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Introduction

I Contradictory information is the norm in large systems
I Classical logic is explosive

I.E. {α,¬α} ` β, for any sentences α, β.

I Classical logic unsuitable for reasoning under contradictory
information

I Paraconsistent logics avoid explosion
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Introduction

I Quasi-classical logic (QC) [BH95, Hun99] is a paraconsistent logic
that:

I Is not explosive.
I Preserves the usual boolean equivalences.
I Does not require consistency checking.
I Supports disjunctive syllogism.

.
I QC fails at some intuitive properties

E.G. If Γ |∼ α and Γ |∼ α→ β then Γ |∼ β (Right Modus Ponens)

I We tweak QC, obtain variant QC*
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Basic definitions

Definition (Language)

Let the language L be the set of classical propositional formulas over
atoms A and connectives ∧,∨,→,¬.

Definition (Literal)

A literal is an atom or the negation of an atom.

Definition (Clause)

A clause is a finite set of literals (disjunctive).
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Resolution

Definition (Clauses of a theory)

Each Γ ⊆ L can be converted into a set of clauses,
denoted as Clauses(Γ).

Definition (Binary resolution)
{λ, λ1,1, . . . , λ1,n} {¬λ, λ2,1, . . . , λ2,m}

{λ1,1, . . . , λ1,n, λ2,1, . . . , λ2,m}

Definition (Resolvents)

Resolvents(Φ) is the closure of Φ under binary resolution ( Φ a set of
clauses)
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Quasi-classical logic QC

Definition (QC consequence)

For Γ ⊆ L and φ ∈ L,
Γ `QC φ if and only if1

I For every C ∈ Clauses(φ),
I There exists B ∈ Resolvents(Clauses(Γ)) such that

I B 6= {} and
I B ⊆ C .

E.G. {p} `QC p

E.G. {¬p} `QC ¬p ∨ q

E.G. {¬p} `QC p → q

E.G. {p,¬p ∨ q} `QC q

E.G. {p, p → q} `QC q

E.G. {p,¬p} 6`QC q
1For a Fitch-style proof theory, see [Hun99].
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Failed properties
QC fails at several well-known properties of classical logic examined in
[Hun99].
For Γ,∆ ∈ P(L), α, β ∈ L,

I Right Modus Ponens (RMP)

If Γ |∼ α and Γ |∼ α→ β then Γ |∼ β

E.G. {p,¬p} `QC p and {p,¬p} `QC p → q, but {p,¬p} 6`QC q

I Deduction (Ded)

If Γ |∼ α→ β then Γ ∪ {α} |∼ β

I Unit Cumulativity (UCu)

If Γ ∪ {α} |∼ β and Γ |∼ α then Γ |∼ β

I Cut
If Γ ∪ {α} |∼ β and ∆ |∼ α then Γ ∪∆ |∼ β
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QC + {Cut or Ded or RMP or UCu } is explosive

{p,¬p} `QC p and
{p,¬p} `QC p → q,
but {p,¬p} 6`QC q

Theorem
If a consequence relation |∼ is at least as strong as `QC and satisfies
RMP (or Ded or Cut or UCu) then |∼ is explosive.

I.E. QC MUST fail at Cut, Ded, RMP, and UCu.
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Culprit

QC suports unrestricted ∨-introduction.
{¬p} `QC p → q

[∨-introduction]
α

α ∨ β

In QC*, restrict the ∨-introduction rule2

[Restricted ∨-introduction]
α β

α ∨ β

2The idea of restricting disjunction introduction in this way appears in
[Hew08].
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Quasi-classical logic variant QC*

Definition (QC* consequence)

For Γ ⊆ L and φ ∈ L,
Γ `QC* φ if and only if3

I For each C ∈ Clauses(φ),
I There exists B1, . . . ,Bk ∈ Resolvents(Clauses(Γ)) such that

I C =
⋃

i Bi

E.G. {p} `QC* p

E.G. {¬p} 6`QC* ¬p ∨ q

E.G. {¬p} 6`QC* p → q

E.G. {p,¬p ∨ q} `QC* q

E.G. {p, p → q} `QC* q

E.G. {p,¬p} 6`QC* q

3For a Fitch-style proof theory, see [Kao11]
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Succeeding

For Γ,∆ ∈ P(L), α, β ∈ L,

I Right Modus Ponens (RMP)

If Γ `QC* α and Γ `QC* α→ β then Γ `QC* β

I Deduction (Ded)

If Γ `QC* α→ β then Γ ∪ {α} `QC* β

I Unit Cumulativity (UCu)

If Γ ∪ {α} `QC* β and Γ `QC* α then Γ `QC* β

I Cut

If Γ ∪ {α} `QC* β and ∆ `QC* α then Γ ∪∆ `QC* β
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What’s the catch?

I By restricting ∨-introduction, do we lose important conclusions?

I Short answer: no.

I See the full paper further discussion.
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Conclusion

A simple tweak on quasi-classical logic, results in the logic QC*
I Achieves the properties QC fail at:

I Cut
I Deduction
I Right modus ponens
I Unit cumulativity

I Preserves the good features of QC
I Is not explosive.
I Preserves the usual boolean equivalences.
I Does not require consistency checking.
I Supports disjunctive syllogism.

I See http://www.stanford.edu/∼erickao/ for full paper.

I Much simpler proof theory
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What’s the catch?

By restricting ∨-introduction, do we lose important conclusions?

Example

Consider an airline reservation system.

I f — seat available in first-class

I c — seat available in coach

Suppose the system’s knowledge is Σ = {f }
I {f } `QC f ∨ c (Yes)

I {f } 6`QC* f ∨ c (Don’t know)
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Fix the UI not the logic

I Q “Is there an available seat in first-class or coach class”
A2 “I don’t know”
A2 “There is an available seat in first-class”

I Whenever Σ `QC φ, there is a sentence ψ such that Σ `QC* ψ and ψ
is stronger than φ.4

4By φ is stronger than ψ, we mean that for each clause c ∈ Clauses(φ),
there is a clause d ∈ Clauses(ψ) that subsumes c.
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Information hiding

However, the idea of answering something stronger is not desirable in all
situations. Sometimes a weak answer is needed for reason of privacy and
security. Consider the following example.

Example

Consider a university knowledge base that contains people information.

I v — student has left a program voluntarily

I n — student has left a program involuntarily

To protect privacy,

I Reveal: whether v ∨ n

I Hide: whether v

I Hide: whether n
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Fix the usage, not the logic

I new proposition l — student has left a program (voluntarily or
involuntarily)

I view definition: Λ = {n→ l , v → l}.

As desired5,

I {v} ∪ Λ `QC* l

I {n} ∪ Λ `QC* l

5This use of view definitions is a standard technique for enforcing security
and privacy in databases.
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Failed properties

QC fails at several well-known properties of classical logic examined in
[Hun99].
For Γ,∆ ∈ P(L), α, β ∈ L,

I Cut
If Γ ∪ {α} |∼ β and ∆ |∼ α then Γ ∪∆ |∼ β

E.G. {¬p} ∪ {p ∨ q} `QC q and {p} `QC p ∨ q, but {¬p} ∪ {p} 6`QC q

I Deduction (Ded)

If Γ |∼ α→ β then Γ ∪ {α} |∼ β

E.G. {¬p} `QC p → q, but {¬p} ∪ {p} 6`QC q.
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Failed properties

I Right Modus Ponens (RMP)

If Γ |∼ α and Γ |∼ α→ β then Γ |∼ β

E.G. {p,¬p} `QC p and {p,¬p} `QC p → q, but {p,¬p} 6`QC q

I Unit Cumulativity (UCu)

If Γ ∪ {α} |∼ β and Γ |∼ α then Γ |∼ β

E.G. {¬p, p} `QC p ∨ q and {¬p, p} ∪ {p ∨ q} `QC q, but {¬p, p} 6`QC q
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Property `QC `QC*

Reflexivity Succeeds Succeeds
Monotonicity Succeeds Succeeds

And Succeeds Succeeds
Or Succeeds Succeeds

Consistency preservation Succeeds Succeeds
Subclassicality Succeeds Succeeds

Cut Fails Succeeds
Deduction Fails Succeeds

Right modus ponens Fails Succeeds
Unit cumulatively Fails Succeeds
Conditionalization Fails Fails
Right weakening Fails Fails

Left logical equivalence Fails Fails
Supraclassicality Fails Fails
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