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Property Testing

Induction
Imagine we have a huge structure (e.g., a graph or database)
and we randomly take a small sample to examine.

What can we say about the entire structure?

This problem is fundamental to statistics, machine learning and
property testing.

Essentially fast, randomized approximation of model-checking.
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Basic Theme

Classification Problem for Testability

A prefix vocabulary class of first-order logic is defined by a
pattern of quantifiers and the predicate symbols allowed.

Classify all such classes as testable or untestable.

This topic began with Alon et al. Efficient testing of large
graphs. Combinatorica, 20(4):451–476, 2000.
We want a classification like that for decidability, the finite
model property, etc.
We generalize from graphs to relational structures.
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A Property Tester

Property testers are probabilistic approximation algorithms
that make queries for input bits.

We can’t distinguish between a large structure that has our
property and one that almost has it.
Maybe we only want to distinguish if the input has the
property or is far from having the property.
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Motivation I

Theorem (Alon et al. (2000))
All graph properties expressible with quantifiers ∃∗∀∗ are
testable and there is an untestable property expressible with
quantifiers ∀∗∃∗.

The untestable property of Alon et al. has prefix ∀12∃5.
Is this optimal? Where is the border for testability?

Motivating Questions

What is the minimum number of first-order
universal quantifiers,
existential quantifiers,
(total) quantifiers

needed to express an untestable property (in any vocabulary)?

Recent Progress in the Classification for Testability Charles Jordan and Thomas Zeugmann



Introduction Classification for Testability Conclusion Appendix

Motivation II

Corollaries of Recent Results and Open Question

The minimum numbers are
two universal quantifiers,
one existential quantifier,
three total quantifiers.

For these minima, the vocabulary of directed graphs suffices but
vocabularies of strings do not.

Ultimate Goal: Classification for Testability

We’d like a complete classification of the testable and untestable
prefix-vocabulary classes. Such a finite classification exists.
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Current Classification for Testability

Testable Classes
The following are testable.

[∃∗∀∗, all]= Alon et al. (2000), Jordan, Zeugmann (2010b)
Monadic Alon et al. (2001), McNaughton, Papert (1971)

[∃∗∀∃∗, all]= Jordan, Zeugmann (2009)

Untestable Classes
The following contain untestable graph properties.

[∀3∃, (0, 1)]= Alon et al. (2000), Jordan, Zeugmann (2010a)
[∀∃∀, (0, 1)]= Jordan, Zeugmann (2011)

Consistent with classifications for finite model property,
associated SO 0-1 laws, finite satisfiability, etc.
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Open Problems (Future Work)

1 It would be very interesting to know the testability of
graph properties expressible with quantifier prefix ∀2∃
(more generally relational properties and ∃∗∀2∃∗).
This may suffice to complete the classification for
testabilility and predicate logic with equality.

2 For the known testable cases, it’s possible to automatically
generate testers from the syntax of queries - possible
applications to databases, differential privacy, etc.?

3 It would be nice to know if equality is necessary to express
untestable properties in our classes.

4 Testability of other prefix vocabulary fragments.
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Introductions and Surveys

1 Oded Goldreich. Introduction to Testing Graph Properties.
ECCC TR10-082, 2010.

2 Dana Ron. Algorithmic and Analysis Techniques in
Property Testing. Found. Trends Theor. Comput. Sci.,
5(2):73–205, 2009.

3 Dana Ron. Property Testing: A Learning Theory
Perspective. Found. Trends Mach. Learn., 1(3):307–402,
2008.

4 Eldar Fischer. The Art of Uninformed Decisions. Bulletin
of EATCS, 75:97–126, 2001.
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History I
1 Randomization and approximation for efficiency

de Leeuw et al. Computability by probabilistic machines.
Automata Studies, 183–212, 1956.
Freivalds, Fast probabilistic algorithms. Proc. MFCS 1979,
LNCS 74, 57–69, 1979.

2 Property testing began in formal verification.
Quickly check that a program is “probably approximately
correct” before doing expensive verification.
Rubinfeld and Sudan. Robust characterizations of
polynomials with applications to program testing. SIAM J.
Comput., 25(2):252–271, 1995.
Blum, et al. Self-testing/correcting with applications to numerical
problems. J. of Comput. Syst. Sci., 47(3):549–595, 1993.

3 Extension to graphs using a functional representation of
adjacency matrices.

Goldreich, et al. Property testing and its connection to
learning and approximation. J. ACM, 45(4)653–750, 1998.
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History II

4 The classification for testability started in graph testing.
Alon et al. Efficient testing of large graphs. Combinatorica,
20(4):451–476, 2000.

5 Uniform hypergraph testing and regularity/removal lemmas
Rödl and Schacht. Generalizations of the removal lemma.
Combinatorica, 29(4):467–501, 2009.

6 Recent models for non-uniform hypergraph1 testing
Fischer, et al. Approximate hypergraph partitioning and
applications. Proc. FOCS 2007, pp. 579–589, 2007.
Austin and Tao. On the testability and repair of hereditary
hypergraph properties. Random Struc. Alg., 36(4):373–463,
2010.
Jordan and Zeugmann, 2009.

1Equivalent to relational structures in logic.
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Relational Structures I

A binary string is a sequence over {0, 1}, e.g.,

w = 0011120314.

This can be represented by a set of bit positions U and a monadic
predicate S ⊆ U denoting the positions that are 1. So, our
previous example can be written as

w = {{0, 1, . . . , 4}, {1, 2, 4}}.

Graphs can be represented by a set U of vertices and a binary
predicate E ⊆ U2 for the edge set.

Generalization
How about a generalization?
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Relational Structures II

Definition: Vocabulary

A vocabulary is a set of predicate symbols with their arities,

τ := {Ra1
1 , . . . , Ras

s }.

Examples: {S1} for binary strings and {E2} for graphs.

Definition: Structures
A structure of type τ is an (s + 1)-tuple, A := (U,R1, . . . ,Rs),
where U is a finite set and Ri ⊆ Uai a predicate for Ri ∈ τ.

Our first-order logic is a predicate logic with equality.
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Distance Measures

A and B are structures of type τwith size n, and ⊕ is x-or.
1 The fraction of tuples with different assignments,

Definition: dist(A, B)

dist(A, B) :=

∑
16i6s |{x | x ∈ Uai and RA

i (x)⊕ RB
i (x)}|∑s

i=1 nai
.

2 But then, high-arity relations have more weight.
If all relations are equal,

Definition: rdist(A, B)

rdist(A, B) := max
16i6s

|{x | x ∈ Uai and RA
i (x)⊕ RB

i (x)}|
nai

.

3 mrdist(A, B) is similar but tuples like (a, a, b) are treated as
separate low-arity relations (subrelations).
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Testing Definitions

The distance measures extend to properties in the usual way,

dist(A, P) := min
B∈P

dist(A, B) .

ε-tester
An ε-tester for P is a randomized algorithm that makes queries
for tuples in relations, accepts structures that have P with
probability 2/3 and rejects those that are ε-far from P with
probability 2/3.

Testability

A property P is testable if there exists a function c(ε) and, for
every ε > 0, an ε-tester with query complexity at most c(ε).
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Quick Outline: Classification Problem for Testability

We classify formulas in prenex normal form, based on
1 The pattern of quantifiers;
2 The vocabulary (number and arity of predicate symbols).

Each prefix vocabulary class has a representation, for example

[∃∗, (0, 1)]=

is the set of formulas with only existential quantifiers, one
binary predicate symbol that may contain the ‘=’ symbol.
These are the first-order existential graph properties.

The Classification Problem for Testability

We want to classify all such classes as testable or untestable.
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Classification Formalities
Definition: Prefix-Vocabulary Fragment

A prefix-vocabulary fragment is a triple, [Π, p]e, where
1 Π is a string over {∃,∀, ∃∗,∀∗},
2 p is a sequence overN andω or the phrase all, and
3 e is = or the empty string.

Definition: Prefix-Vocabulary Class

Fragment [Π, p = (p1, p2, . . .)]e defines the class of sentences in
prenex normal form satisfying the following.

1 The quantifiers match the language specified by Π when
interpreted as a regular expression.

2 If p is not all, at most pi-many distinct predicate symbols of
arity i appear.

3 If equality (=) appears in the sentence, then e is =.

Gurevich’s Classifiability Theorem guarantees a complete, finite
classification of prefix-vocabulary fragments for properties like
decidability, the finite model property, testability, etc.
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Result I: Ackermann’s Class is Testable

(Informal) Definition: Ackermann’s Class with Equality

Ackermann’s class with equality is [∃∗∀∃∗, all]=, the set of
(first-order) sentences of pure predicate logic with equality that
have one ∀ (and any number of ∃). No function symbols,
ordering or arithmetic is present.

Theorem: Ackermann’s Class with Equality is Testable

All formulas in Ackermann’s class with equality are testable
under all our definitions.

This class was first studied by Ackermann (1928).
The proof uses model-theoretic properties of this class.
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Result II: Ramsey’s Class is Testable

Definition: Ramsey’s Class

Ramsey’s class is [∃∗∀∗, all]=, the set of (first-order) sentences of
pure predicate logic with equality where all existential
quantifiers precede all universal quantifiers. No function
symbols, ordering or arithmetic is present.

Alon et al. (2000) showed that the restriction to undirected,
loop-free graphs is testable.

Theorem: Ramsey’s Class is Testable

All formulas in Ramsey’s class are testable under all our
definitions.

This class was first studied by Ramsey (1930).
The proof applies a strong result by Austin and Tao (2010).
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Result III: Untestable Prefix-Vocabulary Classes

We simplify the untestable property (prefix ∀12∃5) of
Alon et al. (2000) to obtain the following.

Theorem
There is an untestable (in all our models) graph property
expressible with each of the following quantifier prefixes.

1 ∀∃∀∃
2 ∀∃∀2

3 ∀2∃∀
4 ∀3∃

The proof uses an untestable variant of checking explicit
bipartite graph isomorphism, expressible in these classes.
Very recently, we’ve improved on three of these classes, but
we still need the result for ∀3∃.
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Result IV: Kahr-Moore-Wang Class is Untestable

Very recently, we’ve used a property more closely related
to function isomorphism to prove the following.

Theorem: Minimal Kahr-Moore-Wang Class is Untestable

There is an untestablea (in all of our models) graph property
expressible in the class [∀∃∀, (0, 1)]=.

aEven with o(
√

n) queries.

This class was first studied by Kahr, Moore, Wang (1962).

An Observation

The only remaining classes with equality contain ∀2∃.
Determining the testability for these classes would complete the
classification for predicate logic with equality.
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Other Classifications

Definition: Some Properties of Prefix-Vocabulary Classes

Let C be a class of sentences of first-order logic. We say that
satisfiability problem is decidable if given any ϕ ∈ C, we can
decide whether there is a model (possibly infinite) of ϕ.
The complexity of satisfiability is the complexity of this
problem, given ϕ as input (usually very hard)
C has the finite model property if, for every ϕ ∈ C it is true
that: if ϕ has a model then it has a finite model.
C has infinity axioms if it contains formulas that have only
infinite models.
The associated fragment of second-order existential logic
(SO∃) has a 0-1 law if for all ϕ ∈ C and all SO∃ sentences
γ := ∃S1 . . . Saϕ, the limit as n→∞ of the probability that a
random structure of size n models γ exists and is 0 or 1.
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Complete Classification for Decidability

Undecidable Undecidable Decidable
[∀∃∀, (ω, 1), (0)] [∀3∃, (ω, 1), (0)] [∃∗∀∗, all, (0)]=
[∀∗∃, (0, 1), (0)] [∀∃∀∗, (0, 1), (0)] [∃∗∀2∃∗, all, (0)]

[∀∃∀∃∗, (0, 1), (0)] [∀3∃∗, (0, 1), (0)] [all, (ω), (ω)]
[∀∃∗∀, (0, 1), (0)] [∃∗∀∃∀, (0, 1), (0)] [∃∗∀∃∗, all, all]
[∃∗∀3∃, (0, 1), (0)] [∀, (0), (2)]= [∃∗, all, all]=
[∀, (0), (0, 1)]= [∀2, (0, 1), (1)] [all, (ω), (1)]=
[∀2, (1), (0, 1)] [∀2∃, (ω, 1), (0)]= [∃∗∀∃∗, all, (1)]=

[∃∗∀2∃, (0, 1), (0)]= [∀2∃∗, (0, 1), (0)]=

1915-1984
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Classification for the Finite Model Property

Predicate Logic with Equality

The following fragments allow predicate symbols and
(possibly) equality, but do not allow function symbols.

Finite Model Property Infinity Axioms
[∃∗∀∗, all]= [∀3∃, (0, 1)]
[∃∗∀∃∗, all]= [∀∃∀, (0, 1)]
[all, (ω)]= [∀2∃, (ω, 1)]=
[∃∗∀2∃∗, all] [∀2∃∗, (0, 1)]=

[∃∗∀2∃, (0, 1)]=

A starting point for the testing classification?

∀∃∀, ∀3∃ and ∃∗∀2∃∗ look interesting.
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Classification for Associated 0-1 Laws

Holds w/ = Fails w/ =
[∃∗∀∗, all]= [∀∃∀, (0, 1)]=
[∃∗∀∃∗, all]= [∀3∃, (0, 1)]=

[∀2∃, (0, 1)]=
With equality (1987-1998), the same classification as docility.

Classification without Equality

The classification for 0-1 laws is the same as above, but the
classification for docility is different.

[∃∗∀2∃∗, all] (the Gödel class) is decidable and docile but
the associated 0-1 law fails.

Well-behavedness of ∃∗∀2∃∗ (the Gödel class) is fragile.
Interesting: ∀∃∀, ∀3∃, ∀2∃ and maybe ∃∗∀2∃∗

Kolaitis and Vardi. 0-1 laws for fragments of existential second-order logic: a
survey. Proc. MFCS 2000, LNCS 1893, pp. 84–98 (2000)
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Constructive Testability

Constructive Testability

All current classification results are constructive.
Given a formula from these classes and ε, we can construct an
ε-tester from the formula’s syntax.

Possible(?) applications include:
1 Automatic generation of testers for model checkers/etc
2 Automatic generation of testers for some SQL queries

See Libkin. Expressive power of SQL. Proc. ICDT 2001, LNCS
1973 (2001) for connections between SQL and first-order logic.

Question: Which Classification?
Is the classification for constructive testability most important?

Thankfully the classifications all coincide so far
(mrdist may be preferable for technical reasons).
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