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June 22, 2011



2 / 15
Monads and Effects: Tools

Strong monad T: Underlying category C, endofunctor
T : C→ C, unit: η : Id→ T , multiplication µ : T2 → T ,

plus strength: τA,B : A× TB→ T(A× B).

Metalanguage of effects:

• TypeW ::=W | 1 | TypeW × TypeW | T(TypeW)

• Term construction (Cartesian operators omitted):

x : A ∈ Γ
Γ B x : A

Γ B t : A
Γ B f(t) : B

(f : A→ B ∈ Σ)

Γ B t : A
Γ B ret t : TA

Γ B p : TA Γ , x : AB q : TB

Γ B do x← p;q : TB
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Monads and Effects: Usage

Rough idea:

• function spaces are morphisms: [[A⇁ B]] = [[A]]→ T [[B]];

• sequencing is binding: [[x := p;q]] = do x← [[p]]; [[q]];

• values are pure computations: [[c]] = ret[[c]].

Examples:

• Exeptions: TA = A+ E.

• States: TA = S→ (S×A).
• Nondeterminism: TA = P(A), Pω(A), P?(A), . . .

• Input/Output: TA = µX.(A+ (I→ O× X)).
• Continuations: TA = (X→ R)→ R.

E.g. for TX = S→ P(S× X): [[A⇁ B]] ⊆ ([[A]]× S)× ([[B]]× S).
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This work: Some motivation

• Can one assume ‘w.l.o.g.’ presence of higher-order term
constructors?

Yes! [Moggi, 1995]: C 7→ SetC
op

, T 7→ LanYYT

(Y : C→ SetC
op

is the Yoneda embedding).

• Can one assume presence of nondeterminism so that e.g.:

if b then p else q := b?;p+ (¬b)?;q

while b do p := (b?;p)?; (¬b)?

• How to make formal sense of these assignments
(we dub: Fischer-Ladner encoding) w.r.t. generic effects?

• When Fischer-Ladner is conservative?

What about a nondeterminism monad transformer?
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Additive monads/Kleene monads

Additive monads: There are deadlock (⊥), choice (+) which
satisfy axioms of semilattices, left/right distribute over binding.
Example: P, Pω; non-example: P( + E), because:

do x← raise(e);⊥ = raise(e) 6= ⊥.

Completely additive: same but w.r.t. complete semilattices.
Example: P; non-example: Pω.

Weakly (completely) additive: same minus deadlock.
Examples: same plus P( + E), P? (non-empty powerset).

(Weak) Kleene monads: (weakly) additive plus Kleene star:
(init ← in ∗).

Theorem. Every (weakly) completely additive monad is a
(weak) Kleene monad.
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Fischer-Ladner encoding

Let C be a distributive category (products, coproducts plus
distributivity); let T be a Kleene monad over C.

Let a test function ? : 2→ T1 be a lattice homomorphism:

>? = ret ? ⊥? = ⊥ (φ∨ψ)? = φ? +ψ?

(φ∧ψ)? = do φ?;ψ? + do ψ?;φ?

Then put:

if(b,p,q) := do b?;p+ do (¬b)?;q,

while(b,p) := do x← (init x← ret x in(do b?;p)∗);

do (¬b)?; ret x

Theorem. If ‘if’ and ‘while’ are initially defined in terms of
coproducts they do always decompose as above.
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Algebraic effects

(Finitary) Lawvere theory: small Cartesian category L plus a
strict-product-preserving, identity-on-objects functor: I : Nop → L

(N = naturals and maps with summs as coproducts.)

• L(n, 1) — operations; L(0, 1) — constants;
• Mod(L,C) ⊆ Fun(L,C) — models of L in C;
• forgetful functor Mod(L,C)→ C leads to finitary monads.

Finite nondeterminism: one constant ⊥ : 0→ 1, one operation:
+ : 2→ 1. Then e.g. (λa,b, c.a+ b+ c) : 3→ 1,
(λa. 〈a,⊥〉) : 1→ 2, etc.

States: lookupl : V → 1, updatel,v1→ 1 (l ∈ L, v ∈ V).
E.g.: updatel,v

(
lookupl〈p1, . . . ,p|V |〉

)
= updatel,v(pv).

Large Lawvere theory: L has all small products;
I : Setop → L is strict-small-product-preserving, id-on-objects.

Theorem [Linton, 1966]: Large Lawvere theories = Monads on Set.
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Sum and Tensor

Sum of effects: blind union of signatures,
e.g. Σ? + T = µγ.T(Σγ+ ) (Σ? = I/O, Resumptions, Exeptions.)

Tensor = Sum modulo commutativity of operations:

n1 × n2
n1⊗f2 //

f1⊗n2

��

n1 ×m2

f1⊗m2

��
m1 × n2

m1⊗f2 // m1 ×m2.

(n⊗ f = f× . . .× f ‘n times’.)

For instance: lookupl〈p1 + q1,p2 + q2〉
= lookupl〈p1,p2〉+ lookupl〈q1,q2〉.

Examples: ( × S)S ⊗ T = T( × S)S, ( )S ⊗ T = TS,
(M× )⊗ T = T(M× ) where M is a monoid (of messages).
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Nondeterminism transformer, aka Powermonad

Given a monad T over Set we can (possibly) form T ⊗ P.

If T ⊗ P exists then it is completely additive.

Theorem. For the forgetful functor U from completely
additive monads to monads the following is equivalent:

• U has a left adjoint;

• U is monadic;

• T ⊗ P exists and T 7→ T ⊗ P lifts to a left adjoint of U.

Analogously for P?, Pω, P?
ω, etc.

Q: But when do the appropriate tensors exist?
A: Well, general existence of tensors it open
from 1969 [Manes, 1969].



9 / 15
Nondeterminism transformer, aka Powermonad

Given a monad T over Set we can (possibly) form T ⊗ P.

If T ⊗ P exists then it is completely additive.

Theorem. For the forgetful functor U from completely
additive monads to monads the following is equivalent:

• U has a left adjoint;

• U is monadic;

• T ⊗ P exists and T 7→ T ⊗ P lifts to a left adjoint of U.

Analogously for P?, Pω, P?
ω, etc.

Q: But when do the appropriate tensors exist?
A: Well, general existence of tensors it open
from 1969 [Manes, 1969].



9 / 15
Nondeterminism transformer, aka Powermonad

Given a monad T over Set we can (possibly) form T ⊗ P.

If T ⊗ P exists then it is completely additive.

Theorem. For the forgetful functor U from completely
additive monads to monads the following is equivalent:

• U has a left adjoint;

• U is monadic;

• T ⊗ P exists and T 7→ T ⊗ P lifts to a left adjoint of U.

Analogously for P?, Pω, P?
ω, etc.

Q: But when do the appropriate tensors exist?
A: Well, general existence of tensors it open
from 1969 [Manes, 1969].



10 / 15
Uniformity (1/2)

From [Hyland, Plotkin, and Power, 2003], [Hyland, Levy, Plotkin,
and Power, 2007] we know:

• tensors of ranked (≈ algebraic) monads always exist;
• tensors of ranked monads with continuations exist;
• tensors with states always exist.

Not covered: P⊗ T (P is unranked!), Pω ⊗ T unless T ranked.

More unranked monads: continuations, selections [Escardó and
Oliva, 2010], families (PP).

Idea of uniformity: for countable powersets Lawvere operation are
‘instances’ of a big union, e.g.: a ∪ b = a ∪ b ∪ b ∪ · · · .
Analogously for P, but big union is ‘unobservable’.

Informal definition: for every family of operations {fi : n→ 1}i
there is f̂ : k→ 1 such that fi = f̂σi;
Here: σi (i)rearranges arguments; (ii) plugs in constants.
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Uniformity (2/2)

Non-existences of tensors is a cardinality issue.

Theorem. Tensor of two monads over Set does exist, provided one
of them is uniform.

Idea of the proof: resorting composite operations of the tensor
using uniformity. Like this:

f(a ∪ b, c)→ f(a ∪ b, c ∪ c)→ f(a, c) ∪ f(b, c).

In general, terms of T1 ⊗ T2 with uniform T1 have three layers:
(i) operations of T1, (ii) operations of T2, (iii) constants of T1.

Uniform monads: P, P?, Pω1, P?
ω1 (but not Pω!), infinite

multisets and (surprisingly!) continuations TR.

Quick intuition: LTR
(n, 1) ' Rn → R. Hence for |R| > 1, given

f1, f2 : R
n → R, we can unify them into f̂ : Rn+1 → R:

f̂(c) := if (c(inr ?) = r0) then f1(c ◦ inl) else f2(c ◦ inl)
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Conservativity

When T 7→ T ⊗ P, T 7→ T ⊗ P? are conservative?

For P (P? is analogous): LT⊗P(n,m) is P(LT (n,m))
modulo rectangular equivalence, smallest equivalence closed
under:

LT (0,n) ≈ ∅ ∀i.πiA ≈ πiB
CA ≈ CB

Example: {〈a,b〉, 〈c,d〉} ≈ {〈a,d〉, 〈c,b〉}.

Corollary: Conservativity fails unless |T∅| = 0 or |T∅| = 1

Definition: a monad T is bounded if T∅ = {⊥}.

Examples include besides P, partial states, nondeterministic
states with deadlock, output with nontermination: O?× +1.
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Bounded monads

Approximation

Smallest preorder with ⊥ as
the bottom and closed
under

∀i.πif v πig
hf v hg

This instantiates as
expected, e.g. for lists:
[a, c] = [a,⊥, c] v [a,b, c].

Closure

For A ⊆ L(n,m), cl(A) is the
closure of A under
approximations and under

∀i. g∆ih ∈ cl(A)

hg ∈ cl(A)

Here: ∆i =
∏
j

δij ∈ L(n,n),

δii = id, δij = ⊥ for i 6= j.

Theorem. If for all f ∈ LT (n,m), cl(f) = {g | g v f}
then T 7→ T ⊗ P is injective iff v is a partial order.
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But does the tensor always exist?!

NO!

Well-order monad [Goncharov and Schröder, 2011]:

WX = {(Y, ρ) | Y ⊆ X, ρ a well-order on Y}.

equivalently: non-repetitive strict ordinal-indexed lists
(a+ a = ⊥, a+⊥ = ⊥).

Theorem. Tensor product of W with the free monad of two
binary operations does not exist.

Corollary. Tensor product with the finite list monad does not
always exist.

Open question: tensoring with the finitary powerset.
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WX = {(Y, ρ) | Y ⊆ X, ρ a well-order on Y}.

equivalently: non-repetitive strict ordinal-indexed lists
(a+ a = ⊥, a+⊥ = ⊥).

Theorem. Tensor product of W with the free monad of two
binary operations does not exist.

Corollary. Tensor product with the finite list monad does not
always exist.

Open question: tensoring with the finitary powerset.



The End
Thanks for your attention!
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