Powermonads and Tensors of Unranked Effects

Sergey Goncharov and Lutz Schröder

June 22, 2011

Monads and Effects: Tools

Strong monad \mathbb{T} : Underlying category \mathcal{C}, endofunctor $T: \mathcal{C} \rightarrow \mathcal{C}$, unit: $\eta: I d \rightarrow T$, multiplication $\mu: T^{2} \rightarrow T$, plus strength: $\tau_{A, B}: A \times T B \rightarrow T(A \times B)$.

Metalanguage of effects:

- Type ${ }_{W}::=W|1|$ Type $_{W} \times$ Type $_{W} \mid T\left(\right.$ Type $\left._{W}\right)$
- Term construction (Cartesian operators omitted):

$$
\begin{array}{ll}
\frac{x: A \in \Gamma}{\Gamma \triangleright x: A} & \frac{\Gamma \triangleright t: A}{\Gamma \triangleright f(t): B}(f: A \rightarrow B \in \Sigma) \\
\frac{\Gamma \triangleright t: A}{\Gamma \triangleright \operatorname{ret} t: T A} & \frac{\Gamma \triangleright p: T A}{\Gamma \triangleright \operatorname{do} x \leftarrow p: A \triangleright q: T B}
\end{array}
$$

Monads and Effects: Usage

Rough idea:

- function spaces are morphisms: $\llbracket A \rightarrow B \rrbracket=\llbracket A \rrbracket \rightarrow T \llbracket B \rrbracket$;
- sequencing is binding: $\llbracket x:=p ; q \rrbracket=$ do $x \leftarrow \llbracket p \rrbracket ; \llbracket q \rrbracket ;$
- values are pure computations: $\llbracket \mathbf{c} \rrbracket=\operatorname{ret} \llbracket \mathbf{c} \rrbracket$.

Examples:

- Exeptions: $T A=A+E$.
- States: $T A=S \rightarrow(S \times A)$.
- Nondeterminism: TA $=\mathcal{P}(A), \mathcal{P}_{\omega}(A), \mathcal{P}^{\star}(A), \ldots$
- Input/Output: $\mathrm{TA}=\mu \mathrm{X} .(\mathrm{A}+(\mathrm{I} \rightarrow \mathrm{O} \times \mathrm{X}))$.
- Continuations: $T A=(X \rightarrow R) \rightarrow R$.
E.g. for $T X=S \rightarrow \mathcal{P}(S \times X): \llbracket A \rightharpoondown B \rrbracket \subseteq(\llbracket A \rrbracket \times S) \times(\llbracket B \rrbracket \times S)$.

This work: Some motivation

- Can one assume 'w.l.o.g.' presence of higher-order term constructors?

Yes! [Moggi, 1995]: $\mathbf{C} \mapsto$ Set $^{\text {Cop }}, \mathrm{T} \mapsto$ Lan $_{Y} \mathrm{YT}$ ($\mathrm{Y}: \mathbf{C} \rightarrow$ Set $^{{ }^{\text {op }}}$ is the Yoneda embedding).

- Can one assume presence of nondeterminism so that e.g.:

$$
\begin{aligned}
\text { if } \mathrm{b} \text { then } \mathrm{p} \text { else } \mathrm{q} & :=\mathrm{b} ? ; p+(\neg \mathrm{b}) ? ; \mathrm{q} \\
\text { while } \mathrm{b} \text { do } \mathrm{p}: & =(\mathrm{b} ? ; \mathrm{p})^{\star} ;(\neg \mathrm{b}) ?
\end{aligned}
$$

- How to make formal sense of these assignments (we dub: Fischer-Ladner encoding) w.r.t. generic effects?
- When Fischer-Ladner is conservative?

This work: Some motivation

- Can one assume 'w.l.o.g.' presence of higher-order term constructors?

Yes! [Moggi, 1995]: $\mathbf{C} \mapsto$ Set $^{\text {Cop }}, \mathrm{T} \mapsto$ Lan $_{Y} \mathrm{YT}$ ($Y: \mathbf{C} \rightarrow$ Set $^{\mathbf{C}^{\text {op }}}$ is the Yoneda embedding).

- Can one assume presence of nondeterminism so that e.g.:

$$
\begin{aligned}
\text { if } \mathrm{b} \text { then } \mathrm{p} \text { else } \mathrm{q} & :=\mathrm{b} ? ; p+(\neg \mathrm{b}) ? ; \mathrm{q} \\
\text { while } \mathrm{b} \text { do } \mathrm{p}: & =(\mathrm{b} ? ; \mathrm{p})^{\star} ;(\neg \mathrm{b}) \text { ? }
\end{aligned}
$$

- How to make formal sense of these assignments (we dub: Fischer-Ladner encoding) w.r.t. generic effects?
- When Fischer-Ladner is conservative?

What about a nondeterminism monad transformer?

Additive monads/Kleene monads

Additive monads: There are deadlock (\perp), choice $(+)$ which satisfy axioms of semilattices, left/right distribute over binding. Example: $\mathcal{P}, \mathcal{P}_{\omega}$; non-example: $\mathcal{P}\left(_+\mathrm{E}\right)$, because:

$$
\text { do } x \leftarrow \operatorname{raise}(e) ; \perp=\operatorname{raise}(e) \neq \perp
$$

Completely additive: same but w.r.t. complete semilattices. Example: \mathcal{P}; non-example: $\mathcal{P}_{\boldsymbol{\omega}}$.

Weakly (completely) additive: same minus deadlock. Examples: same plus $\mathcal{P}\left(_+E\right), \mathcal{P}^{\star}$ (non-empty powerset).
(Weak) Kleene monads: (weakly) additive plus Kleene star: (init_ \leftarrow _ in $_{-}$).

Theorem. Every (weakly) completely additive monad is a (weak) Kleene monad.

Fischer-Ladner encoding

Let \mathbf{C} be a distributive category (products, coproducts plus distributivity); let T be a Kleene monad over C.

Let a test function ? : $2 \rightarrow \mathrm{~T} 1$ be a lattice homomorphism:

$$
\begin{gathered}
T ?=\operatorname{ret} \star \quad \perp ?=\perp \quad(\phi \vee \psi) ?=\phi ?+\psi ? \\
(\phi \wedge \psi) ?=\operatorname{do} \phi ? ; \psi ?+\text { do } \psi ? ; \phi ?
\end{gathered}
$$

Then put:

$$
\begin{aligned}
\operatorname{if}(\mathrm{b}, \mathrm{p}, \mathrm{q}):= & \text { do } \mathrm{b} ? ; \mathrm{p}+\text { do }(\neg \mathrm{b}) ? ; \mathrm{q}, \\
\text { while }(\mathrm{b}, \mathrm{p}):= & \text { do } x \leftarrow\left(\operatorname{init} x \leftarrow \operatorname{ret} x \operatorname{in}(\text { do } \mathrm{b} ? ; p)^{*}\right) ; \\
& \text { do }(\neg \mathrm{b}) ? ; \text { ret } x
\end{aligned}
$$

Theorem. If 'if' and 'while' are initially defined in terms of coproducts they do always decompose as above.

Algebraic effects

(Finitary) Lawvere theory: small Cartesian category L plus a strict-product-preserving, identity-on-objects functor: I : $\mathbb{N}^{\text {op }} \rightarrow \mathrm{L}$ ($\mathbb{N}=$ naturals and maps with summs as coproducts.)

- L(n, 1) - operations; $\mathrm{L}(0,1)$ - constants;
- $\operatorname{Mod}(\mathrm{L}, \mathrm{C}) \subseteq \operatorname{Fun}(\mathrm{L}, \mathrm{C})$ - models of L in C ;
- forgetful functor $\operatorname{Mod}(\mathrm{L}, \mathrm{C}) \rightarrow \mathrm{C}$ leads to finitary monads.

Finite nondeterminism: one constant $\perp: 0 \rightarrow 1$, one operation:
$+: 2 \rightarrow 1$. Then e.g. $(\lambda a, b, c . a+b+c): 3 \rightarrow 1$, $(\lambda a .\langle a, \perp\rangle): 1 \rightarrow 2$, etc.

States: lookup ${ }_{l}: V \rightarrow 1$, update ${ }_{l, v} 1 \rightarrow 1(l \in L, v \in \mathrm{~V})$.
E.g.: update ${ }_{l, v}\left(\right.$ lookup $\left._{l}\left\langle p_{1}, \ldots, p_{|V|}\right\rangle\right)=$ update $_{l, v}\left(p_{v}\right)$.

Large Lawvere theory: L has all small products;
I : Set ${ }^{\text {op }} \rightarrow$ L is strict-small-product-preserving, id-on-objects.
Theorem [Linton, 1966]: Large Lawvere theories = Monads on Set.

Sum and Tensor

Sum of effects: blind union of signatures, e.g. $\Sigma^{\star}+\mathrm{T}=\mu \gamma$. $\mathrm{T}\left(\Sigma \gamma+_{-}\right)\left(\Sigma^{\star}=\mathrm{I} / \mathrm{O}\right.$, Resumptions, Exeptions.)

Tensor $=$ Sum modulo commutativity of operations:

$(\mathrm{n} \otimes \mathrm{f}=\mathrm{f} \times \ldots \times \mathrm{f}$ ' n times'. $)$
For instance: lookup $_{l}\left\langle\mathrm{p}_{1}+\mathrm{q}_{1}, \mathrm{p}_{2}+\mathrm{q}_{2}\right\rangle$
$=$ lookup $_{\mathrm{l}}\left\langle\mathrm{p}_{1}, \mathrm{p}_{2}\right\rangle+$ lookup $_{l}\left\langle\mathrm{q}_{1}, \mathrm{q}_{2}\right\rangle$.
Examples: $\left(_\times S\right)^{\mathrm{S}} \otimes \mathrm{T}=\mathrm{T}\left(_\times \mathrm{S}\right)^{\mathrm{S}},\left({ }_{\mathrm{C}}\right)^{\mathrm{S}} \otimes \mathrm{T}=\mathrm{T}^{\mathrm{S}}$,
$\left(M \times{ }_{-}\right) \otimes T=T\left(M \times{ }_{-}\right)$where M is a monoid (of messages).

Nondeterminism transformer, aka Powermonad

Given a monad T over Set we can (possibly) form $T \otimes \mathcal{P}$.
If $\mathrm{T} \otimes \mathcal{P}$ exists then it is completely additive.
Theorem. For the forgetful functor U from completely additive monads to monads the following is equivalent:

- U has a left adjoint;
- U is monadic;
- $\mathrm{T} \otimes \mathcal{P}$ exists and $\mathrm{T} \mapsto \mathrm{T} \otimes \mathcal{P}$ lifts to a left adjoint of U .

Analogously for $\mathcal{P}^{\star}, \mathcal{P}_{\omega}, \mathcal{P}_{\omega}^{\star}$, etc.

Nondeterminism transformer, aka Powermonad

Given a monad T over Set we can (possibly) form $T \otimes \mathcal{P}$.
If $\mathrm{T} \otimes \mathcal{P}$ exists then it is completely additive.
Theorem. For the forgetful functor U from completely additive monads to monads the following is equivalent:

- U has a left adjoint;
- U is monadic;
- $\mathrm{T} \otimes \mathcal{P}$ exists and $\mathrm{T} \mapsto \mathrm{T} \otimes \mathcal{P}$ lifts to a left adjoint of U .

Analogously for $\mathcal{P}^{\star}, \mathcal{P}_{\omega}, \mathcal{P}_{\omega}^{\star}$, etc.
Q: But when do the appropriate tensors exist?

Nondeterminism transformer, aka Powermonad

Given a monad T over Set we can (possibly) form $T \otimes \mathcal{P}$.
If $\mathrm{T} \otimes \mathcal{P}$ exists then it is completely additive.
Theorem. For the forgetful functor U from completely additive monads to monads the following is equivalent:

- U has a left adjoint;
- U is monadic;
- $\mathrm{T} \otimes \mathcal{P}$ exists and $\mathrm{T} \mapsto \mathrm{T} \otimes \mathcal{P}$ lifts to a left adjoint of U .

Analogously for $\mathcal{P}^{\star}, \mathcal{P}_{\omega}, \mathcal{P}_{\omega}^{\star}$, etc.
Q: But when do the appropriate tensors exist?
A: Well, general existence of tensors it open
from 1969 [Manes, 1969].

From [Hyland, Plotkin, and Power, 2003], [Hyland, Levy, Plotkin, and Power, 2007] we know:

- tensors of ranked (\approx algebraic) monads always exist;
- tensors of ranked monads with continuations exist;
- tensors with states always exist.

Not covered: $\mathcal{P} \otimes \mathrm{T}\left(\mathcal{P}\right.$ is unranked!), $\mathcal{P}_{\boldsymbol{\omega}} \otimes \mathrm{T}$ unless T ranked.
More unranked monads: continuations, selections [Escardó and Oliva, 2010], families (PP).

Idea of uniformity: for countable powersets Lawvere operation are 'instances' of a big union, e.g.: $a \cup b=a \cup b \cup b \cup \cdots$.
Analogously for \mathcal{P}, but big union is 'unobservable'.
Informal definition: for every family of operations $\left\{\mathrm{f}_{\mathrm{i}}: \mathrm{n} \rightarrow 1\right\}_{\mathrm{i}}$ there is $\hat{f}: k \rightarrow 1$ such that $f_{i}=\hat{f} \sigma_{i}$;
Here: σ_{i} (i)rearranges arguments; (ii) plugs in constants.

Non-existences of tensors is a cardinality issue.
Theorem. Tensor of two monads over Set does exist, provided one of them is uniform.

Idea of the proof: resorting composite operations of the tensor using uniformity. Like this:

$$
f(a \cup b, c) \rightarrow f(a \cup b, c \cup c) \rightarrow f(a, c) \cup f(b, c)
$$

In general, terms of $T_{1} \otimes T_{2}$ with uniform T_{1} have three layers:
(i) operations of T_{1}, (ii) operations of T_{2}, (iii) constants of T_{1}.

Uniform monads: $\mathcal{P}, \mathcal{P}^{\star}, \mathcal{P}_{\omega 1}, \mathcal{P}_{\omega 1}^{\star}$ (but not \mathcal{P}_{ω} !), infinite multisets and (surprisingly!) continuations T_{R}.

Quick intuition: $L_{T_{R}}(n, 1) \simeq R^{n} \rightarrow R$. Hence for $|R|>1$, given $f_{1}, f_{2}: R^{n} \rightarrow R$, we can unify them into $\hat{f}: R^{n+1} \rightarrow R$:

$$
\hat{f}(c):=\text { if }\left(c(\operatorname{inr} \star)=r_{0}\right) \text { then } f_{1}(c \circ \text { inl }) \text { else } f_{2}(c \circ \text { inl })
$$

Conservativity

When $\mathrm{T} \mapsto \mathrm{T} \otimes \mathcal{P}, \mathrm{T} \mapsto \mathrm{T} \otimes \mathcal{P}^{\star}$ are conservative?

For \mathcal{P} (\mathcal{P}^{\star} is analogous): $\mathrm{L}_{\mathrm{T} \otimes \mathcal{P}}(\mathrm{n}, \mathrm{m})$ is $\mathcal{P}\left(\mathrm{L}_{\mathrm{T}}(\mathrm{n}, \mathrm{m})\right)$ modulo rectangular equivalence, smallest equivalence closed under:

$$
\mathrm{L}_{\mathrm{T}}(0, n) \approx \emptyset \quad \frac{\forall \mathrm{i} . \pi_{\mathrm{i}} A \approx \pi_{\mathrm{i}} B}{\mathrm{CA} \approx \mathrm{CB}}
$$

Example: $\{\langle\mathrm{a}, \mathrm{b}\rangle,\langle\mathrm{c}, \mathrm{d}\rangle\} \approx\{\langle\mathrm{a}, \mathrm{d}\rangle,\langle\mathrm{c}, \mathrm{b}\rangle\}$.
Corollary: Conservativity fails unless $|\mathrm{T} \emptyset|=0$ or $|\mathrm{T} \emptyset|=1$
Definition: a monad T is bounded if $\mathrm{T} \emptyset=\{\perp\}$.
Examples include besides \mathcal{P}, partial states, nondeterministic states with deadlock, output with nontermination: $\mathrm{O}^{\star} \times{ }_{_}+1$.

Bounded monads

Approximation

Smallest preorder with \perp as the bottom and closed under

$$
\frac{\forall \mathrm{i} . \pi_{\mathrm{i}} \mathrm{f} \sqsubseteq \pi_{\mathrm{i} g}}{\mathrm{hf} \sqsubseteq \mathrm{hg}}
$$

This instantiates as
expected, e.g. for lists:
$[\mathrm{a}, \mathrm{c}]=[\mathrm{a}, \perp, \mathrm{c}] \sqsubseteq[\mathrm{a}, \mathrm{b}, \mathrm{c}]$.

Closure

For $A \subseteq L(n, m), c l(A)$ is the closure of A under approximations and under

$$
\frac{\forall i . g \Delta_{i} h \in \operatorname{cl}(A)}{h g \in \operatorname{cl}(A)}
$$

Here: $\Delta_{i}=\prod \delta_{i j} \in L(n, n)$,
$\delta_{i i}=i d, \delta_{i j}=\perp$ for $i \neq j$.

Theorem. If for all $\mathrm{f} \in \mathrm{L}_{\mathrm{T}}(\mathrm{n}, \mathrm{m}), \mathrm{cl}(\mathrm{f})=\{\mathrm{g} \mid \mathrm{g} \sqsubseteq \mathrm{f}\}$ then $\mathrm{T} \mapsto \mathrm{T} \otimes \mathcal{P}$ is injective iff \sqsubseteq is a partial order.

But does the tensor always exist?!

NO!

Well-order monad [Goncharov and Schröder, 2011]:

$$
\mathcal{W} X=\{(Y, \rho) \mid Y \subseteq X, \rho \text { a well-order on } Y\} .
$$

equivalently: non-repetitive strict ordinal-indexed lists
$(a+a=\perp, a+\perp=\perp)$.
Theorem. Tensor product of \mathcal{W} with the free monad of two binary operations does not exist.

Corollary. Tensor product with the finite list monad does not always exist.

Open question: tensoring with the finitary powerset.

The End

Thanks for your attention!

Eugenio Moggi. A semantics for evaluation logic. Fund. Inform., 22:117-152, 1995.
F. Linton. Some aspects of equational categories. In Proc. Conf. Categor. Algebra, La Jolla, pages 84-94, 1966.
Ernest Manes. A triple theoretic construction of compact algebras. In Seminar on Triples and Categorical Homology Theory, volume 80 of Lect. Notes Math., pages 91-118. Springer, 1969.
Martin Hyland, Gordon Plotkin, and John Power. Combining effects: Sum and tensor. Theoretical Computer Science, 2003.

Martin Hyland, Paul Blain Levy, Gordon Plotkin, and John Power. Combining algebraic effects with continuations. Theoretical Computer Science, 375(1-3):20-40, 2007.
Festschrift for John C. Reynolds's 70th birthday.
MartÍn Escardó and Paulo Oliva. Selection functions, bar recursion and backward induction. Mathematicat Structures in Comp. Sci., 20:127-168, 2010.

Sergey Goncharov and Lutz Schröder. A counterexample to tensorability of effects. In Andrea Corradini and Bartek Klin, editors, Algebra and Coalgebra in Computer Science (CALCO 2011), Lecture Notes in Computer Science. Springer, 2011. To appear.

