
Separation Logic
in the Presence of Garbage Collection

Chung-Kil Hur Derek Dreyer Viktor Vafeiadis

Max Planck Institute for Software Systems (MPI-SWS)
Kaiserslautern and Saarbrücken, Germany

LICS 2011
Toronto, Canada

Separation logic

Separation Logic =

Hoare Logic

{P} C {Q}

⇐⇒ ∀s, h such that s, h |= P,
1. C , s, h does not get stuck
2. if C , s, h ∗ skip, s ′, h′

then s ′, h′ |= Q

+ Separating Conjunction “∗”

s, h |= P ∗ Q

⇐⇒ ∃h1, h2. h = h1] h2 ∧ s, h1 |= P ∧ s, h2 |= Q

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Frame rule

{P} C {Q}
FV(R) ∩Mod(C) = ∅

{P ∗ R} C {Q ∗ R}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Two main settings of separation logic

Low-level languages with manual memory management:

e.g., C with malloc(), free()

High-level languages with automatic memory management:

e.g., Java, ML

Garbage collection not observable in operational semantics

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Our focus: Low-level languages with garbage collection

Want to support local reasoning about low-level programs that
interface to a garbage collector (GC)

e.g., the output of a compiler for a garbage-collected
language, linked with some hand-coded assembly

Want to allow programs to violate the GC’s invariants in between
calls to the memory allocator

e.g., creating dangling pointers, performing address arithmetic

Informal local reasoning principles clearly exist,
so we should be able to codify them in separation logic!

Only work on the topic: [Calcagno, O’Hearn, & Bornat 2003]
and [McCreight, Shao, Lin & Li 2007]

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Motivating example: Array initialization

GC safe→

x := ALLOC(n);

t := x + 4n;

while x < t do

[x] := 0;

x := x + 4

GC unsafe→

od;

x := x− 4n;

t := 0

GC safe→

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Motivating example: Array initialization

GC safe→
x := ALLOC(n);

t := x + 4n;

while x < t do

[x] := 0;

x := x + 4
GC unsafe→

od;

x := x− 4n;

t := 0
GC safe→

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Key Challenges

{P} GC() {P}
Want to give a clean specification for the GC,
essentially viewing it as equivalent to skip

The frame rule

Soundness somewhat subtle due to lack of “heap locality”

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

High-level ideas

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 1: Unreachable blocks may be reclaimed

Conundrum due to [Reynolds 2000]:

{true}
x := new(); [x] := 5; x := null;

{x = null ∧ ∃`. ` ↪→ 5}

GC()

{x = null ∧ ∃`. ` ↪→ 5}

Approach by [Calcagno et al. 2003]:
Impose “monster-barring” syntactic restriction on assertions P.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 1: Unreachable blocks may be reclaimed

Conundrum due to [Reynolds 2000]:

{true}
x := new(); [x] := 5; x := null;

{x = null ∧ ∃`. ` ↪→ 5}
GC()

{x = null ∧ ∃`. ` ↪→ 5}

Approach by [Calcagno et al. 2003]:
Impose “monster-barring” syntactic restriction on assertions P.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 1: Unreachable blocks may be reclaimed

Conundrum due to [Reynolds 2000]:

{true}
x := new(); [x] := 5; x := null;

{x = null ∧ ∃`. ` ↪→ 5}
GC()

{x = null ∧ ∃`. ` ↪→ 5}

Approach by [Calcagno et al. 2003]:
Impose “monster-barring” syntactic restriction on assertions P.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 2: Pointers can be relocated

This triple is easy to validate, even if the GC relocates x:

{x ↪→ 7} GC() {x ↪→ 7}

One approach: Avoid logical variables like `, and use auxiliary
program variables instead

But we would prefer to use logical variables

Worse, auxiliary variables may affect the reachability of data

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 2: Pointers can be relocated

This triple is hard to validate, because the GC could move `:

{x ↪→ ` ∗ ` ↪→ 7} GC() {x ↪→ ` ∗ ` ↪→ 7}

One approach: Avoid logical variables like `, and use auxiliary
program variables instead

But we would prefer to use logical variables

Worse, auxiliary variables may affect the reachability of data

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 2: Pointers can be relocated

This triple is hard to validate, because the GC could move `:

{x ↪→ ` ∗ ` ↪→ 7} GC() {x ↪→ `′ ∗ `′ ↪→ 7}

One approach: Avoid logical variables like `, and use auxiliary
program variables instead

But we would prefer to use logical variables

Worse, auxiliary variables may affect the reachability of data

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 2: Pointers can be relocated

This triple is hard to validate, because the GC could move `:

{x ↪→ ` ∗ ` ↪→ 7} GC() {x ↪→ `′ ∗ `′ ↪→ 7}

One approach: Avoid logical variables like `, and use auxiliary
program variables instead

But we would prefer to use logical variables

Worse, auxiliary variables may affect the reachability of data

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Problem 2: Pointers can be relocated

This triple is hard to validate, because the GC could move `:

{x ↪→ ` ∗ ` ↪→ 7} GC() {x ↪→ `′ ∗ `′ ↪→ 7}

One approach: Avoid logical variables like `, and use auxiliary
program variables instead

But we would prefer to use logical variables

Worse, auxiliary variables may affect the reachability of data

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Logical memory (adapted from [McCreight et al. 2007])

LM
iso∼ M: isomorphism between reachable blocks of LM and M

` ↪→ 5x ↪→ ` ∗ ` ↪→ 7

LM

iso iso

` ↪→ 5x ↪→ ` ∗ ` ↪→ 7

0x80 ↪→ 5x ↪→ 0x40 ∗ 0x40 ↪→ 7

M
GC // M ′

empx ↪→ 0x60 ∗ 0x60 ↪→ 7

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Logical memory (adapted from [McCreight et al. 2007])

LM
iso∼ M: isomorphism between reachable blocks of LM and M

` ↪→ 5

x ↪→ ` ∗ ` ↪→ 7

LM

iso iso

` ↪→ 5x ↪→ ` ∗ ` ↪→ 7

0x80 ↪→ 5

x ↪→ 0x40 ∗ 0x40 ↪→ 7

M
GC // M ′

empx ↪→ 0x60 ∗ 0x60 ↪→ 7

{true}
x := new(); [x] := 5; x := null;

{x = null ∧ ∃`. ` ↪→ 5}

GC()

{x = null ∧ ∃`. ` ↪→ 5}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Logical memory (adapted from [McCreight et al. 2007])

LM
iso∼ M: isomorphism between reachable blocks of LM and M

` ↪→ 5

x ↪→ ` ∗ ` ↪→ 7

LM

iso iso

` ↪→ 5

x ↪→ ` ∗ ` ↪→ 7

0x80 ↪→ 5

x ↪→ 0x40 ∗ 0x40 ↪→ 7

M
GC // M ′ emp

x ↪→ 0x60 ∗ 0x60 ↪→ 7

{true}
x := new(); [x] := 5; x := null;

{x = null ∧ ∃`. ` ↪→ 5}
GC()

{x = null ∧ ∃`. ` ↪→ 5}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Logical memory (adapted from [McCreight et al. 2007])

LM
iso∼ M: isomorphism between reachable blocks of LM and M

` ↪→ 5

x ↪→ ` ∗ ` ↪→ 7 LM

iso iso

` ↪→ 5x ↪→ ` ∗ ` ↪→ 7

0x80 ↪→ 5

x ↪→ 0x40 ∗ 0x40 ↪→ 7 M
GC // M ′

empx ↪→ 0x60 ∗ 0x60 ↪→ 7

{x ↪→ ` ∗ ` ↪→ 7}

GC() {x ↪→ ` ∗ ` ↪→ 7}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Logical memory (adapted from [McCreight et al. 2007])

LM
iso∼ M: isomorphism between reachable blocks of LM and M

` ↪→ 5

x ↪→ ` ∗ ` ↪→ 7 LM

iso iso

` ↪→ 5

x ↪→ ` ∗ ` ↪→ 7

0x80 ↪→ 5

x ↪→ 0x40 ∗ 0x40 ↪→ 7 M
GC // M ′

emp

x ↪→ 0x60 ∗ 0x60 ↪→ 7

{x ↪→ ` ∗ ` ↪→ 7} GC() {x ↪→ ` ∗ ` ↪→ 7}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Semantics of Hoare triples with logical memories

{{P}} C {{Q}}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M

∧ LM safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′

∧ LM ′ safe

But in order to guarantee {{P}} GC() {{P}}, we need to ensure
that we only invoke the GC under GC-safe memories

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Semantics of Hoare triples with logical memories

{{P}} C {{Q}}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M

∧ LM safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′

∧ LM ′ safe

But in order to guarantee {{P}} GC() {{P}}, we need to ensure
that we only invoke the GC under GC-safe memories

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Semantics of Hoare triples with logical memories

{{P}} C {{Q}}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M ∧ LM safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′ ∧ LM ′ safe

But in order to guarantee {{P}} GC() {{P}}, we need to ensure
that we only invoke the GC under GC-safe memories

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

GC safety

LM = (s, h)

v safe : v is either a non-pointer word
or a pointer to the head of an allocated block.

s safe : all program variables in s contain safe values.

h safe : all reachable blocks in h contain safe values.

LM safe : LM.s safe ∧ LM.h safe.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Semantics of Hoare triples with logical memories

{{P}} C {{Q}}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M ∧ LM safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′ ∧ LM ′ safe

But in order to guarantee {{P}} GC() {{P}}, we need to ensure
that we only invoke the GC under GC-safe memories

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Motivating example: Array initialization

GC safe→
x := ALLOC(n);

t := x + 4n;

while x < t do

[x] := 0;

x := x + 4
GC unsafe→

od;

x := x− 4n;

t := 0
GC safe→

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Two-level logic

Outer-level logic

{{P}} C {{Q}}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M ∧ LM safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′ ∧ LM ′ safe

Inner-level logic

{P} C {Q}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Towards an “inclusion” rule

Obviously unsound:

{P} C {Q}
{{P}} C {{Q}}

. . . but how do we characterize mem is GC-safe?

Solution: We make a simplifying assumption.

In the inner-level logic, the store may contain unsafe values,
but the heap may not.

This is OK, given how interior pointers are typically used.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Towards an “inclusion” rule

We want something like this . . .

{P ∧ mem is GC-safe} C {Q ∧ mem is GC-safe}
{{P}} C {{Q}}

. . . but how do we characterize mem is GC-safe?

Solution: We make a simplifying assumption.

In the inner-level logic, the store may contain unsafe values,
but the heap may not.

This is OK, given how interior pointers are typically used.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Towards an “inclusion” rule

We want something like this . . .

{P ∧ mem is GC-safe} C {Q ∧ mem is GC-safe}
{{P}} C {{Q}}

. . . but how do we characterize mem is GC-safe?

Solution: We make a simplifying assumption.

In the inner-level logic, the store may contain unsafe values,
but the heap may not.

This is OK, given how interior pointers are typically used.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Towards an “inclusion” rule

We want something like this . . .

{P ∧ mem is GC-safe} C {Q ∧ mem is GC-safe}
{{P}} C {{Q}}

. . . but how do we characterize mem is GC-safe?

Solution: We make a simplifying assumption.

In the inner-level logic, the store may contain unsafe values,
but the heap may not.

This is OK, given how interior pointers are typically used.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Towards an “inclusion” rule

We want something like this . . .

{P ∧ store is GC-safe} C {Q ∧ store is GC-safe}
{{P}} C {{Q}}

. . . but how do we characterize store is GC-safe?

Solution: We make a simplifying assumption.

In the inner-level logic, the store may contain unsafe values,
but the heap may not.

This is OK, given how interior pointers are typically used.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Inclusion rule

{P ∧ safe(V)} C {Q ∧ safe(Mod(C))}
V ⊆ ProgVars

{{P}} C {{Q}}

safe is a new primitive predicate in our inner-level logic.

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Two-level logic (revisited)

Outer-level logic

{{P}} C {{Q}}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M ∧ LM safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′ ∧ LM ′ safe

Inner-level logic

{P} C {Q}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M

∧ LM.h safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′

∧ LM ′.h safe

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Two-level logic (revisited)

Outer-level logic

{{P}} C {{Q}}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M ∧ LM safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′ ∧ LM ′ safe

Inner-level logic

{P} C {Q}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M ∧ LM.h safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′ ∧ LM ′.h safe

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Frame rule

{P} C {Q}
FV(R) ∩Mod(C) = ∅

{P ∗ R} C {Q ∗ R}

Our semantics so far doesn’t support frame,
because the presence of a GC violates “heap locality”

Solution: Following [Birkedal et al. 2006],
we bake the frame rule into the semantics of triples

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Baking the frame rule in

Outer-level logic

{{P}} C {{Q}}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M ∧ LM safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′ ∧ LM ′ safe

Inner-level logic

{P} C {Q}

⇐⇒ ∀M, LM such that LM |= P ∧ LM
iso∼ M ∧ LM.h safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′
iso∼ M ′ ∧ LM ′.h safe

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Baking the frame rule in

Outer-level logic

{{P}} C {{Q}}

⇐⇒ ∀M, LM, LMf such that LM |= P ∧ LM] LMf
iso∼ M ∧ LM] LMf safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′] LMf
iso∼ M ′ ∧ LM ′] LMf safe

Inner-level logic

{P} C {Q}

⇐⇒ ∀M, LM, LMf such that LM |= P ∧ LM] LMf
iso∼ M ∧ (LM] LMf).h safe

1. C ,M does not get stuck

2. if C ,M ∗ skip,M ′

then ∃LM ′. LM ′ |= Q ∧ LM ′] LMf
iso∼ M ′ ∧ (LM ′] LMf).h safe

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Proof rules & Examples

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Logical entities

Words
def
= {w ∈ Z }

Locs
def
= { `1, `2, . . . }

LogPtrs
def
= { `+̂i | ` ∈ Locs ∧ i ∈ Z }

LogVals
def
= { v ∈Words] LogPtrs }

LStores
def
= { s ∈ ProgVars→ LogVals }

LHeaps
def
= {h ∈ Locs ⇀fin N ⇀fin LogVals }

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Assertions

Outer-level assertions

P := E | logptr(E) | word(E)
| E ↪→ E | P ∗ P | P −∗ P
| P ⇒ P | P ∧ P | P ∨ P | ∀v .P | ∃v .P

Inner-level assertions

P := safe(E)
| E | logptr(E) | word(E)
| E ↪→ E | P ∗ P | P −∗ P
| P⇒ P | P ∧ P | P ∨ P | ∀v .P | ∃v .P

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Selected proof rules

{x = v ∧ E = E)} x := E {x = E [v/x]} (Assign)

{x = u ∧ E ↪→ v} x := [E] {x = v ∧ E [u/x] ↪→ v} (Read)

{E ↪→ −∧ safe(E ′)} [E] := E ′ {E ↪→ E ′} (Write)

n ≥ 0

{{true}} x := ALLOC(n) {{x ↪→n −, . . . ,−}}
(Alloc)

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 1: Array initialization

{P ∧ safe(V)} C {Q ∧ safe(Mod(C))}
{{P}} C {{Q}}

x := ALLOC(n);

t := x + 4n;

while x < t do

[x] := 0;

x := x + 4

od;

x := x− 4n;

t := 0

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 1: Array initialization

{P ∧ safe(V)} C {Q ∧ safe(Mod(C))}
{{P}} C {{Q}}{{true}}

x := ALLOC(n);

{{x ↪→n −, . . . ,−}}
{x ↪→n −, . . . ,− ∧ safe(x)}

n times︷ ︸︸ ︷
([x] := 0; x := x + 4); . . . ; ([x] := 0; x := x + 4)

{x− 4n ↪→n 0, . . . , 0 ∧ safe(x− 4n)}

x := x− 4n

{x ↪→n 0, . . . , 0 ∧ safe(x)}
{{x ↪→n 0, . . . , 0}}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 1: Array initialization

{P ∧ safe(V)} C {Q ∧ safe(Mod(C))}
{{P}} C {{Q}}

{{true}}

x := ALLOC(n);

{{x ↪→n −, . . . ,−}}

{x ↪→n −, . . . ,− ∧ safe(x)}

n times︷ ︸︸ ︷
([x] := 0; x := x + 4); . . . ; ([x] := 0; x := x + 4)

{x− 4n ↪→n 0, . . . , 0 ∧ safe(x− 4n)}

x := x− 4n

{x ↪→n 0, . . . , 0 ∧ safe(x)}

{{x ↪→n 0, . . . , 0}}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 1: Array initialization

{P ∧ safe(V)} C {Q ∧ safe(Mod(C))}
{{P}} C {{Q}}{{true}}

x := ALLOC(n);

{{x ↪→n −, . . . ,−}}
{x ↪→n −, . . . ,− ∧ safe(x)}

n times︷ ︸︸ ︷
([x] := 0; x := x + 4); . . . ; ([x] := 0; x := x + 4)

{x− 4n ↪→n 0, . . . , 0 ∧ safe(x− 4n)}

x := x− 4n

{x ↪→n 0, . . . , 0 ∧ safe(x)}
{{x ↪→n 0, . . . , 0}}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 1: Array initialization

{P ∧ safe(V)} C {Q ∧ safe(Mod(C))}
{{P}} C {{Q}}{{true}}

x := ALLOC(n);

{{x ↪→n −, . . . ,−}}
{x ↪→n −, . . . ,− ∧ safe(x)}

n times︷ ︸︸ ︷
([x] := 0; x := x + 4); . . . ; ([x] := 0; x := x + 4)

{x− 4n ↪→n 0, . . . , 0 ∧ safe(x− 4n)}

x := x− 4n

{x ↪→n 0, . . . , 0 ∧ safe(x)}
{{x ↪→n 0, . . . , 0}}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 1: Array initialization

For the original example, note that the setting of t to a safe value
is important, since t is modified by the program.

x := ALLOC(n);

t := x + 4n;

while x < t do

[x] := 0;

x := x + 4

od;

x := x− 4n;

t := 0

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 2: Add & Square

{{i = 2n + 1 ∧ j = 2m + 1}}
{i = 2n + 1 ∧ j = 2m + 1 ∧ word(n,m)}

i := (i + j− 2)÷ 2;

{i = n + m ∧ j = 2m + 1 ∧ word(n,m)}

i := i× i; i := 2× i + 1

{i = 2(n + m)2 + 1 ∧ j = 2m + 1}
{i = 2(n + m)2 + 1 ∧ j = 2m + 1 ∧ safe(i)}
{{i = 2(n + m)2 + 1 ∧ j = 2m + 1}}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 2: Add & Square

{{i = 2n + 1 ∧ j = 2m + 1}}

{i = 2n + 1 ∧ j = 2m + 1 ∧ word(n,m)}

i := (i + j− 2)÷ 2;

{i = n + m ∧ j = 2m + 1 ∧ word(n,m)}

i := i× i; i := 2× i + 1

{i = 2(n + m)2 + 1 ∧ j = 2m + 1}
{i = 2(n + m)2 + 1 ∧ j = 2m + 1 ∧ safe(i)}

{{i = 2(n + m)2 + 1 ∧ j = 2m + 1}}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Example 2: Add & Square

{{i = 2n + 1 ∧ j = 2m + 1}}
{i = 2n + 1 ∧ j = 2m + 1 ∧ word(n,m)}

i := (i + j− 2)÷ 2;

{i = n + m ∧ j = 2m + 1 ∧ word(n,m)}

i := i× i; i := 2× i + 1

{i = 2(n + m)2 + 1 ∧ j = 2m + 1}
{i = 2(n + m)2 + 1 ∧ j = 2m + 1 ∧ safe(i)}
{{i = 2(n + m)2 + 1 ∧ j = 2m + 1}}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Conclusion

Summary

Separation logic to reason about low-level programs that might
violate GC safety in between calls to the GC
Key ideas:
- Logical memory
- Two-level logic with “inclusion” rule & safe predicate
Detailed soundness proof (in the technical appendix)

Limitations

Only accounts for stop-the-world collectors
Conjunction rule is unsound
Example we should but can’t prove in general:

{x = v ∧ y = w}
x := x xor y; y := x xor y; x := x xor y
{x = w ∧ y = v}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

Conclusion

Summary

Separation logic to reason about low-level programs that might
violate GC safety in between calls to the GC
Key ideas:
- Logical memory
- Two-level logic with “inclusion” rule & safe predicate
Detailed soundness proof (in the technical appendix)

Limitations

Only accounts for stop-the-world collectors
Conjunction rule is unsound
Example we should but can’t prove in general:

{x = v ∧ y = w}
x := x xor y; y := x xor y; x := x xor y
{x = w ∧ y = v}

C.-K. Hur, D. Dreyer, V. Vafeiadis Separation Logic in the Presence of Garbage Collection

