The Complexity of Verifying Ground Tree Rewrite Systems

Stefan Göller (University of Bremen)

joint work with Anthony Widjaja Lin (Oxford University)

LICS 2011, Toronto

Model checking and equivalence checking

Model checking a class of structures $\mathcal C$ against a logic $\mathcal L$

INPUT: Structure $S \in \mathcal{C}$ + formula $\varphi \in \mathcal{L}$

QUESTION: $S \models \varphi$?

Model checking and equivalence checking

Model checking a class of structures $\mathcal C$ against a logic $\mathcal L$

INPUT: Structure $S \in \mathcal{C}$ + formula $\varphi \in \mathcal{L}$

QUESTION: $S \models \varphi$?

\equiv -Equivalence checking between structures in ${\mathcal C}$

INPUT: Structures $S_1, S_2 \in \mathcal{C}$

QUESTION: $S_1 \equiv S_2$?

Pushdown and prefix-recognizable systems

States: All finite words (over some finite alphabet)

Pushdown and prefix-recognizable systems

States: All finite words (over some finite alphabet)

- Pushdown systems:
 - ▶ Rewrite rules: $u \stackrel{a}{\hookrightarrow} v (u, v \text{ words})$
 - ▶ Transitions: $uw \xrightarrow{a} vw$ for all words w.

Pushdown and prefix-recognizable systems

States: All finite words (over some finite alphabet)

- Pushdown systems:
 - ▶ Rewrite rules: $u \stackrel{a}{\hookrightarrow} v (u, v \text{ words})$
 - ▶ Transitions: $uw \xrightarrow{a} vw$ for all words w.
- Prefix-recognizable systems:
 - ▶ Rewriting rules: $L_1 \stackrel{a}{\hookrightarrow} L_2$ (L_1, L_2 regular word languages)
 - ▶ Transitions: $uw \xrightarrow{a} vw$ for all $u \in L_1, v \in L_2$ and all words w.

- Ground tree rewrite systems (GTRS):
 - Rewrite rules

- Ground tree rewrite systems (GTRS):
 - Rewrite rules

- Ground tree rewrite systems (GTRS):
 - Rewrite rules

- Regular ground tree rewrite systems (RGTRS)
 - ▶ Rewrite rules: $L_1 \stackrel{a}{\hookrightarrow} L_2$ for regular tree languages L_1 and L_2 .

- Ground tree rewrite systems (GTRS):
 - Rewrite rules

- Regular ground tree rewrite systems (RGTRS)
 - ▶ Rewrite rules: $L_1 \stackrel{a}{\hookrightarrow} L_2$ for regular tree languages L_1 and L_2 .
 - ► Transitions:

▶ Pushdown systems: Allow to model behavior of recursive programs.

- Pushdown systems: Allow to model behavior of recursive programs.
- ▶ **GTRS** = Pushdown systems plus unbounded parallelism.

- Pushdown systems: Allow to model behavior of recursive programs.
- ▶ **GTRS** = Pushdown systems plus unbounded parallelism.

- Pushdown systems: Allow to model behavior of recursive programs.
- ► **GTRS** = Pushdown systems plus unbounded parallelism.

Theorem

Bisimulation equivalence between pushdown systems is

► decidable (Sénizergues 2005)

- Pushdown systems: Allow to model behavior of recursive programs.
- ► **GTRS** = Pushdown systems plus unbounded parallelism.

Theorem

Bisimulation equivalence between pushdown systems is

- decidable (Sénizergues 2005)
- EXP-hard (Kučera, Mayr 2010)

- Pushdown systems: Allow to model behavior of recursive programs.
- ► **GTRS** = Pushdown systems plus unbounded parallelism.

Theorem

Bisimulation equivalence between pushdown systems is

- decidable (Sénizergues 2005)
- EXP-hard (Kučera, Mayr 2010)

Open problem

Is bisimulation equivalence on GTRS decidable?

- Pushdown systems: Allow to model behavior of recursive programs.
- ▶ **GTRS** = Pushdown systems plus unbounded parallelism.

Theorem

Bisimulation equivalence between pushdown systems is

- decidable (Sénizergues 2005)
- EXP-hard (Kučera, Mayr 2010)

Open problem

Is bisimulation equivalence on GTRS decidable?

This paper:

▶ How difficult is it to decide **GTRS** \equiv *F* for *finite* systems *F*?

- Pushdown systems: Allow to model behavior of recursive programs.
- ► **GTRS** = Pushdown systems plus unbounded parallelism.

Theorem

Bisimulation equivalence between pushdown systems is

- decidable (Sénizergues 2005)
- EXP-hard (Kučera, Mayr 2010)

Open problem

Is bisimulation equivalence on GTRS decidable?

This paper:

- ▶ How difficult is it to decide **GTRS** \equiv *F* for *finite* systems *F*?
- ▶ Main tool: Study model-checking problem of EF on GTRS.

	Pushdown	GTRS	RGTRS
MSO	TOWER-c.	undecidable	
FO + reach	TOWER-c.		

	Pushdown	GTRS	RGTRS
MSO	TOWER-c.	WER-c. undecidable	
FO + reach	TOWER-c.		
CTL	EXP-c.	undecidable	
EF	PSPACE-c.	PSPACETOWER	EXPTOWER

	Pushdown	GTRS	RGTRS
MSO	TOWER-c.	undecidable	
FO + reach	TOWER-c.		
CTL	EXP-c.	undecidable	
EF	PSPACE-c.	PSPACETOWER	EXPTOWER
\sim vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER
pprox vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER

	Pushdown	GTRS	RGTRS
MSO	TOWER-c.	undecidable	
FO + reach	TOWER-c.		
CTL	EXP-c.	undecidable	
EF	PSPACE-c.	PSPACETOWER	EXPTOWER
\sim vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER
pprox vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER

Formulas φ of the logic EF are given by the following grammar

$$\varphi ::=$$
 true $| \neg \varphi \ | \ \varphi \wedge \varphi \ | \ \mathsf{EX}_{\mathsf{A}} \varphi \ | \ \mathsf{EF} \varphi,$

where $A \subseteq \Sigma$ for some set of edge labels Σ .

Formulas φ of the logic EF are given by the following grammar

$$\varphi ::=$$
 true $| \neg \varphi | \varphi \wedge \varphi |$ $\mathsf{EX}_{\mathsf{A}} \varphi |$ $\mathsf{EF} \varphi,$

where $A \subseteq \Sigma$ for some set of edge labels Σ .

Let $T = (S, \{ \rightarrow_a | a \in \Sigma \})$ be a transition system.

Formulas φ of the logic EF are given by the following grammar

$$\varphi ::= true \mid \neg \varphi \mid \varphi \wedge \varphi \mid EX_{A}\varphi \mid EF\varphi,$$

where $A \subseteq \Sigma$ for some set of edge labels Σ .

Let $T = (S, \{ \rightarrow_a | a \in \Sigma \})$ be a transition system.

For each state $s \in S$ and $\varphi \in \mathsf{EF}$ define $s \models \varphi$ inductively:

Formulas φ of the logic EF are given by the following grammar

$$\varphi \; ::= \; \; \mathsf{true} \; \mid \; \neg \varphi \; \mid \; \varphi \wedge \varphi \; \mid \; \mathsf{EX}_{\mathsf{A}} \varphi \; \mid \; \mathsf{EF} \varphi,$$

where $A \subseteq \Sigma$ for some set of edge labels Σ .

Let $T = (S, \{ \rightarrow_a | a \in \Sigma \})$ be a transition system.

For each state $s \in S$ and $\varphi \in \mathsf{EF}$ define $s \models \varphi$ inductively:

$$s \models \mathsf{EX}_{A} \varphi \iff \exists t \in S, a \in A : s \rightarrow_{a} t \text{ and } t \models \varphi$$

Formulas φ of the logic EF are given by the following grammar

$$\varphi \; ::= \; \; \mathsf{true} \; \mid \; \neg \varphi \; \mid \; \varphi \wedge \varphi \; \mid \; \mathsf{EX}_{\mathsf{A}} \varphi \; \mid \; \mathsf{EF} \varphi,$$

where $A \subseteq \Sigma$ for some set of edge labels Σ .

Let $T = (S, \{ \rightarrow_a | a \in \Sigma \})$ be a transition system.

For each state $s \in S$ and $\varphi \in \mathsf{EF}$ define $s \models \varphi$ inductively:

$$s \models \mathsf{EX}_A \varphi \iff \exists t \in S, a \in A : s \to_a t \text{ and } t \models \varphi$$

$$s \models \mathsf{EF} \varphi \iff \exists t \in S : s \to^* t \text{ and } t \models \varphi$$

$$\mathsf{where} \to = \bigcup_{a \in \Sigma} \to_a$$

Decidability and complexity

 $\mathsf{TOWER} = \mathsf{DTIME}(\mathsf{Tower}(\mathit{O}(\mathit{n}))).$

	Pushdown	GTRS	RGTRS
MSO	TOWER-c.	undecidable	
FO + reach	TOWER-c.		
CTL	EXP-c.	undecidable	
EF	PSPACE-c.	PSPACETOWER	EXPTOWER
\sim vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER
pprox vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER

Decidability and complexity

 $\mathsf{TOWER} = \mathsf{DTIME}(\mathsf{Tower}(\mathit{O}(\mathit{n}))).$

	Pushdown	GTRS	RGTRS
MSO	TOWER-c.	undecidable	
FO + reach	TOWER-c.		
CTL	EXP-c.	undecidable	
EF	PSPACE-c.	TOWER – c.	
\sim vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER
pprox vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER

Theorem

Model checking EF is nonelementary on GTRS.

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

Fix some first order sentence $\varphi = \exists x_1 \forall x_2 \cdots \exists x_{n-1} \forall x_n \ \psi(x_1, \dots, x_n)$ over signature $(P_0, P_1, <)$.

.

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

Fix some first order sentence $\varphi = \exists x_1 \forall x_2 \cdots \exists x_{n-1} \forall x_n \ \psi(x_1, \dots, x_n)$ over signature $(P_0, P_1, <)$.

Yield string of tree corresponds to word

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

Fix some first order sentence $\varphi = \exists x_1 \forall x_2 \cdots \exists x_{n-1} \forall x_n \ \psi(x_1, \dots, x_n)$ over signature $(P_0, P_1, <)$.

Yield string of tree corresponds to word

EF formula:

Rewrite rules:

$$EX_{a_1}$$

 $0 \overset{a_1}{\hookrightarrow} 0_1 \ \ (\text{and} \ 1 \overset{a_1}{\hookrightarrow} 1_1)$

.

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

Fix some first order sentence $\varphi = \exists x_1 \forall x_2 \cdots \exists x_{n-1} \forall x_n \ \psi(x_1, \dots, x_n)$ over signature $(P_0, P_1, <)$.

Yield string of tree corresponds to word

EF formula:

$$EX_{a_1}AX_{a_2}$$

Rewrite rules:

$$1 \overset{a_2}{\hookrightarrow} 1_2 \ \ (\text{and} \ 0 \overset{a_2}{\hookrightarrow} 0_2)$$

EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

Fix some first order sentence $\varphi = \exists x_1 \forall x_2 \cdots \exists x_{n-1} \forall x_n \ \psi(x_1, \dots, x_n)$ over signature $(P_0, P_1, <)$.

Yield string of tree corresponds to word

EF formula:

$$\mathsf{EX}_{\mathsf{a}_1}\mathsf{AX}_{\mathsf{a}_2}\ \cdots\ \mathsf{AX}_{\mathsf{a}_\mathsf{n}}$$

Rewrite rules:

$$1 \stackrel{a_n}{\hookrightarrow} 1_n \text{ (and } 0 \stackrel{a_n}{\hookrightarrow} 0_n)$$

EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

Fix some first order sentence $\varphi = \exists x_1 \forall x_2 \cdots \exists x_{n-1} \forall x_n \ \psi(x_1, \dots, x_n)$ over signature $(P_0, P_1, <)$.

Yield string of tree corresponds to word

EF formula:

 $\mathsf{EX}_{a_1}\mathsf{AX}_{a_2}\cdots\mathsf{AX}_{\mathsf{a_n}}\mathsf{EF}\ \mathsf{EX}_{\mathsf{acc}}$ accepting $\llbracket\psi\rrbracket$

Rewrite rules:

transitions of tree automaton accepting $[\![\psi]\!]$

EF model checking is nonelementary on GTRS

Theorem

Model checking EF is nonelementary on GTRS.

Proof.

Idea: Reduction from first-order satisfiability over words.

Fix some first order sentence $\varphi = \exists x_1 \forall x_2 \cdots \exists x_{n-1} \forall x_n \ \psi(x_1, \dots, x_n)$ over signature $(P_0, P_1, <)$.

Yield string of tree corresponds to word

EF formula:

$$\mathsf{EF}\ \mathsf{EX}_{a_1}\mathsf{AX}_{a_2}\ \cdots\ \mathsf{AX}_{\mathsf{a_n}}\mathsf{EF}\ \mathsf{EX}_{\mathsf{acc}}$$

.

П

▶ EF on GTRS: Nonelementary already for **two** nested EF operators (\Rightarrow EF₂).

- ► EF on GTRS: Nonelementary already for two nested EF operators (⇒ EF₂).
- ▶ What happens with at most one nesting (\Rightarrow EF₁)?

- ► EF on GTRS: Nonelementary already for two nested EF operators (⇒ EF₂).
- What happens with at most one nesting (⇒ EF₁)? Motivation:
 - Find the nonelementary border for EF.

- ► EF on GTRS: Nonelementary already for two nested EF operators (⇒ EF₂).
- ▶ What happens with at most one nesting (\Rightarrow EF₁)?

Motivation:

- Find the nonelementary border for EF.
- Theorem: (Jančar, Kučera, Moller) Strong bisimilarity against finite systems is polytime-reducible to model checking EF₁.

 $\mathsf{TOWER} = \mathsf{DTIME}(\mathsf{Tower}(\mathit{O}(\mathit{n}))).$

	Pushdown	GTRS	RGTRS
MSO	TOWER-c.	undecidable	
FO + reach	TOWER-c.		
CTL	EXP-c.	undecidable	
EF	PSPACE-c.	TOWER-c.	
\sim vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER
pprox vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER

TOWER = DTIME(Tower(O(n))).

	Pushdown	GTRS	RGTRS
MSO	TOWER-c.	undecidable	
FO + reach		TOWER-c.	
CTL	EXP-c.	undecidable	
EF_2,EF	PSPACE-c.	TOWER-c.	
EF ₁	PSPACE-c.	?	TOWER-c.
\sim vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER
pprox vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER

TOWER = DTIME(Tower(O(n))).

	Pushdown	GTRS	RGTRS
MSO	TOWER-c.	undecidable	
FO + reach		TOWER-c.	
CTL	EXP-c.	undecidable	
EF_2,EF	PSPACE-c.	TOWER-c.	
EF ₁	PSPACE-c.	P ^{NEXP} -C.	TOWER-c.
\sim vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER
pprox vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER

Upper bound: Fix some GTRS G.

Upper bound: Fix some GTRS G.

How to represent tree lang. $\llbracket \varphi \rrbracket$ for each **modal formula** $\varphi \in \mathsf{EF}_0$?

Upper bound: Fix some GTRS G.

How to represent tree lang. $\llbracket \varphi \rrbracket$ for each **modal formula** $\varphi \in \mathsf{EF}_0$?

▶ First approach: Compute $\llbracket \varphi \rrbracket$ using closure of tree languages by boolean operations and pre (for dealing with EX).

Upper bound: Fix some GTRS G.

How to represent tree lang. $\llbracket \varphi \rrbracket$ for each **modal formula** $\varphi \in \mathsf{EF}_0$?

▶ First approach: Compute $\llbracket \varphi \rrbracket$ using closure of tree languages by boolean operations and pre (for dealing with EX).

(Nonelementary blowup).

Upper bound: Fix some GTRS G.

How to represent tree lang. $\llbracket \varphi \rrbracket$ for each **modal formula** $\varphi \in \mathsf{EF}_0$?

▶ First approach: Compute $\llbracket \varphi \rrbracket$ using closure of tree languages by boolean operations and pre (for dealing with EX).

(Nonelementary blowup).

▶ Second approach: Study relation \simeq_i on trees, where $T_1 \simeq_i T_2$ iff T_1 and T_2 cannot be distinguished by modal formulas of EX-rank at most i.

Upper bound: Fix some GTRS G.

How to represent tree lang. $\llbracket \varphi \rrbracket$ for each **modal formula** $\varphi \in \mathsf{EF}_0$?

▶ First approach: Compute $\llbracket \varphi \rrbracket$ using closure of tree languages by boolean operations and pre (for dealing with EX).

(Nonelementary blowup).

▶ Second approach: Study relation \simeq_i on trees, where $T_1 \simeq_i T_2$ iff T_1 and T_2 cannot be distinguished by modal formulas of EX-rank at most i.

How compute NTA for each "positive" equiv. class w.r.t. φ ?

Upper bound: Fix some GTRS G.

How to represent tree lang. $\llbracket \varphi \rrbracket$ for each **modal formula** $\varphi \in \mathsf{EF}_0$?

▶ First approach: Compute $\llbracket \varphi \rrbracket$ using closure of tree languages by boolean operations and pre (for dealing with EX).

(Nonelementary blowup).

▶ Second approach: Study relation \simeq_i on trees, where $T_1 \simeq_i T_2$ iff T_1 and T_2 cannot be distinguished by modal formulas of EX-rank at most i.

How compute NTA for each "positive" equiv. class w.r.t. φ ? How can one bound the index of \simeq_i ?

Our solution: Define relation \equiv_i where $T_1 \equiv_i T_2$ iff T_1 and T_2 have the same number of subtrees of depth $\leq i \cdot \text{poly}(|G|)$ up to some threshold θ .

Our solution: Define relation \equiv_i where $T_1 \equiv_i T_2$ iff T_1 and T_2 have the same number of subtrees of depth $\leq i \cdot \text{poly}(|G|)$ up to some threshold θ .

 $ightharpoonup \equiv_i$ is finer than \simeq_i .

Our solution: Define relation \equiv_i where $T_1 \equiv_i T_2$ iff T_1 and T_2 have the same number of subtrees of depth $\leq_i \cdot_j \operatorname{poly}(|G|)$ up to some threshold θ .

- $ightharpoonup \equiv_i$ is finer than \simeq_i .
- ► Testing if $f: \text{Trees}^{\leq i \cdot \text{poly}(|G|)} \to \{0, \dots, \theta\}$ describes positive equivalence class w.r.t. φ is decidable in time $|f|^{\text{poly}(i+|G|)}$.

Our solution: Define relation \equiv_i where $T_1 \equiv_i T_2$ iff T_1 and T_2 have the same number of subtrees of depth $\leq i \cdot \text{poly}(|G|)$ up to some threshold θ .

- $ightharpoonup \equiv_i$ is finer than \simeq_i .
- ► Testing if $f: \text{Trees}^{\leq i \cdot \text{poly}(|G|)} \to \{0, \dots, \theta\}$ describes positive equivalence class w.r.t. φ is decidable in time $|f|^{\text{poly}(i+|G|)}$.
- ▶ \forall positive $f \exists$ small NTA (computable) accepting $\llbracket f \rrbracket$.

Our solution: Define relation \equiv_i where $T_1 \equiv_i T_2$ iff T_1 and T_2 have the same number of subtrees of depth $\leq_i \cdot_{poly}(|G|)$ up to some threshold θ .

- $ightharpoonup \equiv_i$ is finer than \simeq_i .
- ► Testing if $f: \text{Trees}^{\leq i \cdot \text{poly}(|G|)} \to \{0, \dots, \theta\}$ describes positive equivalence class w.r.t. φ is decidable in time $|f|^{\text{poly}(i+|G|)}$.
- ▶ \forall positive $f \exists$ small NTA (computable) accepting $\llbracket f \rrbracket$.

Model checking $T_0 \models \mathsf{EF} \varphi$ (φ modal formula) in NEXP:

Our solution: Define relation \equiv_i where $T_1 \equiv_i T_2$ iff T_1 and T_2 have the same number of subtrees of depth $\leq_i \cdot_{poly}(|G|)$ up to some threshold θ .

- $ightharpoonup \equiv_i$ is finer than \simeq_i .
- ► Testing if f: Trees $\leq i \cdot \text{poly}(|G|) \rightarrow \{0, \dots, \theta\}$ describes positive equivalence class w.r.t. φ is decidable in time $|f|^{\text{poly}(i+|G|)}$.
- ▶ \forall positive $f \exists$ small NTA (computable) accepting $\llbracket f \rrbracket$.

Model checking $T_0 \stackrel{\cdot}{\models} \mathsf{EF} \varphi$ (φ modal formula) in NEXP:

1. Guess a function $f: \mathsf{Trees}^{\leq i \cdot \mathsf{poly}(|G|)} \to \{0, \dots, \theta\}.$

Our solution: Define relation \equiv_i where $T_1 \equiv_i T_2$ iff T_1 and T_2 have the same number of subtrees of depth $\leq i \cdot \text{poly}(|G|)$ up to some threshold θ .

- $ightharpoonup \equiv_i$ is finer than \simeq_i .
- ► Testing if $f: \text{Trees}^{\leq i \cdot \text{poly}(|G|)} \to \{0, \dots, \theta\}$ describes positive equivalence class w.r.t. φ is decidable in time $|f|^{\text{poly}(i+|G|)}$.
- ▶ \forall positive $f \exists$ small NTA (computable) accepting $\llbracket f \rrbracket$.

Model checking $T_0 \stackrel{!}{\models} \mathsf{EF} \varphi$ (φ modal formula) in NEXP:

- 1. Guess a function $f: \mathsf{Trees}^{\leq i \cdot \mathsf{poly}(|G|)} \to \{0, \dots, \theta\}.$
- 2. Check whether f describes positive equivalence class w.r.t. φ .

Our solution: Define relation \equiv_i where $T_1 \equiv_i T_2$ iff T_1 and T_2 have the same number of subtrees of depth $\leq i \cdot \text{poly}(|G|)$ up to some threshold θ .

- $ightharpoonup \equiv_i$ is finer than \simeq_i .
- ► Testing if f: Trees $\leq i \cdot \text{poly}(|G|) \rightarrow \{0, \dots, \theta\}$ describes positive equivalence class w.r.t. φ is decidable in time $|f|^{\text{poly}(i+|G|)}$.
- ▶ \forall positive $f \exists$ small NTA (computable) accepting $\llbracket f \rrbracket$.

Model checking $T_0 \stackrel{!}{\models} \mathsf{EF} \varphi$ (φ modal formula) in NEXP:

- 1. Guess a function $f: \mathsf{Trees}^{\leq i \cdot \mathsf{poly}(|G|)} \to \{0, \dots, \theta\}.$
- 2. Check whether f describes positive equivalence class w.r.t. φ .
- 3. Compute small NTA accepting [f].

Our solution: Define relation \equiv_i where $T_1 \equiv_i T_2$ iff T_1 and T_2 have the same number of subtrees of depth $\leq i \cdot \text{poly}(|G|)$ up to some threshold θ .

- $ightharpoonup \equiv_i$ is finer than \simeq_i .
- ► Testing if f: Trees $\leq i \cdot \text{poly}(|G|) \rightarrow \{0, \dots, \theta\}$ describes positive equivalence class w.r.t. φ is decidable in time $|f|^{\text{poly}(i+|G|)}$.
- ▶ \forall positive $f \exists$ small NTA (computable) accepting $\llbracket f \rrbracket$.

Model checking $T_0 \stackrel{!}{\models} \mathsf{EF} \varphi \ (\varphi \ \mathsf{modal} \ \mathsf{formula})$ in NEXP:

- 1. Guess a function $f: \mathsf{Trees}^{\leq i \cdot \mathsf{poly}(|G|)} \to \{0, \dots, \theta\}.$
- 2. Check whether f describes positive equivalence class w.r.t. φ .
- 3. Compute small NTA accepting [f].
- 4. Check if $T_0 \in \operatorname{pre}^*(\llbracket f \rrbracket)$.

Our solution: Define relation \equiv_i where $T_1 \equiv_i T_2$ iff T_1 and T_2 have the same number of subtrees of depth $\leq i \cdot \text{poly}(|G|)$ up to some threshold θ .

- $ightharpoonup \equiv_i$ is finer than \simeq_i .
- ► Testing if $f: \text{Trees}^{\leq i \cdot \text{poly}(|G|)} \to \{0, \dots, \theta\}$ describes positive equivalence class w.r.t. φ is decidable in time $|f|^{\text{poly}(i+|G|)}$.
- ▶ \forall positive $f \exists$ small NTA (computable) accepting $\llbracket f \rrbracket$.

Model checking $T_0 \stackrel{?}{\models} \mathsf{EF} \varphi$ (φ modal formula) in NEXP:

- 1. Guess a function $f: \mathsf{Trees}^{\leq i \cdot \mathsf{poly}(|G|)} \to \{0, \dots, \theta\}.$
- 2. Check whether f describes positive equivalence class w.r.t. φ .
- 3. Compute small NTA accepting [f].
- 4. Check if $T_0 \in \operatorname{pre}^*(\llbracket f \rrbracket)$.

Finally use $P^{\text{NEXP}} = PSPACE^{\text{NEXP}}$ (Hemaspaandra, Allender et al).

Applications of the upper bound proof idea

Corollary

For a GTRS G and a finite system F one can decide in coNEXP whether $G \sim F$.

Applications of the upper bound proof idea

Corollary

For a GTRS G and a finite system F one can decide in coNEXP whether $G \sim F$.

Theorem

For a PA process P and a finite system F, one can decide in coNEXP whether $P \sim F$.

(gives a first elementary upper bound for this problem)

Lower bound:

The proof is a combination of the following:

Lower bound:

The proof is a combination of the following:

1. $2^n \times 2^n$ -tiling problem is reducible to model checking formulas of the kind EF φ , where φ is a modal formula. (Uses ideas from satisfiability checking)

Lower bound:

The proof is a combination of the following:

- 1. $2^n \times 2^n$ -tiling problem is reducible to model checking formulas of the kind EF φ , where φ is a modal formula. (Uses ideas from satisfiability checking)
- 2. Encode Circuit Value for boolean circuits with access to $2^n \times 2^n$ -tiling problem.

TOWER = DTIME(Tower(O(n))).

	Pushdown	GTRS	RGTRS
MSO	TOWER-c.	undecidable	
FO + reach		TOWER-c.	
CTL	EXP-c.	undecidable	
EF_2,EF	PSPACE-c.	TOWER-c.	
EF ₁	PSPACE-c.	P ^{NEXP} -c.	TOWER-c.
\sim vs. fin. syst.	PSPACE-c.	PSPACEcoNEXP	EXPTOWER
pprox vs. fin. syst.	PSPACE-c.	PSPACETOWER	EXPTOWER

TOWER = DTIME(Tower(O(n))).

	Pushdown	GTRS	RGTRS
MSO	TOWER-c.	undecidable	
FO + reach		TOWER-c.	
CTL	EXP-c.	undecidable	
EF_2,EF	PSPACE-c.	TOWER-c.	
EF ₁	PSPACE-c.	P ^{NEXP} -c.	TOWER-c.
\sim vs. fin. syst.	PSPACE-c.	PSPACEcoNEXP	TOWER-c.
pprox vs. fin. syst.	PSPACE-c.	TOWER-c.	

Theorem

Theorem

Given **RGTRS** G and a finite system F, checking $G \sim F$ is nonelementary.

Corollary

Theorem

Given **RGTRS** G and a finite system F, checking $G \sim F$ is nonelementary.

Corollary

Given **GTRS** G and a finite system F, checking $G \approx F$ is nonelementary.

► Attacker chooses witness tree "satisfying" first-order sentence.

Theorem

Given **RGTRS** G and a finite system F, checking $G \sim F$ is nonelementary.

Corollary

- ► Attacker chooses witness tree "satisfying" first-order sentence.
- ▶ $\exists x_i$ (resp. $\forall x_i$) means Attacker (resp. Defender) labels leaf.

Theorem

Given **RGTRS** G and a finite system F, checking $G \sim F$ is nonelementary.

Corollary

- ► Attacker chooses witness tree "satisfying" first-order sentence.
- ▶ $\exists x_i$ (resp. $\forall x_i$) means Attacker (resp. Defender) labels leaf.
- Main obstacles for the proof:
 - Order of variable assignments not controllable.

Theorem

Given **RGTRS** G and a finite system F, checking $G \sim F$ is nonelementary.

Corollary

- ► Attacker chooses witness tree "satisfying" first-order sentence.
- ▶ $\exists x_i$ (resp. $\forall x_i$) means Attacker (resp. Defender) labels leaf.
- Main obstacles for the proof:
 - Order of variable assignments not controllable.
 - (R)GTRS not closed under products with finite systems to implement standard Defender's Forcing technique.

Thanks for your attention