Powermonads and Tensors of Unranked Effects

Sergey Goncharov and Lutz Schröder

June 22, 2011

Monads and Effects: Tools

Strong monad T: Underlying category C, endofunctor T: $\mathbb{C} \to \mathbb{C}$, unit: $\eta : Id \to T$, multiplication $\mu : T^2 \to T$, plus strength: $\tau_{A,B} : A \times TB \to T(A \times B)$.

Metalanguage of effects:

- Type_W ::= $W | 1 | Type_W \times Type_W | T(Type_W)$
- Term construction (Cartesian operators omitted):

$$\begin{array}{ll} \displaystyle \frac{x:A\in\Gamma}{\Gamma\triangleright x:A} & \displaystyle \frac{\Gamma\triangleright t:A}{\Gamma\triangleright f(t):B} & (f:A\rightarrow B\in\Sigma) \\ \\ \displaystyle \frac{\Gamma\triangleright t:A}{\Gamma\triangleright \mathsf{rett}:TA} & \displaystyle \frac{\Gamma\triangleright p:TA \quad \Gamma, x:A\triangleright q:TB}{\Gamma\triangleright \mathsf{do} \ x\leftarrow p; q:TB} \end{array}$$

Monads and Effects: Usage

Rough idea:

- function spaces are morphisms: $\llbracket A \rightarrow B \rrbracket = \llbracket A \rrbracket \rightarrow T \llbracket B \rrbracket$;
- sequencing is binding: $[x := p; q] = do x \leftarrow [p]; [q];$
- values are pure computations: [[c]] = ret[[c]].

Examples:

- Exeptions: TA = A + E.
- States: $TA = S \rightarrow (S \times A)$.
- Nondeterminism: $TA = \mathcal{P}(A)$, $\mathcal{P}_{\omega}(A)$, $\mathcal{P}^{\star}(A)$, ...
- Input/Output: $TA = \mu X.(A + (I \rightarrow O \times X)).$
- Continuations: $TA = (X \rightarrow R) \rightarrow R$.

 $\mathsf{E.g. for } \mathsf{TX} = \mathsf{S} \to \mathcal{P}(\mathsf{S} \times \mathsf{X}) \text{: } \llbracket \mathsf{A} \rightharpoondown \mathsf{B} \rrbracket \subseteq (\llbracket \mathsf{A} \rrbracket \times \mathsf{S}) \times (\llbracket \mathsf{B} \rrbracket \times \mathsf{S}).$

This work: Some motivation

- Can one assume 'w.l.o.g.' presence of higher-order term constructors?
 - $\begin{array}{l} \textbf{Yes!} \ [\mathsf{Moggi}, \ 1995] : \ \mathbf{C} \mapsto \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}, \ \mathsf{T} \mapsto \mathsf{Lan}_{\mathsf{Y}}\mathsf{YT} \\ (\mathsf{Y}: \mathbf{C} \to \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}} \ \text{is the Yoneda embedding}). \end{array}$
- Can one assume presence of nondeterminism so that e.g.:

if b then p else
$$q := b?; p + (\neg b)?; q$$

while b do $p := (b?; p)^*; (\neg b)?$

- How to make formal sense of these assignments (we dub: Fischer-Ladner encoding) w.r.t. generic effects?
- When Fischer-Ladner is conservative?

What about a nondeterminism monad transformer?

This work: Some motivation

- Can one assume 'w.l.o.g.' presence of higher-order term constructors?
 - $\begin{array}{l} \textbf{Yes!} \ [\mathsf{Moggi}, \ 1995] : \ \mathbf{C} \mapsto \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}}, \ \mathsf{T} \mapsto \mathsf{Lan}_{\mathsf{Y}}\mathsf{YT} \\ (\mathsf{Y}: \mathbf{C} \to \mathbf{Set}^{\mathbf{C}^{\mathrm{op}}} \ \text{is the Yoneda embedding}). \end{array}$
- Can one assume presence of nondeterminism so that e.g.:

if b then p else q := b?;
$$p + (\neg b)$$
?; q
while b do p := $(b$?; p)*; $(\neg b)$?

- How to make formal sense of these assignments (we dub: Fischer-Ladner encoding) w.r.t. generic effects?
- When Fischer-Ladner is conservative?

What about a nondeterminism monad transformer?

Additive monads/Kleene monads

Additive monads: There are deadlock (\perp), choice (+) which satisfy axioms of semilattices, left/right distribute over binding. Example: $\mathcal{P}, \mathcal{P}_{\omega}$; non-example: $\mathcal{P}(_+E)$, because:

do $x \leftarrow raise(e); \bot = raise(e) \neq \bot$.

Completely additive: same but w.r.t. complete semilattices. Example: \mathcal{P} ; non-example: \mathcal{P}_{ω} .

Weakly (completely) additive: same minus deadlock. Examples: same plus $\mathcal{P}(-+E)$, \mathcal{P}^* (non-empty powerset).

(Weak) Kleene monads: (weakly) additive plus Kleene star: (init $_ \leftarrow _$ in $_^*$).

Theorem. Every (weakly) completely additive monad is a (weak) Kleene monad.

Fischer-Ladner encoding

Let C be a distributive category (products, coproducts plus distributivity); let T be a Kleene monad over C.

Let a test function $?: 2 \rightarrow T1$ be a lattice homomorphism:

$$T? = \mathsf{ret} \star \qquad \bot? = \bot \qquad (\phi \lor \psi)? = \phi? + \psi? \\ (\phi \land \psi)? = \mathsf{do} \ \phi?; \psi? + \mathsf{do} \ \psi?; \phi?$$

Then put:

$$\begin{split} \text{if}(b, p, q) &:= \text{ do } b?; p + \text{ do } (\neg b)?; q, \\ \text{while}(b, p) &:= \text{ do } x \leftarrow (\text{init } x \leftarrow \text{ret } x \text{ in}(\text{ do } b?; p)^*); \\ \text{ do } (\neg b)?; \text{ret } x \end{split}$$

Theorem. If 'if' and 'while' are initially defined in terms of coproducts they do always decompose as above.

Algebraic effects

(Finitary) Lawvere theory: small Cartesian category L plus a strict-product-preserving, identity-on-objects functor: $I:\mathbb{N}^{op}\to L$ $(\mathbb{N}=$ naturals and maps with summs as coproducts.)

- L(n, 1) operations; L(0, 1) constants;
- $Mod(L, C) \subseteq Fun(L, C)$ models of L in C;
- forgetful functor $Mod(L, C) \rightarrow C$ leads to finitary monads.

 $\begin{array}{l} \mbox{Finite nondeterminism: one constant } \bot: 0 \to 1, \mbox{ one operation:} \\ +: 2 \to 1. \mbox{ Then e.g. } (\lambda a, b, c. \ a + b + c): 3 \to 1, \\ (\lambda a, \langle a, \bot \rangle): 1 \to 2, \mbox{ etc.} \end{array}$

 $\begin{array}{l} \textbf{States: } lookup_l: V \rightarrow 1, \ update_{l,\nu} 1 \rightarrow 1 \ (l \in L, \ \nu \in V). \\ \textbf{E.g.: } update_{l,\nu} \big(lookup_l \langle p_1, \ldots, p_{|V|} \rangle \big) = update_{l,\nu}(p_\nu). \end{array}$

Large Lawvere theory: L has all small products; I : $\mathbf{Set}^{\mathrm{op}} \to L$ is strict-small-product-preserving, id-on-objects.

Theorem [Linton, 1966]: Large Lawvere theories = Monads on Set.

Sum and Tensor

Sum of effects: blind union of signatures, e.g. $\Sigma^{\star} + T = \mu \gamma . T(\Sigma \gamma + _)$ ($\Sigma^{\star} = I/O$, Resumptions, Exeptions.)

Tensor = Sum modulo commutativity of operations:

 $(n \otimes f = f \times \ldots \times f \text{ 'n times'.})$

$$\begin{split} \text{For instance: } & \text{lookup}_1 \langle p_1 + q_1, p_2 + q_2 \rangle \\ & = \text{lookup}_1 \langle p_1, p_2 \rangle + \text{lookup}_1 \langle q_1, q_2 \rangle. \end{split}$$

Examples: $(_\times S)^S \otimes T = T(_\times S)^S$, $(_)^S \otimes T = T^S$, $(M \times _) \otimes T = T(M \times _)$ where M is a monoid (of messages).

Nondeterminism transformer, aka Powermonad

Given a monad T over Set we can (possibly) form $T \otimes \mathcal{P}$.

If $\mathsf{T}\otimes \mathfrak{P}$ exists then it is completely additive.

Theorem. For the forgetful functor U from completely additive monads to monads the following is equivalent:

- U has a left adjoint;
- U is monadic;
- $T\otimes \mathfrak{P}$ exists and $T\mapsto T\otimes \mathfrak{P}$ lifts to a left adjoint of U.

Analogously for \mathcal{P}^{\star} , \mathcal{P}_{ω} , $\mathcal{P}_{\omega}^{\star}$, etc.

Q: But when do the appropriate tensors exist? A: Well, general existence of tensors it open from 1969 [Manes, 1969].

9 / 15

Nondeterminism transformer, aka Powermonad

Given a monad T over Set we can (possibly) form $T \otimes \mathcal{P}$.

If $\mathsf{T}\otimes \mathfrak{P}$ exists then it is completely additive.

Theorem. For the forgetful functor U from completely additive monads to monads the following is equivalent:

- U has a left adjoint;
- U is monadic;
- $T \otimes \mathcal{P}$ exists and $T \mapsto T \otimes \mathcal{P}$ lifts to a left adjoint of U.

Analogously for \mathcal{P}^* , \mathcal{P}_{ω} , \mathcal{P}^*_{ω} , etc.

Q: But when do the appropriate tensors exist? A: Well, general existence of tensors it open from 1969 [Manes, 1969].

9/15

Nondeterminism transformer, aka Powermonad

Given a monad T over Set we can (possibly) form $T \otimes \mathcal{P}$.

If $\mathsf{T}\otimes \mathfrak{P}$ exists then it is completely additive.

Theorem. For the forgetful functor U from completely additive monads to monads the following is equivalent:

- U has a left adjoint;
- U is monadic;
- $T \otimes \mathcal{P}$ exists and $T \mapsto T \otimes \mathcal{P}$ lifts to a left adjoint of U.

Analogously for \mathcal{P}^* , \mathcal{P}_{ω} , \mathcal{P}^*_{ω} , etc.

Q: But when do the appropriate tensors exist? A: Well, general existence of tensors it open from 1969 [Manes, 1969].

9 / 15

Uniformity (1/2)

From [Hyland, Plotkin, and Power, 2003], [Hyland, Levy, Plotkin, and Power, 2007] we know:

- tensors of ranked (\approx algebraic) monads always exist;
- tensors of ranked monads with continuations exist;
- tensors with states always exist.

Not covered: $\mathfrak{P} \otimes \mathsf{T}$ (\mathfrak{P} is unranked!), $\mathfrak{P}_{\omega} \otimes \mathsf{T}$ unless T ranked.

More unranked monads: continuations, selections [Escardó and Oliva, 2010], families (\mathcal{PP}) .

Idea of uniformity: for countable powersets Lawvere operation are 'instances' of a big union, e.g.: $a \cup b = a \cup b \cup b \cup \cdots$. Analogously for \mathcal{P} , but big union is 'unobservable'.

Informal definition: for every family of operations $\{f_i : n \to 1\}_i$ there is $\hat{f} : k \to 1$ such that $f_i = \hat{f}\sigma_i$; Here: σ_i (i)rearranges arguments; (ii) plugs in constants.

Uniformity (2/2)

Non-existences of tensors is a cardinality issue.

Theorem. Tensor of two monads over **Set** does exist, provided one of them is uniform.

Idea of the proof: resorting composite operations of the tensor using uniformity. Like this:

 $f(a \cup b, c) \rightarrow f(a \cup b, c \cup c) \rightarrow f(a, c) \cup f(b, c).$

In general, terms of $T_1\otimes T_2$ with uniform T_1 have three layers: (i) operations of $T_1,$ (ii) operations of $T_2,$ (iii) constants of $T_1.$

Uniform monads: \mathcal{P} , \mathcal{P}^{\star} , $\mathcal{P}_{\omega 1}$, $\mathcal{P}^{\star}_{\omega 1}$ (but not \mathcal{P}_{ω} !), infinite multisets and (surprisingly!) continuations T_R .

Quick intuition: $L_{T_R}(n, 1) \simeq R^n \to R$. Hence for |R| > 1, given $f_1, f_2: R^n \to R$, we can unify them into $\hat{f}: R^{n+1} \to R$:

 $\hat{f}(c) := if (c(inr \star) = r_0)$ then $f_1(c \circ inl)$ else $f_2(c \circ inl)$

Conservativity

When $T\mapsto T\otimes \mathfrak{P}$, $T\mapsto T\otimes \mathfrak{P}^{\star}$ are conservative?

For \mathcal{P} (\mathcal{P}^{\star} is analogous): $L_{T\otimes \mathcal{P}}(n, m)$ is $\mathcal{P}(L_{T}(n, m))$ modulo rectangular equivalence, smallest equivalence closed under:

$$L_{T}(0,n) \approx \emptyset \qquad \qquad \frac{\forall i. \pi_{i}A \approx \pi_{i}B}{CA \approx CB}$$

Example: $\{\langle a, b \rangle, \langle c, d \rangle\} \approx \{\langle a, d \rangle, \langle c, b \rangle\}.$

Corollary: Conservativity fails unless $|T\emptyset| = 0$ or $|T\emptyset| = 1$

Definition: a monad T is bounded if $T\emptyset = \{\bot\}$.

Examples include besides \mathcal{P} , partial states, nondeterministic states with deadlock, output with nontermination: $O^* \times -+1$.

Bounded monads

Approximation

Smallest preorder with \perp as the bottom and closed under

 $\begin{array}{c} \displaystyle \frac{\forall i. \, \pi_i f \sqsubseteq \pi_i g}{hf \sqsubseteq hg} \\ \end{array} \\ This instantiates as \\ expected, e.g. for lists: \\ \left[a, c\right] = \left[a, \bot, c\right] \sqsubseteq \left[a, b, c\right]. \end{array}$

Closure

For $A \subseteq L(n, m)$, cl(A) is the closure of A under approximations and under

$$\begin{split} & \frac{\forall i. \ g\Delta_i h \in \mathsf{cl}(A)}{hg \in \mathsf{cl}(A)} \\ & \text{Here: } \Delta_i = \prod_j \delta_{ij} \in \mathsf{L}(n,n), \\ & \delta_{ii} = id, \ \delta_{ij} = \bot \text{ for } i \neq j. \end{split}$$

Theorem. If for all $f \in L_T(n, m)$, $cl(f) = \{g \mid g \sqsubseteq f\}$ then $T \mapsto T \otimes \mathcal{P}$ is injective iff \sqsubseteq is a partial order.

But does the tensor always exist?!

NO!

Well-order monad [Goncharov and Schröder, 2011]:

 $WX = \{(Y, \rho) \mid Y \subseteq X, \rho \text{ a well-order on } Y\}.$

equivalently: non-repetitive strict ordinal-indexed lists $(\alpha + \alpha = \bot, \alpha + \bot = \bot).$

Theorem. Tensor product of W with the free monad of two binary operations does not exist.

Corollary. Tensor product with the finite list monad does not always exist.

Open question: tensoring with the finitary powerset.

But does the tensor always exist?!

NO!

Well-order monad [Goncharov and Schröder, 2011]:

 $\mathcal{W}X=\{(Y,\rho)\mid Y\subseteq X,\rho\text{ a well-order on }Y\}.$

equivalently: non-repetitive strict ordinal-indexed lists (a + a = \perp , a + \perp = \perp).

Theorem. Tensor product of \mathcal{W} with the free monad of two binary operations does not exist.

Corollary. Tensor product with the finite list monad does not always exist.

Open question: tensoring with the finitary powerset.

The End

Thanks for your attention!

Eugenio Moggi. A semantics for evaluation logic. *Fund. Inform.*, 22:117–152, 1995.

- F. Linton. Some aspects of equational categories. In *Proc. Conf. Categor. Algebra, La Jolla*, pages 84–94, 1966.
- Ernest Manes. A triple theoretic construction of compact algebras. In *Seminar on Triples and Categorical Homology Theory*, volume 80 of *Lect. Notes Math.*, pages 91–118. Springer, 1969.
- Martin Hyland, Gordon Plotkin, and John Power. Combining effects: Sum and tensor. *Theoretical Computer Science*, 2003.
- Martin Hyland, Paul Blain Levy, Gordon Plotkin, and John Power. Combining algebraic effects with continuations. *Theoretical Computer Science*, 375(1-3):20 – 40, 2007. Festschrift for John C. Reynolds's 70th birthday.
- MartÍn Escardó and Paulo Oliva. Selection functions, bar recursion and backward induction. *Mathematica*. *Structures in Comp. Sci.*, 20:127–168, 2010.

Sergey Goncharov and Lutz Schröder. A counterexample to tensorability of effects. In Andrea Corradini and Bartek Klin, editors, Algebra and Coalgebra in Computer Science (CALCO 2011), Lecture Notes in Computer Science. Springer, 2011. To appear.

