
Powermonads and Tensors
of Unranked Effects

Sergey Goncharov and Lutz Schröder

June 22, 2011

2 / 15
Monads and Effects: Tools

Strong monad T: Underlying category C, endofunctor
T : C→ C, unit: η : Id→ T , multiplication µ : T2 → T ,

plus strength: τA,B : A× TB→ T(A× B).

Metalanguage of effects:

• TypeW ::=W | 1 | TypeW × TypeW | T(TypeW)

• Term construction (Cartesian operators omitted):

x : A ∈ Γ
Γ B x : A

Γ B t : A
Γ B f(t) : B

(f : A→ B ∈ Σ)

Γ B t : A
Γ B ret t : TA

Γ B p : TA Γ , x : AB q : TB

Γ B do x← p;q : TB

3 / 15
Monads and Effects: Usage

Rough idea:

• function spaces are morphisms: [[A⇁ B]] = [[A]]→ T [[B]];

• sequencing is binding: [[x := p;q]] = do x← [[p]]; [[q]];

• values are pure computations: [[c]] = ret[[c]].

Examples:

• Exeptions: TA = A+ E.

• States: TA = S→ (S×A).
• Nondeterminism: TA = P(A), Pω(A), P?(A), . . .

• Input/Output: TA = µX.(A+ (I→ O× X)).
• Continuations: TA = (X→ R)→ R.

E.g. for TX = S→ P(S× X): [[A⇁ B]] ⊆ ([[A]]× S)× ([[B]]× S).

4 / 15
This work: Some motivation

• Can one assume ‘w.l.o.g.’ presence of higher-order term
constructors?

Yes! [Moggi, 1995]: C 7→ SetC
op

, T 7→ LanYYT

(Y : C→ SetC
op

is the Yoneda embedding).

• Can one assume presence of nondeterminism so that e.g.:

if b then p else q := b?;p+ (¬b)?;q

while b do p := (b?;p)?; (¬b)?

• How to make formal sense of these assignments
(we dub: Fischer-Ladner encoding) w.r.t. generic effects?

• When Fischer-Ladner is conservative?

What about a nondeterminism monad transformer?

4 / 15
This work: Some motivation

• Can one assume ‘w.l.o.g.’ presence of higher-order term
constructors?

Yes! [Moggi, 1995]: C 7→ SetC
op

, T 7→ LanYYT

(Y : C→ SetC
op

is the Yoneda embedding).

• Can one assume presence of nondeterminism so that e.g.:

if b then p else q := b?;p+ (¬b)?;q

while b do p := (b?;p)?; (¬b)?

• How to make formal sense of these assignments
(we dub: Fischer-Ladner encoding) w.r.t. generic effects?

• When Fischer-Ladner is conservative?

What about a nondeterminism monad transformer?

5 / 15
Additive monads/Kleene monads

Additive monads: There are deadlock (⊥), choice (+) which
satisfy axioms of semilattices, left/right distribute over binding.
Example: P, Pω; non-example: P(+ E), because:

do x← raise(e);⊥ = raise(e) 6= ⊥.

Completely additive: same but w.r.t. complete semilattices.
Example: P; non-example: Pω.

Weakly (completely) additive: same minus deadlock.
Examples: same plus P(+ E), P? (non-empty powerset).

(Weak) Kleene monads: (weakly) additive plus Kleene star:
(init ← in ∗).

Theorem. Every (weakly) completely additive monad is a
(weak) Kleene monad.

6 / 15
Fischer-Ladner encoding

Let C be a distributive category (products, coproducts plus
distributivity); let T be a Kleene monad over C.

Let a test function ? : 2→ T1 be a lattice homomorphism:

>? = ret ? ⊥? = ⊥ (φ∨ψ)? = φ? +ψ?

(φ∧ψ)? = do φ?;ψ? + do ψ?;φ?

Then put:

if(b,p,q) := do b?;p+ do (¬b)?;q,

while(b,p) := do x← (init x← ret x in(do b?;p)∗);

do (¬b)?; ret x

Theorem. If ‘if’ and ‘while’ are initially defined in terms of
coproducts they do always decompose as above.

7 / 15
Algebraic effects

(Finitary) Lawvere theory: small Cartesian category L plus a
strict-product-preserving, identity-on-objects functor: I : Nop → L

(N = naturals and maps with summs as coproducts.)

• L(n, 1) — operations; L(0, 1) — constants;
• Mod(L,C) ⊆ Fun(L,C) — models of L in C;
• forgetful functor Mod(L,C)→ C leads to finitary monads.

Finite nondeterminism: one constant ⊥ : 0→ 1, one operation:
+ : 2→ 1. Then e.g. (λa,b, c.a+ b+ c) : 3→ 1,
(λa. 〈a,⊥〉) : 1→ 2, etc.

States: lookupl : V → 1, updatel,v1→ 1 (l ∈ L, v ∈ V).
E.g.: updatel,v

(
lookupl〈p1, . . . ,p|V |〉

)
= updatel,v(pv).

Large Lawvere theory: L has all small products;
I : Setop → L is strict-small-product-preserving, id-on-objects.

Theorem [Linton, 1966]: Large Lawvere theories = Monads on Set.

8 / 15
Sum and Tensor

Sum of effects: blind union of signatures,
e.g. Σ? + T = µγ.T(Σγ+) (Σ? = I/O, Resumptions, Exeptions.)

Tensor = Sum modulo commutativity of operations:

n1 × n2
n1⊗f2 //

f1⊗n2

��

n1 ×m2

f1⊗m2

��
m1 × n2

m1⊗f2 // m1 ×m2.

(n⊗ f = f× . . .× f ‘n times’.)

For instance: lookupl〈p1 + q1,p2 + q2〉
= lookupl〈p1,p2〉+ lookupl〈q1,q2〉.

Examples: (× S)S ⊗ T = T(× S)S, ()S ⊗ T = TS,
(M×)⊗ T = T(M×) where M is a monoid (of messages).

9 / 15
Nondeterminism transformer, aka Powermonad

Given a monad T over Set we can (possibly) form T ⊗ P.

If T ⊗ P exists then it is completely additive.

Theorem. For the forgetful functor U from completely
additive monads to monads the following is equivalent:

• U has a left adjoint;

• U is monadic;

• T ⊗ P exists and T 7→ T ⊗ P lifts to a left adjoint of U.

Analogously for P?, Pω, P?
ω, etc.

Q: But when do the appropriate tensors exist?
A: Well, general existence of tensors it open
from 1969 [Manes, 1969].

9 / 15
Nondeterminism transformer, aka Powermonad

Given a monad T over Set we can (possibly) form T ⊗ P.

If T ⊗ P exists then it is completely additive.

Theorem. For the forgetful functor U from completely
additive monads to monads the following is equivalent:

• U has a left adjoint;

• U is monadic;

• T ⊗ P exists and T 7→ T ⊗ P lifts to a left adjoint of U.

Analogously for P?, Pω, P?
ω, etc.

Q: But when do the appropriate tensors exist?
A: Well, general existence of tensors it open
from 1969 [Manes, 1969].

9 / 15
Nondeterminism transformer, aka Powermonad

Given a monad T over Set we can (possibly) form T ⊗ P.

If T ⊗ P exists then it is completely additive.

Theorem. For the forgetful functor U from completely
additive monads to monads the following is equivalent:

• U has a left adjoint;

• U is monadic;

• T ⊗ P exists and T 7→ T ⊗ P lifts to a left adjoint of U.

Analogously for P?, Pω, P?
ω, etc.

Q: But when do the appropriate tensors exist?
A: Well, general existence of tensors it open
from 1969 [Manes, 1969].

10 / 15
Uniformity (1/2)

From [Hyland, Plotkin, and Power, 2003], [Hyland, Levy, Plotkin,
and Power, 2007] we know:

• tensors of ranked (≈ algebraic) monads always exist;
• tensors of ranked monads with continuations exist;
• tensors with states always exist.

Not covered: P⊗ T (P is unranked!), Pω ⊗ T unless T ranked.

More unranked monads: continuations, selections [Escardó and
Oliva, 2010], families (PP).

Idea of uniformity: for countable powersets Lawvere operation are
‘instances’ of a big union, e.g.: a ∪ b = a ∪ b ∪ b ∪ · · · .
Analogously for P, but big union is ‘unobservable’.

Informal definition: for every family of operations {fi : n→ 1}i
there is f̂ : k→ 1 such that fi = f̂σi;
Here: σi (i)rearranges arguments; (ii) plugs in constants.

11 / 15
Uniformity (2/2)

Non-existences of tensors is a cardinality issue.

Theorem. Tensor of two monads over Set does exist, provided one
of them is uniform.

Idea of the proof: resorting composite operations of the tensor
using uniformity. Like this:

f(a ∪ b, c)→ f(a ∪ b, c ∪ c)→ f(a, c) ∪ f(b, c).

In general, terms of T1 ⊗ T2 with uniform T1 have three layers:
(i) operations of T1, (ii) operations of T2, (iii) constants of T1.

Uniform monads: P, P?, Pω1, P?
ω1 (but not Pω!), infinite

multisets and (surprisingly!) continuations TR.

Quick intuition: LTR
(n, 1) ' Rn → R. Hence for |R| > 1, given

f1, f2 : R
n → R, we can unify them into f̂ : Rn+1 → R:

f̂(c) := if (c(inr ?) = r0) then f1(c ◦ inl) else f2(c ◦ inl)

12 / 15
Conservativity

When T 7→ T ⊗ P, T 7→ T ⊗ P? are conservative?

For P (P? is analogous): LT⊗P(n,m) is P(LT (n,m))
modulo rectangular equivalence, smallest equivalence closed
under:

LT (0,n) ≈ ∅ ∀i.πiA ≈ πiB
CA ≈ CB

Example: {〈a,b〉, 〈c,d〉} ≈ {〈a,d〉, 〈c,b〉}.

Corollary: Conservativity fails unless |T∅| = 0 or |T∅| = 1

Definition: a monad T is bounded if T∅ = {⊥}.

Examples include besides P, partial states, nondeterministic
states with deadlock, output with nontermination: O?× +1.

13 / 15
Bounded monads

Approximation

Smallest preorder with ⊥ as
the bottom and closed
under

∀i.πif v πig
hf v hg

This instantiates as
expected, e.g. for lists:
[a, c] = [a,⊥, c] v [a,b, c].

Closure

For A ⊆ L(n,m), cl(A) is the
closure of A under
approximations and under

∀i. g∆ih ∈ cl(A)

hg ∈ cl(A)

Here: ∆i =
∏
j

δij ∈ L(n,n),

δii = id, δij = ⊥ for i 6= j.

Theorem. If for all f ∈ LT (n,m), cl(f) = {g | g v f}
then T 7→ T ⊗ P is injective iff v is a partial order.

14 / 15
But does the tensor always exist?!

NO!

Well-order monad [Goncharov and Schröder, 2011]:

WX = {(Y, ρ) | Y ⊆ X, ρ a well-order on Y}.

equivalently: non-repetitive strict ordinal-indexed lists
(a+ a = ⊥, a+⊥ = ⊥).

Theorem. Tensor product of W with the free monad of two
binary operations does not exist.

Corollary. Tensor product with the finite list monad does not
always exist.

Open question: tensoring with the finitary powerset.

14 / 15
But does the tensor always exist?!

NO!

Well-order monad [Goncharov and Schröder, 2011]:

WX = {(Y, ρ) | Y ⊆ X, ρ a well-order on Y}.

equivalently: non-repetitive strict ordinal-indexed lists
(a+ a = ⊥, a+⊥ = ⊥).

Theorem. Tensor product of W with the free monad of two
binary operations does not exist.

Corollary. Tensor product with the finite list monad does not
always exist.

Open question: tensoring with the finitary powerset.

The End
Thanks for your attention!

Eugenio Moggi. A semantics for evaluation logic. Fund.
Inform., 22:117–152, 1995.

F. Linton. Some aspects of equational categories. In Proc.
Conf. Categor. Algebra, La Jolla, pages 84–94, 1966.

Ernest Manes. A triple theoretic construction of compact
algebras. In Seminar on Triples and Categorical Homology
Theory, volume 80 of Lect. Notes Math., pages 91–118.
Springer, 1969.

Martin Hyland, Gordon Plotkin, and John Power. Combining
effects: Sum and tensor. Theoretical Computer Science,
2003.

Martin Hyland, Paul Blain Levy, Gordon Plotkin, and John
Power. Combining algebraic effects with continuations.
Theoretical Computer Science, 375(1-3):20 – 40, 2007.
Festschrift for John C. Reynolds’s 70th birthday.

Mart́In Escardó and Paulo Oliva. Selection functions, bar
recursion and backward induction. Mathematical.
Structures in Comp. Sci., 20:127–168, 2010.

Sergey Goncharov and Lutz Schröder. A counterexample to
tensorability of effects. In Andrea Corradini and Bartek
Klin, editors, Algebra and Coalgebra in Computer Science
(CALCO 2011), Lecture Notes in Computer Science.
Springer, 2011. To appear.

	Appendix
	References

