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Motivation: proof nets

For a given logic,
» Syntax: proofs, terms
» Semantics: games, sets and relations (complete partial orders,
coherence spaces, Kripke frames), categories

But: many proofs may correspond to the same semantic entity
The aim of proof nets is to obtain a 1-1 correspondence between
syntax and semantics



Motivation: additive linear logic

» “Simple” fragment of linear logic, but units are hard
(Girard)

» Categorical semantics: free products and coproducts
(Joyal)

» Game-semantics: two communicating games of binary choice
(Cockett, Seely)

Process semantics: “the logic of message passing”
(Cockett)
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Additive linear logic

Additive linear logic
X =A]0 ]| T | XX | X&X

Proofs of X - Y (or X — Y, or X1 B Y)

Categorical (free) finite products and coproducts (over C)
X = Acob(C) |0 |1 ]| X+X | XxX

Morphisms f : X — Y



Properties of free (co)products

Zero and one are units
0+ X=X I1x X=X

and products and coproducts are perfectly dual

But there is no distributivity
o 0xX=0 o 1+X=1

o Xx(Y+2Z) 2 (XxY)+(Xx2)

(there may not even be a single arrow from left to right!)



Sum—product logic
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Softness

Joyal: Free Bicompletions of Categories (1995)
a morphism f : Vg x Vi3 — Xg + X1 has one of these forms

VoXVlL\/,-iXQ-i-Xl

Vo x Vi -1 X -5 Xo + X

and if it has both, then
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Vo x V1 Vi Xj Xo + X1
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Proof identity
Cockett and Seely: Finite Sum—Product Logic (2001)
vio(fom)=(tiof)om
[tiof,iiog]=1tio[f,g] (formi,gomi)=(f,g)om;

[(fo, &), (1, 81)] = ([fo, 1], [g0,81])

(72,2)=7 [ =1

7T,'O.7:.7 .’OL;:.’

Proof equality is decidable: terms are equal if and only if their
normal forms are equated by the above equational theory



Proof identity

Cockett and Santocanale (2009):

Proof equality for sum—product logic is tractable

Equality of f, g : X — Y can be decided in time
O((hgt(X) + hgt(Y)) x |X| x [Y])

(where hgt(X) is the height and | X| the total size of the syntax
tree of X)



Proof nets (without units)

Hughes (2002), Hughes and Van Glabbeek (2005)
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Proof nets (without units)

Hughes (2002), Hughes and Van Glabbeek (2005)
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Switching

Anet X 55 Y has
» a source object X

> a target object Y
> a labelled relation R from the leaves in X to the leaves in Y

Any such triple is a net if it satisfies the switching condition:
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After choosing one branch for each coproduct in X and each
product in Y there must be exactly one path from left to right.



Example: switching
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Non-example: switching
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Ax (B+C) — (AxB)+(Ax ()
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Non-example: switching

Ax (B+C) — (AxB)+(Ax ()



Equalities factored out

@t
s
®\ g
@

[toof,wwog] =100 [f,g]
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([f.g],[k,m])=[(f k) (g,m)]



The units

For initial and terminal maps 7: 0 — Y or | : X — 1 the objects
X and Y may be a product or coproduct.

©—0O0 O—0

The above links are added, which are not restricted to the leaves.

The switching condition is unaffected.
Omitting the label factors out an additional equality:



The full net calculus




The unit equations
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The unit equations

Ljo?=7 (2,2)=7
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.. .define an equational theory (<) over nets, via graph rewriting



The unit equations

tjo?=7 (7,7)=7 [L1]=1 lom =1
O O
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.. .define an equational theory (<) over nets, via graph rewriting
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The problem

We would like canonical representations for the equivalence classes
of proof nets generated by (&).

A standard approach is to rewrite towards a normal form, using a
confluent and terminating rewrite relation.

As the previous example illustrated, showing equivalence in (&)
requires rewrites in all directions—simply directing it will not work.
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and normalising rewrite relation: saturation (~).
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Immediate results

The saturation relation (~) is

confluent rewrite steps add links, depending on
the presence of other links

strongly normalising bounded by the number of possible links
(IX| % |Y] for X 55 v)

linear-time (in |X| x |Y]); saturation steps are
constant-time



Immediate results

The saturation relation (~) is

confluent rewrite steps add links, depending on
the presence of other links

strongly normalising bounded by the number of possible links
(IX| % |Y] for X 55 v)

linear-time (in |X| x |Y]); saturation steps are
constant-time

. R :
Write X 25 Y for the normal form (the saturation) of a net

R .
X — Y and call it a saturated net



Main results
Thm. Saturation gives a decision procedure for term equality in
sum—product logic:

R

Xy aox2Zy — x2R 75

Y = X—=Y

Completeness (=)

R = R/ & = osoooo = 5

Soundness (<) s the difficult (and important) part



Four obstacles in the soundness proof

» Saturation paths don't give much

R~R ~R"~ ... 3oR = 0S5« ...« 5"« 5 «5S



Four obstacles in the soundness proof

» Saturation paths don't give much

R~R ~R"~ ... v5oR =05« ...« 5"« S«S
Does this give a corresponding path of equivalences?
ReReRhs ...eoR, 7 5, ... 5 5<S

How to show that cR = oS gives R,, < S, 7
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Four obstacles in the soundness proof

» Saturation paths don't give much

» De-saturation is non-trivial

Approach: induction on source and target object
» Differently constructed nets may be equivalent

» Injecting into X +1 / projecting from X x 0 adds equivalences

R = oR S =o0S o(woR) = o(toS)
1 1 I I
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The category of saturated nets

The category of saturated nets is the free completion with finite
(nullary and binary) products and coproducts of a base category C.



The category of saturated nets

Identities are nets X 22X X where IDx is the identity relation on
the leaves of X.
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The category of saturated nets

Saturation is necessary: nets IDx are equivalent to other nets.
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The category of saturated nets

Composition is relational composition followed by (re-)saturation.




Conclusion

Saturated nets are canonical proof nets for additive linear logic and
give a combinatorial description of free sum—product categories

» Based on a simple rewriting algorithm
» Complicated correctness proof
» Work in progress: a correctness condition for saturated nets

» Relevant to concurrent games and communication by message
passing



Example
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Example
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