A decidable two-way logic on data words

Diego Figueira

U. Warsaw & U. Edinburgh

A data word

a b a c b b a c b c a
3 1 7 7 1 3 1 6 5 1 5

...word over a finite alphabet infinite domain

a b a c b b a c b c a
$$(A \times D)^*$$
 $(A \times D)^*$

$$\in (\mathbb{A} \times \mathbb{D})^*$$

...word over a finite alphabet infinite domain

Logics / automata for data words

high complexity / undecidable very limited expressive power

Properties

a b a c b c a c b c b 3 1 7 7 3 3 1 6 7 1 1

(e) Between any a and b with the same dv there is exactly one **c**.

(b) Only one dv occurs under the label a.

(f) For every a there is a future **b** with the same dv such that in between there is a c with a different dv.

(c) For every a there is a previous **b** with the same data value.

(g) There are at least two elements in the word.

(h) The next element of an a is always a b.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

(b) Only one dv occurs

(c) For every **a** there is a previous **b** with the same data value.

under the label a.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

Properties

(e) Between any **a** and **b** with the same dv there is exactly one **c**.

(f) For every a there is a future b with the same dv such that in between there is a c with a different dv.

(g) There are at least two elements in the word.

Properties

 a
 b
 a
 c
 b
 c
 a
 c
 b
 c
 b

 3
 1
 7
 7
 3
 3
 1
 6
 7
 1
 1

(e) Between any **a** and **b** with the same dv there is exactly one **c**.

(b) Only one dv occurs under the label a.

1

(f) For every a there is a future b with the same dv such that in between there is a c with a different dv.

(c) For every **a** there is a previous **b** with the same data value.

(g) There are at least two elements in the word.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

Properties

b c b

(e) Between any **a** and **b** with the same dv there is exactly one **c**.

(b) Only one dv occurs under the label a.

 a
 b
 a
 c
 b
 c
 a
 c
 b
 c
 b

 3
 1
 7
 7
 3
 3
 1
 6
 7
 1
 1

(f) For every a there is a future **b** with the same dv such that in between there is a **c** with a different dv.

(c) For every **a** there is a previous **b** with the same data value.

(g) There are at least two elements in the word.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

(b) Only one dv occurs under the label a.

(c) For every a there is a previous **b** with the same data value.

(d) Every **a** occurrs in between two positions labeled with **b** with the same dy.

Properties

a b a c b c a c b c b 3 1 7 7 3 3 1 6 7 1 1

(e) Between any **a** and **b** with the same dv there is exactly one **c**.

(f) For every a there is a future b with the same dv such that in between there is a c with a different dv.

(g) There are at least two elements in the word.

(b) Only one dv occurs under the label a.

(c) For every **a** there is a previous **b** with the same data value.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

Properties

a b a c b c a c b c b 3 1 7 7 3 3 1 6 7 1 1

(e) Between any **a** and **b** with the same dv there is exactly one **c**.

(f) For every a there is a future b with the same dv such that in between there is a c with a different dv.

(g) There are at least two elements in the word.

(b) Only one dv occurs under the label a.

(c) For every **a** there is a previous **b** with the same data value.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

Properties

a b a c b c a c b c b 3 1 7 7 3 3 1 6 7 1 1

(e) Between any **a** and **b** with the same dv there is exactly one **c**.

(f) For every **a** there is a future **b** with the same dv such that in between there is a **c** with a different dv.

(g) There are at least two elements in the word.

Properties

a b a c b c a c b c b 3 1 7 7 3 3 1 6 7 1 1

(b) Only one dv occurs under the label a.

(c) For every **a** there is a previous **b** with the same data value.

(d) Every **a** occurrs in between two positions labeled with **b** with the same dy.

(f) For every a there is a future b with the same dv such that in between there is a c with a different dv.

(e) Between any **a** and **b**

with the same dv there is

exactly one c.

(g) There are at least two elements in the word.

Properties

a b a c b c a c b c b 3 1 7 7 3 3 1 6 7 1 1

(e) Between any a and b with the same dv there is exactly one c.

(f) For every a there is a future b with the same dv such that in between there is a c with a different dv.

(g) There are at least two elements in the word.

(h) The next element of an a is always a b.

(b) Only one dv occurs under the label a.

(c) For every **a** there is a previous **b** with the same data value.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

Properties

a b a c b c a c b c b 3 1 7 7 3 3 1 6 7 1 1

but... logics that can express these

properties are undecidable

(f) For every a there is a future **b** with the same dv

such that in between there is a c with a different dv.

(g) There are at least two elements in the word.

(h) The next element of an

(e) Between any a and b

with the same dv there is

exactly one **c**.

(b) Only one dv occurs under the label a.

(c) For every a there is a previous **b** with the same data value.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

a is always a b.

(b) Only one dv occurs

(c) For every a there is a

previous **b** with the same

under the label a.

data value.

Properties

a b a c b c a c b c b 3 1 7 7 3 3 1 6 7 1 1

but... logics that can express these properties are undecidable

(a)+(e): non Primitive Recursive hard

(e) Between any **a** and **b** with the same dv there is exactly one **c**.

(f) For every a there is a future b with the same dv such that in between there is a c with a different dv.

(g) There are at least two elements in the word.

(h) The next element of an a is always a b.

(d) Every **a** occurrs in between two positions labeled with **b** with the same dy.

(a)

Properties

but... logics that can express these properties are undecidable

(a)+(e): non Primitive Recursive hard

(a) + (f): non Primitive Recursive hard

(e) Between any **a** and **b** with the same dv there is exactly one c.

(f) For every a there is a future **b** with the same dv such that in between there is a c with a different dv.

(g) There are at least two elements in the word.

(h) The next element of an a is always a b.

(d) Every a occurrs in same dv.

a b a c b c a c b c b 3 1 7 7 3 3 1 6 7 1 1

(b) Only one dv occurs under the label a.

(c) For every a there is a previous **b** with the same data value.

between two positions labeled with **b** with the

(b) Only one dv occurs

under the label a.

Properties

a b a c b c a c b c b 3 1 7 7 3 3 1 6 7 1 1

but... logics that can express these

properties are undecidable

(a)+(e) : non Primitive Recursive hard

(a) + (f): non Primitive Recursive hard

(a) + (c) + (e): undecidable

(e) Between any **a** and **b** with the same dv there is exactly one **c**.

(f) For every a there is a future b with the same dv such that in between there is a c with a different dv.

(g) There are at least two elements in the word.

(h) The next element of an **a** is always a **b**.

(c) For every **a** there is a previous **b** with the same data value.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

(b) Only one dv occurs

(c) For every a there is a

previous **b** with the same

under the label a.

data value.

Properties

a b a c b c a c b c b 3 1 7 7 3 3 1 6 7 1 1

but... logics that can express these properties are undecidable

(a)+(e): non Primitive Recursive hard

(a) + (f): non Primitive Recursive hard

(a) + (c) + (e): undecidable

(a) + (c) + (f): undecidable

(e) Between any **a** and **b** with the same dv there is exactly one **c**.

(f) For every **a** there is a future **b** with the same dv such that in between there is a **c** with a different dv.

(g) There are at least two elements in the word.

(h) The next element of an a is always a b.

(d) Every a occurrs in between two positions

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

Properties

a b a c b c a c b c b 3 1 7 7 3 3 1 6 7 1 1

but... logics that can express these

properties are undecidable

future b with the same dv

exactly one c.

(c) For every a there is a previous **b** with the same

data value.

(b) Only one dv occurs

under the label a.

(a)+(e): non Primitive Recursive hard

(a) + (f): non Primitive Recursive hard

(a) + (c) + (e): undecidable

(a) + (c) + (f): undecidable

(a) + (c) + (h): Petri Net reachability hard

(f) For every a there is a

such that in between there

is a c with a different dv.

(e) Between any **a** and **b**

with the same dv there is

(g) There are at least two elements in the word.

(h) The next element of an a is always a b.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

Logics for data words

 $FO^2(<, +1, \sim)$ [Bojańczyk et al.] (e) Between any **a** and **b** with the same dv there is exactly one c.

(b) Only one dv occurs under the label a.

(f) For every a there is a future b with the same dv such that in between there is a c with a different dv.

(c) For every a there is a previous **b** with the same data value.

(g) There are at least two elements in the word.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

decidable, PN-reach hard

	Logics for data words
(a) For every a there is a	
future b with the same dv.	

(e) Between any **a** and **b** with the same dv there is exactly one c.

(b) Only one dv occurs

 $FO^2(<, +1, \sim)$ [Bojańczyk et al.] decidable, PN-reach hard

(f) For every a there is a future b with the same dv

under the label a. $FO^2(<,\sim)$

NExpTime-c

(c) For every a there is a previous **b** with the same

(g) There are at least two elements in the word.

a is always a b.

such that in between there

is a c with a different dv.

data value.

(h) The next element of an

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

Logics	for	data	words	

(e) Between any a and b with the same dv there is exactly one c.

 $FO^2(<, +1, \sim)$

[Bojańczyk et al.] decidable, PN-reach hard

(f) For every a there is a

(b) Only one dv occurs under the label a.

 $FO^2(<,\sim)$

NExpTime-c

future **b** with the same dv such that in between there is a c with a different dv.

(c) For every a there is a previous b with the same data value.

[Demri, Lazić] decidable, non-PR hard

(g) There are at least two elements in the word.

(d) Every a occurrs in between two positions labeled with b with the

same dv.

 $LTL^{\downarrow}(F, U, X)$

Logics for data words

(e) Between any **a** and **b** with the same dv there is exactly one **c**.

(b) Only one dv occurs under the label a.

 $\mathrm{FO}^2(<,+1,\sim)$ [Bojańczyk et al.] decidable, PN-reach hard

 $FO^2(<,\sim)$

(f) For every **a** there is a future **b** with the same dv such that in between there is a **c** with a different dv.

(c) For every **a** there is a previous **b** with the same data value.

 $\mathrm{LTL}^{\downarrow}(F,U,X)$ [Demri, Lazić] decidable, non-PR hard

NExpTime-c

(g) There are at least two elements in the word.

(d) Every **a** occurrs in between two positions labeled with **b** with the same dy.

 $\mathrm{LTL}^{\downarrow}(F)$ [F, Segoufin] decidable, non-PR hard

(a) For every a there is a

(e) Between any a and b with the same dy there is

future **b** with the same dv.

 $FO^2(<, +1, \sim)$ [Bojańczyk et al.] decidable, PN-reach hard exactly one c.

(b) Only one dv occurs under the label a.

 $FO^2(<,\sim)$

 $LTL^{\downarrow}(F, U, X)$

NExpTime-c

[Demri, Lazić]

(f) For every a there is a future **b** with the same dv such that in between there is a c with a different dv.

(c) For every a there is a previous **b** with the same data value.

decidable, non-PR hard

(g) There are at least two elements in the word.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

 $LTL^{\downarrow}(F)$ [F, Segoufin] decidable, non-PR hard

(h) The next element of an a is always a b.

 $LTL^{\downarrow}(F, F^{-1})$

[F, Segoufin] undecidable

XPath on data words

node expressions

$$\varphi, \psi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \land \psi \mid \alpha = \beta \mid \alpha \neq \beta \mid \alpha \quad \mathbf{a} \in A$$

denote sets of positions

path expressions

$$\alpha, \beta ::= \varepsilon \mid \alpha \beta \mid \alpha[\varphi] \mid o$$

denote binary relations

$$o \in \{ \rightarrow, \rightarrow^+, \rightarrow^*, \leftarrow, \leftarrow, \leftarrow, \leftarrow \}$$

XPath on data words

node expressions

$$\varphi, \psi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \land \psi \mid \alpha = \beta \mid \alpha \neq \beta \mid \alpha \quad \mathbf{a} \in A$$

denote sets of positions

path expressions

$$\alpha, \beta ::= \varepsilon \mid \alpha \beta \mid \alpha[\varphi] \mid o$$

denote binary relations

$$o \in \{ \rightarrow, \rightarrow^+, \rightarrow^*, \leftarrow, \stackrel{+}{\leftarrow}, \stackrel{*}{\leftarrow} \}$$

XPath on data words

we note "XPath
$$(\rightarrow, \rightarrow^*, *\leftarrow)$$
"

node expressions

$$\varphi, \psi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \land \psi \mid \alpha = \beta \mid \alpha \neq \beta \mid \alpha \quad \mathbf{a} \in A$$

denote sets of positions

path expressions

$$\alpha, \beta ::= \varepsilon \mid \alpha \beta \mid \alpha[\varphi] \mid o$$

denote binary relations

$$o \in \{ \rightarrow, \rightarrow^+, \rightarrow^*, \leftarrow, \leftarrow, \leftarrow^+ \leftarrow \}$$

$$[[a]^* \leftarrow = \rightarrow^* [b] \rightarrow^* [c]]$$

(e) Between any **a** and **b** with the same dv there is exactly one **c**.

(b) Only one dv occurs under the label a.

(f) For every **a** there is a future **b** with the same dv such that in between there is a **c** with a different dv.

(c) For every **a** there is a previous **b** with the same data value.

(g) There are at least two elements in the word.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

E.g.

 $[[a]^* \leftarrow = \rightarrow^* [b] \rightarrow^* [c]]$

(a) for every position,

a $\Rightarrow \varepsilon = \rightarrow^* [b]$

(e) Between any **a** and **b** with the same dv there is exactly one c.

(f) For every a there is a future b with the same dv such that in between there is a c with a different dv.

(g) There are at least two elements in the word.

(h) The next element of an a is always a b.

(b) Only one dv occurs under the label a.

(c) For every a there is a previous **b** with the same data value.

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

(a) For every a there is a future **b** with the same dv. (b) Only one dv occurs under the label a.

(c) For every a there is a previous **b** with the same

data value.

E.g. $[[a]^* \leftarrow = \rightarrow^* [b] \rightarrow^* [c]]$

(e) Between any **a** and **b**

with the same dv there is exactly one c.

(a)

 $\neg \rightarrow^* [\neg (a \Rightarrow \varepsilon = \rightarrow^* [b])]$

(f) For every a there is a future **b** with the same dv

such that in between there is a c with a different dv.

(g) There are at least two elements in the word.

a is always a b.

(h) The next element of an

(d) Every a occurrs in between two positions labeled with **b** with the same dv.

E.g.

$$[[a]^* \leftarrow = \rightarrow^* [b] \rightarrow^* [c]]$$

$*$
 [b] \rightarrow * [

(e) Between any a and b with the same dv there is exactly one c.

(b) Only one dv occurs

under the label a.

(a)

 $\neg \rightarrow^* [\neg (a \Rightarrow \varepsilon = \rightarrow^* [b])]$

(f) For every a there is a

future **b** with the same dv such that in between there

is a c with a different dv.

data value.

(c) For every a there is a

(c) with $XPath(*\leftarrow)$

(g) There are at least two

a is always a b.

elements in the word.

(d) Every a occurrs in between two positions labeled with **b** with the

previous **b** with the same

(b) with XPath(\rightarrow^*)

(d) with XPath(\rightarrow^* , * \leftarrow)

 $XPath(\xrightarrow{*}, \xrightarrow{*})$ cannot express (f), (g)

(h) The next element of an

same dv.

$$XPath(\rightarrow^+,^+\leftarrow)$$

undecidable

[F,Segoufin '10]

$$XPath(\rightarrow^+,^+\leftarrow)$$

$$XPath(\rightarrow^+,^*\leftarrow)$$

undecidable

[F,Segoufin '10]

undecidable

$$XPath(\rightarrow^+,^+\leftarrow)$$

undecidable

[F,Segoufin '10]

$$XPath(\rightarrow^+,^*\leftarrow)$$

undecidable

$$XPath(\rightarrow,\rightarrow^*,^*\leftarrow)$$

undecidable

$$XPath(\rightarrow^+,^+\leftarrow)$$

undecidable

[F,Segoufin '10]

$$XPath(\rightarrow^+,^*\leftarrow)$$

undecidable

$$XPath(\rightarrow,\rightarrow^*,^*\leftarrow)$$

undecidable

$$XPath(\rightarrow^+)$$

decidable in non-PR time

$$XPath(\rightarrow^+,^+\leftarrow)$$

undecidable

[F,Segoufin '10]

$$XPath(\rightarrow^+,^*\leftarrow)$$

undecidable

$$XPath(\rightarrow,\rightarrow^*,^*\leftarrow)$$

undecidable

$$XPath(\rightarrow^+)$$

decidable in non-PR time

Our result

$$XPath(\rightarrow^*,^*\leftarrow)$$

Known results

$$XPath(\rightarrow^+,^+\leftarrow)$$

undecidable

[F,Segoufin '10]

$$XPath(\rightarrow^+,^*\leftarrow)$$

undecidable

$$XPath(\rightarrow,\rightarrow^*,^*\leftarrow)$$

undecidable

$$XPath(\rightarrow^+)$$

decidable in non-PR time

Our result

$$XPath(\rightarrow^*,^*\leftarrow)$$

decidable in 2ExpSpace (or ExpSpace)

there is only one dv under a c
 for every a, there is a b accessible via a c with the same dv there is a c with the same dv as the current position

there is only one dv under a c
 for every a, there is a b accessible via a c with the same dv there is a c with the same dv as the current position

e.g. a b b a b c a b c c a a b c b
$$\Rightarrow \varphi$$

restricted to subpaths of $\phi = \{ \rightarrow^*[c] \rightarrow^*[b], \rightarrow^*[c], \rightarrow^*[b] \}$

there is only one dv under a c
 for every a, there is a b accessible via a c with the same dv there is a c with the same dv as the current position

restricted to subpaths of $\varphi = \{ \rightarrow^*[c] \rightarrow^*[b], \rightarrow^*[c], \rightarrow^*[b] \}$

there is only one dv under a **c**for every **a**, there is a **b** accessible via a **c** with the same dv there is a **c** with the same dv as the current position

a relation [] if they can abstract consecutive positions in a word

 \rightarrow An infinite transition system $TS(\phi)$ over mosaics.

 φ is satisfiable \Leftrightarrow there is $[] \rightarrow [] \rightarrow [] \rightarrow [] \rightarrow []$

in $TS(\phi)$ s.t. the first and last elements have certain conditions

there is only one dv under a c
 for every a, there is a b accessible via a c with the same dv there is a c with the same dv as the current position

e.g. a b b a b c a b c c a a b c b
$$\Rightarrow \phi$$

We can add a dv that simulates 4

there is only one dv under a c
 for every a, there is a b accessible via a c with the same dv there is a c with the same dv as the current position

e.g. a b bbaab c a b c c aaaab c bb
$$\models \varphi$$
 1 2 49493 1 5 1 1 1 49495 1 49

We can add a dv that simulates 4

there is only one dv under a c
 for every a, there is a b accessible via a c with the same dv there is a c with the same dv as the current position

e.g. a b bbaab c a b c c aaaab c bb
$$= \varphi$$
1 2 49493 1 5 1 1 1 49495 1 49

We can add a dv that simulates 4

...but we cannot simulate 1.

there is only one dv under a c
 for every a, there is a b accessible via a c with the same dv there is a c with the same dv as the current position

e.g. a b bbaab c a b c c aaaab c bb
$$= \varphi$$

We can add a dv that simulates 4 → flexible value
...but we cannot simulate 1 → rigid value

satisfaction of φ is closed under simulation of flexible values

rigid value: from some position it is the only dv accessed with a path α

there is only one dv under a c
 for every a, there is a b accessible via a c with the same dv there is a c with the same dv as the current position

adding simulated values of flexible values: ≤ [] ≤ []

there is only one dv under a **c**for every **a**, there is a **b** accessible via a **c** with the same dv there is a **c** with the same dv as the current position

adding simulated values of flexible values: ≤ [] ≤ []

A monotonicity property:

there is only one dv under a **c**for every **a**, there is a **b** accessible via a **c** with the same dv there is a **c** with the same dv as the current position

adding simulated values of flexible values: ≤ [] ≤ []

A monotonicity property:

there is only one dv under a c
 for every a, there is a b accessible via a c with the same dv there is a c with the same dv as the current position

adding simulated values of flexible values: ≤ [] ≤ []

we only need to consider ≤-minimal mosaics

there are boundedly many (since there are boundedly many rigid values)

we reduce to a derivation problem for a *finite* transition system

Future work XPath on data trees

Decidability/complexity of...

$$XPath(\downarrow,\downarrow*,\rightarrow^*,*\leftarrow)?$$

$$XPath(\downarrow,\downarrow*,\uparrow^*,\rightarrow^*,*\leftarrow)?$$

$$XPath(\downarrow,\downarrow*,\uparrow^*,\rightarrow^*,*\leftarrow)?$$

$$XPath(\downarrow,\downarrow*,\uparrow,\uparrow^*,\rightarrow^*,*\leftarrow)?$$

$$XPath(\downarrow,\downarrow*,\uparrow,\uparrow^*) decidable)$$

$$[F,Segoufin '11]$$

Future work XPath on data trees

Decidability/complexity of...

$$XPath(\downarrow,\downarrow*,\rightarrow^*,*\leftarrow)?$$

$$XPath(\downarrow,\downarrow*,\uparrow^*,\rightarrow^*,*\leftarrow)?$$

$$XPath(\downarrow,\downarrow*,\uparrow^*,\rightarrow^*,*\leftarrow)?$$

$$XPath(\downarrow,\downarrow*,\uparrow^*,\uparrow^*,\rightarrow^*,*\leftarrow)?$$

$$XPath(\downarrow,\downarrow*,\uparrow^*,\uparrow^*) decidable)$$

$$[F,Segoufin '11]$$

thank you