
The Complexity of Verifying
Ground Tree Rewrite Systems

Stefan Göller
(University of Bremen)

joint work with Anthony Widjaja Lin
(Oxford University)

LICS 2011, Toronto

Model checking and equivalence checking

Model checking a class of structures C against a logic L

INPUT: Structure S ∈ C + formula ϕ ∈ L
QUESTION: S |= ϕ?

Model checking and equivalence checking

Model checking a class of structures C against a logic L

INPUT: Structure S ∈ C + formula ϕ ∈ L
QUESTION: S |= ϕ?

≡-Equivalence checking between structures in C

INPUT: Structures S1,S2 ∈ C
QUESTION: S1 ≡ S2?

Pushdown and prefix-recognizable systems

States: All finite words (over some finite alphabet)

Pushdown and prefix-recognizable systems

States: All finite words (over some finite alphabet)

◮ Pushdown systems:

◮ Rewrite rules: u
a

→֒ v (u, v words)
◮ Transitions: uw

a
−→ vw for all words w .

Pushdown and prefix-recognizable systems

States: All finite words (over some finite alphabet)

◮ Pushdown systems:

◮ Rewrite rules: u
a

→֒ v (u, v words)
◮ Transitions: uw

a
−→ vw for all words w .

◮ Prefix-recognizable systems:

◮ Rewriting rules: L1
a

→֒ L2 (L1, L2 regular word languages)
◮ Transitions: uw

a
−→ vw for all u ∈ L1, v ∈ L2 and all words w .

(Regular) ground tree rewrite systems

States: All finite ranked trees (over some ranked alphabet)

(Regular) ground tree rewrite systems

States: All finite ranked trees (over some ranked alphabet)

◮ Ground tree rewrite systems (GTRS):
◮ Rewrite rules

such as
a
→֒

a
→֒

a
b

c c

b
a
a
c

a
a
c

(Regular) ground tree rewrite systems

States: All finite ranked trees (over some ranked alphabet)

◮ Ground tree rewrite systems (GTRS):
◮ Rewrite rules

such as
a
→֒

a
→֒

a
b

c c

b
a
a
c

a
a
c

◮ Transitions: a
−→

(Regular) ground tree rewrite systems

States: All finite ranked trees (over some ranked alphabet)

◮ Ground tree rewrite systems (GTRS):
◮ Rewrite rules

such as
a
→֒

a
→֒

a
b

c c

b
a
a
c

a
a
c

◮ Transitions: a
−→

◮ Regular ground tree rewrite systems (RGTRS)

◮ Rewrite rules: L1
a

→֒ L2 for regular tree languages L1 and L2.

(Regular) ground tree rewrite systems

States: All finite ranked trees (over some ranked alphabet)

◮ Ground tree rewrite systems (GTRS):
◮ Rewrite rules

such as
a
→֒

a
→֒

a
b

c c

b
a
a
c

a
a
c

◮ Transitions: a
−→

◮ Regular ground tree rewrite systems (RGTRS)

◮ Rewrite rules: L1
a

→֒ L2 for regular tree languages L1 and L2.

◮ Transitions:

a
−→ ∈ L2∈ L1

Why study pushdown systems and GTRS?

◮ Pushdown systems: Allow to model behavior of recursive
programs.

Why study pushdown systems and GTRS?

◮ Pushdown systems: Allow to model behavior of recursive
programs.

◮ GTRS = Pushdown systems plus unbounded parallelism.

Why study pushdown systems and GTRS?

◮ Pushdown systems: Allow to model behavior of recursive
programs.

◮ GTRS = Pushdown systems plus unbounded parallelism.

Why study pushdown systems and GTRS?

◮ Pushdown systems: Allow to model behavior of recursive
programs.

◮ GTRS = Pushdown systems plus unbounded parallelism.

Theorem

Bisimulation equivalence between pushdown systems is

◮ decidable (Sénizergues 2005)

Why study pushdown systems and GTRS?

◮ Pushdown systems: Allow to model behavior of recursive
programs.

◮ GTRS = Pushdown systems plus unbounded parallelism.

Theorem

Bisimulation equivalence between pushdown systems is

◮ decidable (Sénizergues 2005)

◮ EXP-hard (Kučera, Mayr 2010)

Why study pushdown systems and GTRS?

◮ Pushdown systems: Allow to model behavior of recursive
programs.

◮ GTRS = Pushdown systems plus unbounded parallelism.

Theorem

Bisimulation equivalence between pushdown systems is

◮ decidable (Sénizergues 2005)

◮ EXP-hard (Kučera, Mayr 2010)

Open problem

Is bisimulation equivalence on GTRS decidable?

Why study pushdown systems and GTRS?

◮ Pushdown systems: Allow to model behavior of recursive
programs.

◮ GTRS = Pushdown systems plus unbounded parallelism.

Theorem

Bisimulation equivalence between pushdown systems is

◮ decidable (Sénizergues 2005)

◮ EXP-hard (Kučera, Mayr 2010)

Open problem

Is bisimulation equivalence on GTRS decidable?

This paper:

◮ How difficult is it to decide GTRS ≡ F for finite systems F?

Why study pushdown systems and GTRS?

◮ Pushdown systems: Allow to model behavior of recursive
programs.

◮ GTRS = Pushdown systems plus unbounded parallelism.

Theorem

Bisimulation equivalence between pushdown systems is

◮ decidable (Sénizergues 2005)

◮ EXP-hard (Kučera, Mayr 2010)

Open problem

Is bisimulation equivalence on GTRS decidable?

This paper:

◮ How difficult is it to decide GTRS ≡ F for finite systems F?

◮ Main tool: Study model-checking problem of EF on GTRS.

Decidability and complexity: State of the art

TOWER = DTIME(Tower(ELEMENTARY)).

Pushdown GTRS RGTRS

MSO TOWER-c. undecidable

FO + reach TOWER-c.

Decidability and complexity: State of the art

TOWER = DTIME(Tower(ELEMENTARY)).

Pushdown GTRS RGTRS

MSO TOWER-c. undecidable

FO + reach TOWER-c.

CTL EXP-c. undecidable

EF PSPACE-c. PSPACE...TOWER EXP...TOWER

Decidability and complexity: State of the art

TOWER = DTIME(Tower(ELEMENTARY)).

Pushdown GTRS RGTRS

MSO TOWER-c. undecidable

FO + reach TOWER-c.

CTL EXP-c. undecidable

EF PSPACE-c. PSPACE...TOWER EXP...TOWER

∼ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

≈ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

Decidability and complexity: State of the art

TOWER = DTIME(Tower(ELEMENTARY)).

Pushdown GTRS RGTRS

MSO TOWER-c. undecidable

FO + reach TOWER-c.

CTL EXP-c. undecidable

EF PSPACE-c. PSPACE...TOWER EXP...TOWER

∼ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

≈ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

The branching-time logic EF

Formulas ϕ of the logic EF are given by the following grammar

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | EXAϕ | EFϕ,

where A ⊆ Σ for some set of edge labels Σ.

The branching-time logic EF

Formulas ϕ of the logic EF are given by the following grammar

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | EXAϕ | EFϕ,

where A ⊆ Σ for some set of edge labels Σ.

Let T = (S , {→a| a ∈ Σ}) be a transition system.

The branching-time logic EF

Formulas ϕ of the logic EF are given by the following grammar

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | EXAϕ | EFϕ,

where A ⊆ Σ for some set of edge labels Σ.

Let T = (S , {→a| a ∈ Σ}) be a transition system.

For each state s ∈ S and ϕ ∈ EF define s |= ϕ inductively:

The branching-time logic EF

Formulas ϕ of the logic EF are given by the following grammar

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | EXAϕ | EFϕ,

where A ⊆ Σ for some set of edge labels Σ.

Let T = (S , {→a| a ∈ Σ}) be a transition system.

For each state s ∈ S and ϕ ∈ EF define s |= ϕ inductively:

s |= EXAϕ ⇐⇒ ∃t ∈ S , a ∈ A : s →a t and t |= ϕ

The branching-time logic EF

Formulas ϕ of the logic EF are given by the following grammar

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | EXAϕ | EFϕ,

where A ⊆ Σ for some set of edge labels Σ.

Let T = (S , {→a| a ∈ Σ}) be a transition system.

For each state s ∈ S and ϕ ∈ EF define s |= ϕ inductively:

s |= EXAϕ ⇐⇒ ∃t ∈ S , a ∈ A : s →a t and t |= ϕ

s |= EFϕ ⇐⇒ ∃t ∈ S : s→∗t and t |= ϕ

where → =
⋃

a∈Σ

→a

Decidability and complexity

TOWER = DTIME(Tower(O(n))).

Pushdown GTRS RGTRS

MSO TOWER-c. undecidable

FO + reach TOWER-c.

CTL EXP-c. undecidable

EF PSPACE-c. PSPACE...TOWER EXP...TOWER

∼ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

≈ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

Decidability and complexity

TOWER = DTIME(Tower(O(n))).

Pushdown GTRS RGTRS

MSO TOWER-c. undecidable

FO + reach TOWER-c.

CTL EXP-c. undecidable

EF PSPACE-c. TOWER − c.

∼ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

≈ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

.

EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

.

Fix some first order sentence ϕ = ∃x1∀x2 · · · ∃xn−1∀xn ψ(x1, . . . , xn)

over signature (P0,P1, <).

EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

.

Fix some first order sentence ϕ = ∃x1∀x2 · · · ∃xn−1∀xn ψ(x1, . . . , xn)

over signature (P0,P1, <).

0 1 0 1 1 0 0 1 0 0 0 1 1 0 0

Yield string of tree corresponds to word

EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

.

Fix some first order sentence ϕ = ∃x1∀x2 · · · ∃xn−1∀xn ψ(x1, . . . , xn)

over signature (P0,P1, <).

0 1 011 1 0 0 1 0 0 0 1 1 0 0

Yield string of tree corresponds to word

EF formula:

EXa1

Rewrite rules:

0
a1
→֒ 01 (and 1

a1
→֒ 11)

EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

.

Fix some first order sentence ϕ = ∃x1∀x2 · · · ∃xn−1∀xn ψ(x1, . . . , xn)

over signature (P0,P1, <).

0 1 011 120 0 1 0 0 0 1 1 0 0

Yield string of tree corresponds to word

EF formula:

EXa1AXa2

Rewrite rules:

1
a2
→֒ 12 (and 0

a2
→֒ 02)

EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

.

Fix some first order sentence ϕ = ∃x1∀x2 · · · ∃xn−1∀xn ψ(x1, . . . , xn)

over signature (P0,P1, <).

0 1 011 120 0 1 0 0 0 1n1 0 0

Yield string of tree corresponds to word

EF formula:

EXa1AXa2 · · · AXan

Rewrite rules:

1
an
→֒ 1n (and 0

an
→֒ 0n)

EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

.

Fix some first order sentence ϕ = ∃x1∀x2 · · · ∃xn−1∀xn ψ(x1, . . . , xn)

over signature (P0,P1, <).

0 1 011 120 0 1 0 0 0 1n1 0 0

Yield string of tree corresponds to word

EF formula:

EXa1AXa2 · · · AXanEF EXacc

Rewrite rules:

transitions of tree automaton
accepting [[ψ]]

EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

.

Fix some first order sentence ϕ = ∃x1∀x2 · · · ∃xn−1∀xn ψ(x1, . . . , xn)

over signature (P0,P1, <).

0 1 011 120 0 1 0 0 0 1n1 0 0

−−−→
∗

Yield string of tree corresponds to word

EF formula:

EF EXa1AXa2 · · · AXanEF EXacc

Model checking syntactic fragments of EF on GTRS

◮ EF on GTRS: Nonelementary already for two nested EF
operators (⇒ EF2).

Model checking syntactic fragments of EF on GTRS

◮ EF on GTRS: Nonelementary already for two nested EF
operators (⇒ EF2).

◮ What happens with at most one nesting (⇒ EF1)?

Model checking syntactic fragments of EF on GTRS

◮ EF on GTRS: Nonelementary already for two nested EF
operators (⇒ EF2).

◮ What happens with at most one nesting (⇒ EF1)?

Motivation:
◮ Find the nonelementary border for EF.

Model checking syntactic fragments of EF on GTRS

◮ EF on GTRS: Nonelementary already for two nested EF
operators (⇒ EF2).

◮ What happens with at most one nesting (⇒ EF1)?

Motivation:
◮ Find the nonelementary border for EF.
◮ Theorem: (Jančar, Kučera, Moller)

Strong bisimilarity against finite systems is polytime-reducible
to model checking EF1.

Decidability and complexity

TOWER = DTIME(Tower(O(n))).

Pushdown GTRS RGTRS

MSO TOWER-c. undecidable

FO + reach TOWER-c.

CTL EXP-c. undecidable

EF PSPACE-c. TOWER-c.

∼ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

≈ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

Decidability and complexity

TOWER = DTIME(Tower(O(n))).

Pushdown GTRS RGTRS

MSO TOWER-c. undecidable

FO + reach TOWER-c.

CTL EXP-c. undecidable

EF2, EF PSPACE-c. TOWER-c.

EF1 PSPACE-c. ? TOWER-c.

∼ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

≈ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

Decidability and complexity

TOWER = DTIME(Tower(O(n))).

Pushdown GTRS RGTRS

MSO TOWER-c. undecidable

FO + reach TOWER-c.

CTL EXP-c. undecidable

EF2, EF PSPACE-c. TOWER-c.

EF1 PSPACE-c. PNEXP-c. TOWER-c.

∼ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

≈ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

Model checking EF1 on GTRS is PNEXP-complete

Upper bound: Fix some GTRS G .

Model checking EF1 on GTRS is PNEXP-complete

Upper bound: Fix some GTRS G .

How to represent tree lang. [[ϕ]] for each modal formula ϕ ∈ EF0?

Model checking EF1 on GTRS is PNEXP-complete

Upper bound: Fix some GTRS G .

How to represent tree lang. [[ϕ]] for each modal formula ϕ ∈ EF0?

◮ First approach: Compute [[ϕ]] using closure of tree languages by
boolean operations and pre (for dealing with EX).

Model checking EF1 on GTRS is PNEXP-complete

Upper bound: Fix some GTRS G .

How to represent tree lang. [[ϕ]] for each modal formula ϕ ∈ EF0?

◮ First approach: Compute [[ϕ]] using closure of tree languages by
boolean operations and pre (for dealing with EX).

(Nonelementary blowup).

Model checking EF1 on GTRS is PNEXP-complete

Upper bound: Fix some GTRS G .

How to represent tree lang. [[ϕ]] for each modal formula ϕ ∈ EF0?

◮ First approach: Compute [[ϕ]] using closure of tree languages by
boolean operations and pre (for dealing with EX).

(Nonelementary blowup).

◮ Second approach: Study relation ≃i on trees, where T1 ≃i T2 iff T1

and T2 cannot be distinguished by modal formulas of EX-rank at
most i .

Model checking EF1 on GTRS is PNEXP-complete

Upper bound: Fix some GTRS G .

How to represent tree lang. [[ϕ]] for each modal formula ϕ ∈ EF0?

◮ First approach: Compute [[ϕ]] using closure of tree languages by
boolean operations and pre (for dealing with EX).

(Nonelementary blowup).

◮ Second approach: Study relation ≃i on trees, where T1 ≃i T2 iff T1

and T2 cannot be distinguished by modal formulas of EX-rank at
most i .

How compute NTA for each “positive” equiv. class w.r.t. ϕ?

Model checking EF1 on GTRS is PNEXP-complete

Upper bound: Fix some GTRS G .

How to represent tree lang. [[ϕ]] for each modal formula ϕ ∈ EF0?

◮ First approach: Compute [[ϕ]] using closure of tree languages by
boolean operations and pre (for dealing with EX).

(Nonelementary blowup).

◮ Second approach: Study relation ≃i on trees, where T1 ≃i T2 iff T1

and T2 cannot be distinguished by modal formulas of EX-rank at
most i .

How compute NTA for each “positive” equiv. class w.r.t. ϕ?

How can one bound the index of ≃i?

Model checking EF1 on GTRS is PNEXP-complete

Our solution: Define relation ≡i where T1≡iT2 iff T1 and T2

have the same number of subtrees of depth ≤ i · poly(|G |) up to
some threshold θ.

Model checking EF1 on GTRS is PNEXP-complete

Our solution: Define relation ≡i where T1≡iT2 iff T1 and T2

have the same number of subtrees of depth ≤ i · poly(|G |) up to
some threshold θ.

◮ ≡i is finer than ≃i .

Model checking EF1 on GTRS is PNEXP-complete

Our solution: Define relation ≡i where T1≡iT2 iff T1 and T2

have the same number of subtrees of depth ≤ i · poly(|G |) up to
some threshold θ.

◮ ≡i is finer than ≃i .

◮ Testing if f : Trees≤i ·poly(|G |) → {0, . . . , θ} describes positive
equivalence class w.r.t. ϕ is decidable in time |f |poly(i+|G |).

Model checking EF1 on GTRS is PNEXP-complete

Our solution: Define relation ≡i where T1≡iT2 iff T1 and T2

have the same number of subtrees of depth ≤ i · poly(|G |) up to
some threshold θ.

◮ ≡i is finer than ≃i .

◮ Testing if f : Trees≤i ·poly(|G |) → {0, . . . , θ} describes positive
equivalence class w.r.t. ϕ is decidable in time |f |poly(i+|G |).

◮ ∀ positive f ∃ small NTA (computable) accepting [[f]].

Model checking EF1 on GTRS is PNEXP-complete

Our solution: Define relation ≡i where T1≡iT2 iff T1 and T2

have the same number of subtrees of depth ≤ i · poly(|G |) up to
some threshold θ.

◮ ≡i is finer than ≃i .

◮ Testing if f : Trees≤i ·poly(|G |) → {0, . . . , θ} describes positive
equivalence class w.r.t. ϕ is decidable in time |f |poly(i+|G |).

◮ ∀ positive f ∃ small NTA (computable) accepting [[f]].

Model checking T0

?

|= EFϕ (ϕ modal formula) in NEXP:

Model checking EF1 on GTRS is PNEXP-complete

Our solution: Define relation ≡i where T1≡iT2 iff T1 and T2

have the same number of subtrees of depth ≤ i · poly(|G |) up to
some threshold θ.

◮ ≡i is finer than ≃i .

◮ Testing if f : Trees≤i ·poly(|G |) → {0, . . . , θ} describes positive
equivalence class w.r.t. ϕ is decidable in time |f |poly(i+|G |).

◮ ∀ positive f ∃ small NTA (computable) accepting [[f]].

Model checking T0

?

|= EFϕ (ϕ modal formula) in NEXP:

1. Guess a function f : Trees≤i ·poly(|G |) → {0, . . . , θ}.

Model checking EF1 on GTRS is PNEXP-complete

Our solution: Define relation ≡i where T1≡iT2 iff T1 and T2

have the same number of subtrees of depth ≤ i · poly(|G |) up to
some threshold θ.

◮ ≡i is finer than ≃i .

◮ Testing if f : Trees≤i ·poly(|G |) → {0, . . . , θ} describes positive
equivalence class w.r.t. ϕ is decidable in time |f |poly(i+|G |).

◮ ∀ positive f ∃ small NTA (computable) accepting [[f]].

Model checking T0

?

|= EFϕ (ϕ modal formula) in NEXP:

1. Guess a function f : Trees≤i ·poly(|G |) → {0, . . . , θ}.

2. Check whether f describes positive equivalence class w.r.t. ϕ.

Model checking EF1 on GTRS is PNEXP-complete

Our solution: Define relation ≡i where T1≡iT2 iff T1 and T2

have the same number of subtrees of depth ≤ i · poly(|G |) up to
some threshold θ.

◮ ≡i is finer than ≃i .

◮ Testing if f : Trees≤i ·poly(|G |) → {0, . . . , θ} describes positive
equivalence class w.r.t. ϕ is decidable in time |f |poly(i+|G |).

◮ ∀ positive f ∃ small NTA (computable) accepting [[f]].

Model checking T0

?

|= EFϕ (ϕ modal formula) in NEXP:

1. Guess a function f : Trees≤i ·poly(|G |) → {0, . . . , θ}.

2. Check whether f describes positive equivalence class w.r.t. ϕ.

3. Compute small NTA accepting [[f]].

Model checking EF1 on GTRS is PNEXP-complete

Our solution: Define relation ≡i where T1≡iT2 iff T1 and T2

have the same number of subtrees of depth ≤ i · poly(|G |) up to
some threshold θ.

◮ ≡i is finer than ≃i .

◮ Testing if f : Trees≤i ·poly(|G |) → {0, . . . , θ} describes positive
equivalence class w.r.t. ϕ is decidable in time |f |poly(i+|G |).

◮ ∀ positive f ∃ small NTA (computable) accepting [[f]].

Model checking T0

?

|= EFϕ (ϕ modal formula) in NEXP:

1. Guess a function f : Trees≤i ·poly(|G |) → {0, . . . , θ}.

2. Check whether f describes positive equivalence class w.r.t. ϕ.

3. Compute small NTA accepting [[f]].

4. Check if T0 ∈ pre∗([[f]]).

Model checking EF1 on GTRS is PNEXP-complete

Our solution: Define relation ≡i where T1≡iT2 iff T1 and T2

have the same number of subtrees of depth ≤ i · poly(|G |) up to
some threshold θ.

◮ ≡i is finer than ≃i .

◮ Testing if f : Trees≤i ·poly(|G |) → {0, . . . , θ} describes positive
equivalence class w.r.t. ϕ is decidable in time |f |poly(i+|G |).

◮ ∀ positive f ∃ small NTA (computable) accepting [[f]].

Model checking T0

?

|= EFϕ (ϕ modal formula) in NEXP:

1. Guess a function f : Trees≤i ·poly(|G |) → {0, . . . , θ}.

2. Check whether f describes positive equivalence class w.r.t. ϕ.

3. Compute small NTA accepting [[f]].

4. Check if T0 ∈ pre∗([[f]]).

Finally use PNEXP = PSPACENEXP (Hemaspaandra,Allender et al).

Applications of the upper bound proof idea

Corollary

For a GTRS G and a finite system F one can decide in coNEXP
whether G ∼ F .

Applications of the upper bound proof idea

Corollary

For a GTRS G and a finite system F one can decide in coNEXP
whether G ∼ F .

Theorem

For a PA process P and a finite system F , one can decide in
coNEXP whether P ∼ F .

(gives a first elementary upper bound for this problem)

Model checking EF1 on GTRS is PNEXP-complete

Lower bound:

The proof is a combination of the following:

Model checking EF1 on GTRS is PNEXP-complete

Lower bound:

The proof is a combination of the following:

1. 2n × 2n-tiling problem is reducible to model checking formulas
of the kind EFϕ, where ϕ is a modal formula.
(Uses ideas from satisfiability checking)

Model checking EF1 on GTRS is PNEXP-complete

Lower bound:

The proof is a combination of the following:

1. 2n × 2n-tiling problem is reducible to model checking formulas
of the kind EFϕ, where ϕ is a modal formula.
(Uses ideas from satisfiability checking)

2. Encode Circuit Value for boolean circuits with access to
2n × 2n-tiling problem.

Decidability and complexity

TOWER = DTIME(Tower(O(n))).

Pushdown GTRS RGTRS

MSO TOWER-c. undecidable

FO + reach TOWER-c.

CTL EXP-c. undecidable

EF2, EF PSPACE-c. TOWER-c.

EF1 PSPACE-c. PNEXP-c. TOWER-c.

∼ vs. fin. syst. PSPACE-c. PSPACE...coNEXP EXP...TOWER

≈ vs. fin. syst. PSPACE-c. PSPACE...TOWER EXP...TOWER

Decidability and complexity

TOWER = DTIME(Tower(O(n))).

Pushdown GTRS RGTRS

MSO TOWER-c. undecidable

FO + reach TOWER-c.

CTL EXP-c. undecidable

EF2, EF PSPACE-c. TOWER-c.

EF1 PSPACE-c. PNEXP-c. TOWER-c.

∼ vs. fin. syst. PSPACE-c. PSPACE...coNEXP TOWER-c.

≈ vs. fin. syst. PSPACE-c. TOWER-c.

Nonelementary lower bounds for bisimilarity checking

Theorem

Given RGTRS G and a finite system F , checking G ∼ F is
nonelementary.

Nonelementary lower bounds for bisimilarity checking

Theorem

Given RGTRS G and a finite system F , checking G ∼ F is
nonelementary.

Corollary

Given GTRS G and a finite system F , checking G ≈ F is
nonelementary.

Nonelementary lower bounds for bisimilarity checking

Theorem

Given RGTRS G and a finite system F , checking G ∼ F is
nonelementary.

Corollary

Given GTRS G and a finite system F , checking G ≈ F is
nonelementary.

◮ Attacker chooses witness tree ”satisfying” first-order sentence.

Nonelementary lower bounds for bisimilarity checking

Theorem

Given RGTRS G and a finite system F , checking G ∼ F is
nonelementary.

Corollary

Given GTRS G and a finite system F , checking G ≈ F is
nonelementary.

◮ Attacker chooses witness tree ”satisfying” first-order sentence.

◮ ∃xi (resp. ∀xi) means Attacker (resp. Defender) labels leaf.

Nonelementary lower bounds for bisimilarity checking

Theorem

Given RGTRS G and a finite system F , checking G ∼ F is
nonelementary.

Corollary

Given GTRS G and a finite system F , checking G ≈ F is
nonelementary.

◮ Attacker chooses witness tree ”satisfying” first-order sentence.

◮ ∃xi (resp. ∀xi) means Attacker (resp. Defender) labels leaf.

◮ Main obstacles for the proof:
◮ Order of variable assignments not controllable.

Nonelementary lower bounds for bisimilarity checking

Theorem

Given RGTRS G and a finite system F , checking G ∼ F is
nonelementary.

Corollary

Given GTRS G and a finite system F , checking G ≈ F is
nonelementary.

◮ Attacker chooses witness tree ”satisfying” first-order sentence.

◮ ∃xi (resp. ∀xi) means Attacker (resp. Defender) labels leaf.

◮ Main obstacles for the proof:
◮ Order of variable assignments not controllable.
◮ (R)GTRS not closed under products with finite systems to

implement standard Defender’s Forcing technique.

Thanks for your attention

