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Separation logic

Separation Logic =

Hoare Logic

{P} C {Q}

⇐⇒ ∀s, h such that s, h |= P,
1. C , s, h does not get stuck
2. if C , s, h ∗ skip, s ′, h′

then s ′, h′ |= Q

+ Separating Conjunction “∗”

s, h |= P ∗ Q

⇐⇒ ∃h1, h2. h = h1 ] h2 ∧ s, h1 |= P ∧ s, h2 |= Q
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Frame rule

{P} C {Q}
FV(R) ∩Mod(C ) = ∅

{P ∗ R} C {Q ∗ R}
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Two main settings of separation logic

Low-level languages with manual memory management:

e.g., C with malloc(), free()

High-level languages with automatic memory management:

e.g., Java, ML

Garbage collection not observable in operational semantics
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Our focus: Low-level languages with garbage collection

Want to support local reasoning about low-level programs that
interface to a garbage collector (GC)

e.g., the output of a compiler for a garbage-collected
language, linked with some hand-coded assembly

Want to allow programs to violate the GC’s invariants in between
calls to the memory allocator

e.g., creating dangling pointers, performing address arithmetic

Informal local reasoning principles clearly exist,
so we should be able to codify them in separation logic!

Only work on the topic: [Calcagno, O’Hearn, & Bornat 2003]
and [McCreight, Shao, Lin & Li 2007]
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Motivating example: Array initialization

GC safe→

x := ALLOC(n);

t := x + 4n;

while x < t do

[x] := 0;

x := x + 4

GC unsafe→

od;

x := x− 4n;

t := 0

GC safe→
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Key Challenges

{P} GC() {P}
Want to give a clean specification for the GC,
essentially viewing it as equivalent to skip

The frame rule

Soundness somewhat subtle due to lack of “heap locality”
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High-level ideas
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Problem 1: Unreachable blocks may be reclaimed

Conundrum due to [Reynolds 2000]:

{true}
x := new(); [x] := 5; x := null;

{x = null ∧ ∃`. ` ↪→ 5}

GC()

{x = null ∧ ∃`. ` ↪→ 5}

Approach by [Calcagno et al. 2003]:
Impose “monster-barring” syntactic restriction on assertions P.
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Problem 2: Pointers can be relocated

This triple is easy to validate, even if the GC relocates x:

{x ↪→ 7} GC() {x ↪→ 7}

One approach: Avoid logical variables like `, and use auxiliary
program variables instead

But we would prefer to use logical variables

Worse, auxiliary variables may affect the reachability of data
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Logical memory (adapted from [McCreight et al. 2007])

LM
iso∼ M: isomorphism between reachable blocks of LM and M

` ↪→ 5x ↪→ ` ∗ ` ↪→ 7

LM

iso iso

` ↪→ 5x ↪→ ` ∗ ` ↪→ 7

0x80 ↪→ 5x ↪→ 0x40 ∗ 0x40 ↪→ 7

M
GC // M ′

empx ↪→ 0x60 ∗ 0x60 ↪→ 7

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection



Logical memory (adapted from [McCreight et al. 2007])

LM
iso∼ M: isomorphism between reachable blocks of LM and M

` ↪→ 5

x ↪→ ` ∗ ` ↪→ 7

LM

iso iso

` ↪→ 5x ↪→ ` ∗ ` ↪→ 7

0x80 ↪→ 5

x ↪→ 0x40 ∗ 0x40 ↪→ 7

M
GC // M ′

empx ↪→ 0x60 ∗ 0x60 ↪→ 7

{true}
x := new(); [x] := 5; x := null;

{x = null ∧ ∃`. ` ↪→ 5}

GC()

{x = null ∧ ∃`. ` ↪→ 5}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection



Logical memory (adapted from [McCreight et al. 2007])

LM
iso∼ M: isomorphism between reachable blocks of LM and M

` ↪→ 5

x ↪→ ` ∗ ` ↪→ 7

LM

iso iso

` ↪→ 5

x ↪→ ` ∗ ` ↪→ 7

0x80 ↪→ 5

x ↪→ 0x40 ∗ 0x40 ↪→ 7

M
GC // M ′ emp

x ↪→ 0x60 ∗ 0x60 ↪→ 7

{true}
x := new(); [x] := 5; x := null;

{x = null ∧ ∃`. ` ↪→ 5}
GC()

{x = null ∧ ∃`. ` ↪→ 5}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection



Logical memory (adapted from [McCreight et al. 2007])

LM
iso∼ M: isomorphism between reachable blocks of LM and M

` ↪→ 5

x ↪→ ` ∗ ` ↪→ 7 LM

iso iso

` ↪→ 5x ↪→ ` ∗ ` ↪→ 7

0x80 ↪→ 5

x ↪→ 0x40 ∗ 0x40 ↪→ 7 M
GC // M ′

empx ↪→ 0x60 ∗ 0x60 ↪→ 7

{x ↪→ ` ∗ ` ↪→ 7}

GC() {x ↪→ ` ∗ ` ↪→ 7}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection
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iso∼ M: isomorphism between reachable blocks of LM and M
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` ↪→ 5
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Semantics of Hoare triples with logical memories

{{P}} C {{Q}}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M

∧ LM safe

1. C ,M does not get stuck

2. if C ,M  ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′

∧ LM ′ safe

But in order to guarantee {{P}} GC() {{P}}, we need to ensure
that we only invoke the GC under GC-safe memories
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GC safety

LM = (s, h)

v safe : v is either a non-pointer word
or a pointer to the head of an allocated block.

s safe : all program variables in s contain safe values.

h safe : all reachable blocks in h contain safe values.

LM safe : LM.s safe ∧ LM.h safe.
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Motivating example: Array initialization
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Two-level logic

Outer-level logic

{{P}} C {{Q}}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M ∧ LM safe

1. C ,M does not get stuck

2. if C ,M  ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′ ∧ LM ′ safe

Inner-level logic

{P} C {Q}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M

1. C ,M does not get stuck

2. if C ,M  ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′
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Towards an “inclusion” rule

Obviously unsound:

{P} C {Q}
{{P}} C {{Q}}

. . . but how do we characterize mem is GC-safe?

Solution: We make a simplifying assumption.

In the inner-level logic, the store may contain unsafe values,
but the heap may not.

This is OK, given how interior pointers are typically used.
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Towards an “inclusion” rule

We want something like this . . .

{P ∧ store is GC-safe} C {Q ∧ store is GC-safe}
{{P}} C {{Q}}

. . . but how do we characterize store is GC-safe?

Solution: We make a simplifying assumption.

In the inner-level logic, the store may contain unsafe values,
but the heap may not.

This is OK, given how interior pointers are typically used.
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Inclusion rule

{P ∧ safe(V )} C {Q ∧ safe(Mod(C ))}
V ⊆ ProgVars

{{P}} C {{Q}}

safe is a new primitive predicate in our inner-level logic.
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Two-level logic (revisited)

Outer-level logic

{{P}} C {{Q}}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M ∧ LM safe

1. C ,M does not get stuck

2. if C ,M  ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′ ∧ LM ′ safe

Inner-level logic

{P} C {Q}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M

∧ LM.h safe

1. C ,M does not get stuck

2. if C ,M  ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′

∧ LM ′.h safe
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Frame rule

{P} C {Q}
FV(R) ∩Mod(C ) = ∅

{P ∗ R} C {Q ∗ R}

Our semantics so far doesn’t support frame,
because the presence of a GC violates “heap locality”

Solution: Following [Birkedal et al. 2006],
we bake the frame rule into the semantics of triples

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection



Baking the frame rule in

Outer-level logic

{{P}} C {{Q}}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M ∧ LM safe

1. C ,M does not get stuck

2. if C ,M  ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′ ∧ LM ′ safe

Inner-level logic

{P} C {Q}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M ∧ LM.h safe

1. C ,M does not get stuck

2. if C ,M  ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′ ∧ LM ′.h safe
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Baking the frame rule in

Outer-level logic

{{P}} C {{Q}}

⇐⇒ ∀M, LM, LMf such that LM |= P ∧ LM ] LMf
iso∼ M ∧ LM ] LMf safe

1. C ,M does not get stuck

2. if C ,M  ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′ ] LMf
iso∼ M ′ ∧ LM ′ ] LMf safe

Inner-level logic

{P} C {Q}

⇐⇒ ∀M, LM, LMf such that LM |= P ∧ LM ] LMf
iso∼ M ∧ (LM ] LMf).h safe

1. C ,M does not get stuck

2. if C ,M  ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′ ] LMf
iso∼ M ′ ∧ (LM ′ ] LMf).h safe
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Proof rules & Examples
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Logical entities

Words
def
= {w ∈ Z }

Locs
def
= { `1, `2, . . . }

LogPtrs
def
= { `+̂i | ` ∈ Locs ∧ i ∈ Z }

LogVals
def
= { v ∈Words ] LogPtrs }

LStores
def
= { s ∈ ProgVars→ LogVals }

LHeaps
def
= {h ∈ Locs ⇀fin N ⇀fin LogVals }
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Assertions

Outer-level assertions

P := E | logptr(E) | word(E)
| E ↪→ E | P ∗ P | P −∗ P
| P ⇒ P | P ∧ P | P ∨ P | ∀v .P | ∃v .P

Inner-level assertions

P := safe(E)
| E | logptr(E) | word(E)
| E ↪→ E | P ∗ P | P −∗ P
| P⇒ P | P ∧ P | P ∨ P | ∀v .P | ∃v .P
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Selected proof rules

{x = v ∧ E = E )} x := E {x = E [v/x]} (Assign)

{x = u ∧ E ↪→ v} x := [E ] {x = v ∧ E [u/x] ↪→ v} (Read)

{E ↪→ −∧ safe(E ′)} [E ] := E ′ {E ↪→ E ′} (Write)

n ≥ 0

{{true}} x := ALLOC(n) {{x ↪→n −, . . . ,−}}
(Alloc)
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Example 1: Array initialization

{P ∧ safe(V )} C {Q ∧ safe(Mod(C ))}
{{P}} C {{Q}}

x := ALLOC(n);

t := x + 4n;

while x < t do

[x] := 0;

x := x + 4

od;

x := x− 4n;

t := 0
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Example 1: Array initialization

{P ∧ safe(V )} C {Q ∧ safe(Mod(C ))}
{{P}} C {{Q}}{{true}}

x := ALLOC(n);

{{x ↪→n −, . . . ,−}}
{x ↪→n −, . . . ,− ∧ safe(x)}

n times︷ ︸︸ ︷
([x] := 0; x := x + 4); . . . ; ([x] := 0; x := x + 4)

{x− 4n ↪→n 0, . . . , 0 ∧ safe(x− 4n)}

x := x− 4n

{x ↪→n 0, . . . , 0 ∧ safe(x)}
{{x ↪→n 0, . . . , 0}}
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Example 1: Array initialization

For the original example, note that the setting of t to a safe value
is important, since t is modified by the program.

x := ALLOC(n);

t := x + 4n;

while x < t do

[x] := 0;

x := x + 4

od;

x := x− 4n;

t := 0
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Example 2: Add & Square

{{i = 2n + 1 ∧ j = 2m + 1}}
{i = 2n + 1 ∧ j = 2m + 1 ∧ word(n,m)}

i := (i + j− 2)÷ 2;

{i = n + m ∧ j = 2m + 1 ∧ word(n,m)}

i := i× i; i := 2× i + 1

{i = 2(n + m)2 + 1 ∧ j = 2m + 1}
{i = 2(n + m)2 + 1 ∧ j = 2m + 1 ∧ safe(i)}
{{i = 2(n + m)2 + 1 ∧ j = 2m + 1}}
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Conclusion

Summary

Separation logic to reason about low-level programs that might
violate GC safety in between calls to the GC
Key ideas:
- Logical memory
- Two-level logic with “inclusion” rule & safe predicate
Detailed soundness proof (in the technical appendix)

Limitations

Only accounts for stop-the-world collectors
Conjunction rule is unsound
Example we should but can’t prove in general:

{x = v ∧ y = w}
x := x xor y; y := x xor y; x := x xor y
{x = w ∧ y = v}
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