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◮ Pushdown systems:

◮ Rewrite rules: u
a

→֒ v (u, v words)
◮ Transitions: uw

a
−→ vw for all words w .

◮ Prefix-recognizable systems:

◮ Rewriting rules: L1
a

→֒ L2 (L1, L2 regular word languages)
◮ Transitions: uw

a
−→ vw for all u ∈ L1, v ∈ L2 and all words w .
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◮ Regular ground tree rewrite systems (RGTRS)

◮ Rewrite rules: L1
a

→֒ L2 for regular tree languages L1 and L2.

◮ Transitions:

a
−→ ∈ L2∈ L1
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Why study pushdown systems and GTRS?

◮ Pushdown systems: Allow to model behavior of recursive
programs.

◮ GTRS = Pushdown systems plus unbounded parallelism.

Theorem

Bisimulation equivalence between pushdown systems is

◮ decidable (Sénizergues 2005)

◮ EXP-hard (Kučera, Mayr 2010)

Open problem

Is bisimulation equivalence on GTRS decidable?

This paper:

◮ How difficult is it to decide GTRS ≡ F for finite systems F?

◮ Main tool: Study model-checking problem of EF on GTRS.
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The branching-time logic EF

Formulas ϕ of the logic EF are given by the following grammar

ϕ ::= true | ¬ϕ | ϕ ∧ ϕ | EXAϕ | EFϕ,

where A ⊆ Σ for some set of edge labels Σ.

Let T = (S , {→a| a ∈ Σ}) be a transition system.

For each state s ∈ S and ϕ ∈ EF define s |= ϕ inductively:

s |= EXAϕ ⇐⇒ ∃t ∈ S , a ∈ A : s →a t and t |= ϕ

s |= EFϕ ⇐⇒ ∃t ∈ S : s→∗t and t |= ϕ

where → =
⋃

a∈Σ

→a
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Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

.
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transitions of tree automaton
accepting [[ψ]]



EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

.

Fix some first order sentence ϕ = ∃x1∀x2 · · · ∃xn−1∀xn ψ(x1, . . . , xn)

over signature (P0,P1, <).

0 1 011 120 0 1 0 0 0 1n1 0 0

−−−→
∗

Yield string of tree corresponds to word

EF formula:

EF EXa1AXa2 · · · AXanEF EXacc
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Model checking syntactic fragments of EF on GTRS

◮ EF on GTRS: Nonelementary already for two nested EF
operators (⇒ EF2).

◮ What happens with at most one nesting (⇒ EF1)?

Motivation:
◮ Find the nonelementary border for EF.
◮ Theorem: (Jančar, Kučera, Moller)

Strong bisimilarity against finite systems is polytime-reducible
to model checking EF1.
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Model checking EF1 on GTRS is PNEXP-complete

Upper bound: Fix some GTRS G .

How to represent tree lang. [[ϕ]] for each modal formula ϕ ∈ EF0?

◮ First approach: Compute [[ϕ]] using closure of tree languages by
boolean operations and pre (for dealing with EX).

(Nonelementary blowup).

◮ Second approach: Study relation ≃i on trees, where T1 ≃i T2 iff T1

and T2 cannot be distinguished by modal formulas of EX-rank at
most i .

How compute NTA for each “positive” equiv. class w.r.t. ϕ?

How can one bound the index of ≃i?
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Our solution: Define relation ≡i where T1≡iT2 iff T1 and T2

have the same number of subtrees of depth ≤ i · poly(|G |) up to
some threshold θ.

◮ ≡i is finer than ≃i .

◮ Testing if f : Trees≤i ·poly(|G |) → {0, . . . , θ} describes positive
equivalence class w.r.t. ϕ is decidable in time |f |poly(i+|G |).

◮ ∀ positive f ∃ small NTA (computable) accepting [[f ]].

Model checking T0

?

|= EFϕ (ϕ modal formula) in NEXP:

1. Guess a function f : Trees≤i ·poly(|G |) → {0, . . . , θ}.

2. Check whether f describes positive equivalence class w.r.t. ϕ.

3. Compute small NTA accepting [[f ]].

4. Check if T0 ∈ pre∗([[f ]]).

Finally use PNEXP = PSPACENEXP (Hemaspaandra,Allender et al).
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Applications of the upper bound proof idea

Corollary

For a GTRS G and a finite system F one can decide in coNEXP
whether G ∼ F .

Theorem

For a PA process P and a finite system F , one can decide in
coNEXP whether P ∼ F .

(gives a first elementary upper bound for this problem)
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Model checking EF1 on GTRS is PNEXP-complete

Lower bound:

The proof is a combination of the following:

1. 2n × 2n-tiling problem is reducible to model checking formulas
of the kind EFϕ, where ϕ is a modal formula.
(Uses ideas from satisfiability checking)

2. Encode Circuit Value for boolean circuits with access to
2n × 2n-tiling problem.
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Theorem

Given RGTRS G and a finite system F , checking G ∼ F is
nonelementary.

Corollary

Given GTRS G and a finite system F , checking G ≈ F is
nonelementary.

◮ Attacker chooses witness tree ”satisfying” first-order sentence.

◮ ∃xi (resp. ∀xi) means Attacker (resp. Defender) labels leaf.

◮ Main obstacles for the proof:
◮ Order of variable assignments not controllable.
◮ (R)GTRS not closed under products with finite systems to

implement standard Defender’s Forcing technique.



Thanks for your attention


