e :i A

Γ ` fix x : A. e :i A

Γ, x :i A ` e :i B

Γ ` λx . e :i A→ B

Γ ` e :i A→ B Γ ` e ′ :i A

Γ ` e e ′ :i B

Γ ` e :i A Γ ` e ′ :i+1 S(A)

Γ ` cons(e, e ′) :i S(A)

Γ ` e :i S(A)

Γ ` hd(e) :i A

Γ ` e :i S(A)

Γ ` tl(e) :i+1 S(A)

Γ ` e :i+1 A

Γ ` •e :i •A
Γ ` e :i •A

Γ ` await(e) :i+1 A

11/18

Interpreting the Syntax

[[Γ ` e :i A]] ∈ [[Γ]]→ •i ([[A]])
[[Γ ` x :i A]] = δi−j ◦ πx when x :j A ∈ Γ
[[Γ ` λx . e :i A→ B]] = εi ◦ λ([[Γ, x :i A ` e :i B]])
[[Γ ` cons(e, e ′) :i S(A)]] = •i (cons) ◦ ζ i ◦ 〈[[e]], [[e ′]]〉
[[Γ ` hd(e) :i A]] = •i (head) ◦ [[Γ ` e :i S(A)]]
[[Γ ` tl(e) :i+1 S(A)]] = •i (tail) ◦ [[Γ ` e :i S(A)]]
[[Γ ` •e :i •A]] = [[Γ ` e :i+1 A]]
[[Γ ` await(e) :i+1 A]] = [[Γ ` e :i •A]]
[[Γ ` fix x : A. e :i+1 A]] = λγ. µ(λv . [[Γ, x :i+1 A ` e :i A]] (γ, v))

12/18

Example 1: fibs

fibs : S(N) // t = 0

fibs = fix xs:S(N). // t = 1

let ys = tl(xs) in // t = 2

cons(1, cons(1, map (+) (zip xs ys)))

I Looks like a lazy functional program

I Note xs and ys are at different times

13/18

Example 1: fibs

fibs : S(N) // t = 0

fibs = fix xs:S(N). // t = 1

let ys = tl(xs) in // t = 2

cons(1, cons(1, map (+) (zip xs ys)))

I Looks like a lazy functional program

I Note xs and ys are at different times

13/18

Example 1: fibs

fibs : S(N) // t = 0

fibs = fix xs:S(N). // t = 1

let ys = tl(xs) in // t = 2

cons(1, cons(1, map (+) (zip xs ys)))

I Looks like a lazy functional program

I Note xs and ys are at different times

13/18

Example 2: map

map : (A → B) → S(A) → S(B)
map = λf : A → B.

fix r : S(A) → S(B).
λxs:S(A). cons(f (hd xs), r (tl xs))

I Looks like a functional program

I Note higher-type recursion

14/18

Example 2: map

map : (A → B) → S(A) → S(B)
map = λf : A → B.

fix r : S(A) → S(B).
λxs:S(A). cons(f (hd xs), r (tl xs))

I Looks like a functional program

I Note higher-type recursion

14/18

Example 2: map

map : (A → B) → S(A) → S(B)
map = λf : A → B.

fix r : S(A) → S(B).
λxs:S(A). cons(f (hd xs), r (tl xs))

I Looks like a functional program

I Note higher-type recursion

14/18

Non-Example: illfounded

illfounded 6 : S(N)
illfounded = fix xs:S(N). xs

I Ill-founded feedback

I “Time-checking” error: xs is at time 1, not 0

I Typing rules block unguarded recursion

15/18

Non-Example: illfounded

illfounded 6 : S(N)
illfounded = fix xs:S(N). xs

I Ill-founded feedback

I “Time-checking” error: xs is at time 1, not 0

I Typing rules block unguarded recursion

15/18

Non-Example: illfounded

illfounded 6 : S(N)
illfounded = fix xs:S(N). xs

I Ill-founded feedback

I “Time-checking” error: xs is at time 1, not 0

I Typing rules block unguarded recursion

15/18

Non-Example: illfounded

illfounded 6 : S(N)
illfounded = fix xs:S(N). xs

I Ill-founded feedback

I “Time-checking” error: xs is at time 1, not 0

I Typing rules block unguarded recursion

15/18

How Can We Implement This

I Imperative implementation based on dataflow propagation
[TLDI 2010]

I Idea similar to spreadsheets, self-adjusting computation [Acar
et al.], subject-observer

I Correctness proof via logical relation between imperative code
and ultrametric semantics

I Proof uses ideas similar to Dreyer and Hur [POPL 2011]

16/18

How Can We Implement This

I Imperative implementation based on dataflow propagation
[TLDI 2010]

I Idea similar to spreadsheets, self-adjusting computation [Acar
et al.], subject-observer

I Correctness proof via logical relation between imperative code
and ultrametric semantics

I Proof uses ideas similar to Dreyer and Hur [POPL 2011]

16/18

How Can We Implement This

I Imperative implementation based on dataflow propagation
[TLDI 2010]

I Idea similar to spreadsheets, self-adjusting computation [Acar
et al.], subject-observer

I Correctness proof via logical relation between imperative code
and ultrametric semantics

I Proof uses ideas similar to Dreyer and Hur [POPL 2011]

16/18

How Can We Implement This

I Imperative implementation based on dataflow propagation
[TLDI 2010]

I Idea similar to spreadsheets, self-adjusting computation [Acar
et al.], subject-observer

I Correctness proof via logical relation between imperative code
and ultrametric semantics

I Proof uses ideas similar to Dreyer and Hur [POPL 2011]

16/18

Demo

Demo!

17/18

Conclusions

I Ultrametric semantics give a simple denotational semantics to
reactive programs

I The lambda calculus is the correct DSL for this domain

I We can implement this!

I Look at our upcoming LICS 2011 paper
<http://research.microsoft.com/~nick/frp-lics11.pdf>

I Look at our upcoming ICFP 2011 paper
<http://research.microsoft.com/~nick/guisemantics.pdf>

18/18

