A decidable two-way logic on data words

Diego Figueira

U. Warsaw \& U. Edinburgh

| | A data word |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| a | b | a | c | b | b | a | c |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b | c | a | | | | | |
| 3 | 1 | 7 | 7 | 1 | 3 | 1 | 6 |
| 5 | 1 | 5 | | | | | |

A data word

...word over a finite alphabet infinite domain

(a) For every a there is a future \mathbf{b} with the same dv.
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.

Properties

```
a b a c b c a c b c b
3
```

(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one \mathbf{c}.
(f) For every a there is a future \mathbf{b} with the same dv such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.
(e) Between any a and b with the same dv there is exactly one c.
(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
is
(d) Every a occurrs in between two positions labeled with b with the same dv.
(a) For every a there is a future \mathbf{b} with the same dv.

Properties

(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.
(a) For every a there is a future \mathbf{b} with the same dv .
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.

Properties

$$
\begin{array}{|l|llll|llll}
\hline a & b & a & c & b & c & a & c & b \\
c & b \\
3 & 1 & 7 & 7 & 3 & 3 & 1 & 6 & 7 \\
& 1 & 1
\end{array}
$$

(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one c.
(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
(d) Every a occurrs in between two positions labeled with b with the same dv.
(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.
(a) For every a there is a future \mathbf{b} with the same dv .

(b) Only one dv occurs

 under the label a.(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one c.

$$
\begin{array}{|llllllllll}
\hline a & b & a & c & b & c & a & c & b & c \\
3 & b \\
3 & 1 & 7 & 7 & 3 & 3 & 1 & 6 & 7 & 1
\end{array}
$$

(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.
(a) For every a there is a future \mathbf{b} with the same dv.

(b) Only one dv occurs

 under the label a.(c) For every a there is a previous \mathbf{b} with the same data value.
(d) Every a occurrs in between two positions labeled with \mathbf{b} with the same dv.

Properties

$$
\begin{array}{lllllllllll}
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{~b} \\
3 & 1 & 7 & 7 & 3 & 3 & 1 & 6 & 7 & 1 & 1
\end{array}
$$

(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one c.
(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
(h) The next element of an \mathbf{a} is always ab.
(a) For every a there is a future \mathbf{b} with the same dv .
(b) Only one dv occurs under the label a.

Properties

$$
\begin{array}{lllllllllll}
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{~b} \\
3 & 1 & 7 & 7 & 3 & 3 & 1 & 6 & 7 & 1 & 1
\end{array}
$$

(e) Between any \mathbf{a} and \mathbf{b} with the same $d v$ there is exactly one \mathbf{c}.
(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.

(d) Every a occurrs in between two positions labeled with b with the same dv.
(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.
(a) For every a there is a future b with the same dv .

(b) Only one dv occurs

 under the label a.
Properties

$$
\begin{array}{lllllllllll}
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{~b} \\
3 & 1 & 7 & 7 & 3 & 3 & 1 & 6 & 7 & 1 & 1
\end{array}
$$

(e) Between any a and b with the same dv there is exactly one c.
(f) For every a there is a future \mathbf{b} with the same dv such that in between there is a \mathbf{c} with a different dv.
(g) There are at least two elements in the word.
(d) Every a occurrs in between two positions labeled with b with the same dv.

(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.
(a) For every a there is a future \mathbf{b} with the same dv .

(b) Only one dv occurs

 under the label a.
Properties

$$
\begin{array}{lllllllllll}
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{~b} \\
3 & 1 & 7 & 7 & 3 & 3 & 1 & 6 & 7 & 1 & 1
\end{array}
$$

(e) Between any a and b with the same dv there is exactly one c.
(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
(d) Every a occurrs in between two positions labeled with b with the same dv.
(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.
(a) For every a there is a future \mathbf{b} with the same $d v$.

(b) Only one dv occurs

 under the label a.
Properties

$$
\begin{array}{lllllllllll}
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{~b} \\
3 & 1 & 7 & 7 & 3 & 3 & 1 & 6 & 7 & 1 & 1
\end{array}
$$

(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one c.
(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
(h) The next element of an a is always $a b$.
(a) For every a there is a future \mathbf{b} with the same dv.
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.

Properties

a	b	a	c	b	c	a	c	b	c	b
3	1	7	7	3	3	1	6	7	1	1

but... logics that can express these properties are undecidable
(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one \mathbf{c}.
(f) For every a there is a future \mathbf{b} with the same dv such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.
(a) For every a there is a future \mathbf{b} with the same dv .
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.

Properties

$$
\begin{array}{lllllllllll}
\mathrm{a} & \mathrm{~b} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{a} & \mathrm{c} & \mathrm{~b} & \mathrm{c} & \mathrm{~b} \\
3 & 1 & 7 & 7 & 3 & 3 & 1 & 6 & 7 & 1 & 1
\end{array}
$$

but... logics that can express these properties are undecidable
$(\mathrm{a})+(\mathrm{e})$: non Primitive Recursive hard
(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one \mathbf{c}.
(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
(a) For every a there is a future \mathbf{b} with the same dv.
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.

Properties

a	b	a	c	b	c	a	c	b	c	b
3	1	7	7	3	3	1	6	7	1	1

but... logics that can express these properties are undecidable
$(\mathrm{a})+(\mathrm{e})$: non Primitive Recursive hard
$(\mathrm{a})+(\mathrm{f})$: non Primitive Recursive hard
(e) Between any \mathbf{a} and \mathbf{b} with the same $d v$ there is exactly one c.
(f) For every a there is a future \mathbf{b} with the same dv such that in between there is a \mathbf{c} with a different dv.
(a) For every a there is a future \mathbf{b} with the same dv .
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.

Properties

a	b	a	c	b	c	a	c	b	c	b
3	1	7	7	3	3	1	6	7	1	1

but... logics that can express these properties are undecidable
(a)+(e) : non Primitive Recursive hard
(a) $+(f)$: non Primitive Recursive hard
$(\mathrm{a})+(\mathrm{c})+(\mathrm{e})$: undecidable
(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one \mathbf{c}.
(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a c with a different dv.
(g) There are at least two elements in the word.
(a) For every a there is a future \mathbf{b} with the same dv .
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.

Properties

a	b	a	c	b	c	a	c	b	c	b
3	1	7	7	3	3	1	6	7	1	1

but... $\begin{aligned} & \text { logics that can express these } \\ & \text { properties are undecidable }\end{aligned}$
$\begin{aligned} & \text { but... } \text { logics that can express these } \\ & \text { properties are undecidable }\end{aligned}$
(a)+(e) : non Primitive Recursive hard
$(\mathrm{a})+(\mathrm{f})$: non Primitive Recursive hard
$(\mathrm{a})+(\mathrm{c})+(\mathrm{e}):$ undecidable
$(\mathrm{a})+(\mathrm{c})+(\mathrm{f})$: undecidable
(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one c .
(f) For every a there is a future \mathbf{b} with the same dv such that in between there is a \mathbf{c} with a different $d v$.
(g) There are at least two elements in the word.
(d) Every a occurrs in between two positions labeled with b with the same dv.
(a) For every a there is a future \mathbf{b} with the same dv .
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.

Properties

a	b	a	c	b	c	a	c	b	c	b
3	1	7	7	3	3	1	6	7	1	1

$\begin{aligned} \text { but... } & \begin{array}{l}\text { logics that can express these } \\ \text { properties are undecidable }\end{array}\end{aligned}$
but... $\begin{aligned} & \text { logics that can express these } \\ & \text { properties are undecidable }\end{aligned}$
(a)+(e) : non Primitive Recursive hard
(a) $+(f)$: non Primitive Recursive hard
$(\mathrm{a})+(\mathrm{c})+(\mathrm{e}):$ undecidable
$(\mathrm{a})+(\mathrm{c})+(\mathrm{f}):$ undecidable
$(\mathrm{a})+(\mathrm{c})+(\mathrm{h}):$ Petri Net reachability hard
(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one c .
(f) For every a there is a future \mathbf{b} with the same dv such that in between there is a c with a different dv.
(g) There are at least two elements in the word.
(d) Every a occurrs in between two positions labeled with b with the same dv.
(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.

Logics for data words

(a) For every a there is a future \mathbf{b} with the same dv.
(b) Only one dv occurs under the label a.

$$
\mathrm{FO}^{2}(<,+1, \sim) \quad[\text { Bojańczyk et al. }]
$$ decidable, PN -reach hard

(e) Between any a and b with the same dv there is exactly one c.
(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.

Logics for data words

(a) For every a there is a future \mathbf{b} with the same dv.
(b) Only one dv occurs under the label a.

$$
\mathrm{FO}^{2}(<,+1, \sim) \quad[\text { Bojańczyk et al. }]
$$

$\mathrm{FO}^{2}(<, \sim)$
(e) Between any a and b with the same dv there is exactly one c.
(f) For every a there is a future \mathbf{b} with the same dv such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
(c) For every a there is a previous \mathbf{b} with the same data value.

NExpTime-c

Logics for data words

(a) For every a there is a future \mathbf{b} with the same dv .
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.
(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one \mathbf{c}.

$$
\mathrm{FO}^{2}(<,+1, \sim) \quad[\text { Bojańczyk et al. }]
$$

$$
\operatorname{FO}^{2}(<, \sim)
$$

NExpTime-c
$\operatorname{LTL}^{\downarrow}(F, U, X)$
[Demri, Lazić] decidable, non-PR hard
(f) For every a there is a future \mathbf{b} with the same dv such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.
(a) For every a there is a future \mathbf{b} with the same dv .
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.

Logics for data words

$$
\mathrm{FO}^{2}(<,+1, \sim) \quad[\text { Bojańczyk et al. }]
$$

$\mathrm{FO}^{2}(<, \sim)$
NExpTime-c
$\mathrm{LTL}^{\downarrow}(F, U, X) \underset{\text { decidable, non-PR hard }}{\text { [Demri, Lazić] }}$
$\operatorname{LTL}^{\downarrow}(F)$
[F, Segoufin]
decidable, non-PR hard
(e) Between any a and b with the same dv there is exactly one c.
(f) For every a there is a future \mathbf{b} with the same dv such that in between there is ac with a different dv.
(g) There are at least two elements in the word.
(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.
(a) For every a there is a future \mathbf{b} with the same dv .
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.
(d) Every a occurrs in between two positions labeled with \mathbf{b} with the same dv.

Logics for data words

$$
\mathrm{FO}^{2}(<,+1, \sim) \quad[\text { Bojańczyk et al. }]
$$

$\mathrm{FO}^{2}(<, \sim)$
NExpTime-c
$\mathrm{LTL}^{\downarrow}(F, U, X)$
[Demri, Lazić]
decidable, non-PR hard
$\mathrm{LTL}^{\downarrow}(F)$
[F, Segoufin]
decidable, non-PR hard
$\operatorname{LTL}^{\downarrow}\left(F, F^{-1}\right) \quad[$ F, Segoufin $]$ undecidable
(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one c .
(f) For every a there is a future \mathbf{b} with the same dv such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.

Path on data words

node expressions

$$
\varphi, \psi::=\mathrm{a}|\neg \varphi| \varphi \wedge \psi|\alpha=\beta| \alpha \neq \beta \mid \alpha \quad \mathrm{a} \in A
$$

path expressions

$$
\alpha, \beta::=\varepsilon|\alpha \beta| \alpha[\phi] \mid o
$$

denote binary relations

$$
o \in\left\{\rightarrow, \rightarrow^{+}, \rightarrow^{*}, \leftarrow,+\leftarrow,{ }^{+} \leftarrow\right\}
$$

XPath on data woords

node expressions
$\phi, \psi \because=a|\neg \phi| \varphi \wedge \psi|\alpha=\beta| \alpha \neq \beta \mid \alpha \quad a \in A$
denote sets of positions
path expressions

$$
\alpha, \beta \therefore=\varepsilon|\alpha \beta| \alpha[\phi] \mid 0
$$

denote binary relations

$$
\left.0 \in\{\rightarrow,\rangle^{+}, \rightarrow{ }^{*}, \leftarrow,{ }^{*} \leftarrow,{ }^{*} \leftarrow\right\}
$$

XPath on data words
node expressions

$$
\varphi, \psi::=\mathrm{a}|\neg \varphi| \varphi \wedge \psi|\alpha=\beta| \alpha \neq \beta \mid \alpha \quad \mathrm{a} \in A
$$

path expressions
$\alpha, \beta::=\varepsilon|\alpha \beta| \alpha[\phi] \mid o$

denote binary relations

$$
\boldsymbol{o} \in\left\{\rightarrow, \rightarrow^{+}, \rightarrow^{*}, \leftarrow,+\leftarrow,{ }^{+} \leftarrow\right\}
$$

(a) For every a there is a future \mathbf{b} with the same dv.
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.
E.g.

$$
\left[[\mathrm{a}]^{*} \leftarrow=\rightarrow^{*}[\mathrm{~b}] \rightarrow^{*}[\mathrm{c}]\right]
$$

(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one \mathbf{c}.
(f) For every a there is a future \mathbf{b} with the same dv such that in between there is ac with a different dv.
(g) There are at least two elements in the word.
(h) The next element of an a is always ab.
(a) For every a there is a future \mathbf{b} with the same dv .
(b) Only one dv occurs under the label a.
E.g.

$$
\left[[\mathrm{a}]^{*} \leftarrow=\rightarrow^{*}[\mathrm{~b}] \rightarrow^{*}[\mathrm{c}]\right]
$$

(a) for every position,

$$
\mathrm{a} \Rightarrow \varepsilon=\rightarrow^{*}[\mathrm{~b}]
$$

(e) Between any a and b with the same dv there is exactly one c.
(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a \mathbf{c} with a different dv .
(g) There are at least two elements in the word.
(d) Every a occurrs in between two positions labeled with b with the same dv.
(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.
(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one c.
(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a \mathbf{c} with a different $d v$.
(g) There are at least two elements in the word.
(d) Every a occurrs in between two positions labeled with b with the same dv.
(a) For every a there is a future \mathbf{b} with the same dv.

$$
\left[[\mathrm{a}]^{*} \leftarrow=\rightarrow^{*}[\mathrm{~b}] \rightarrow^{*}[\mathrm{c}]\right]
$$

(a)
$\neg \rightarrow{ }^{*}\left[\neg\left(\mathrm{a} \Rightarrow \quad \varepsilon=\rightarrow^{*}[\mathrm{~b}]\right)\right]$
(b) Only one dv occurs under the label a.
E.g.
(c) For every a there is a previous \mathbf{b} with the same data value.
(a) For every a there is a future \mathbf{b} with the same dv.
(b) Only one dv occurs under the label a.
(c) For every a there is a previous \mathbf{b} with the same data value.
(d) Every a occurrs in between two positions labeled with \mathbf{b} with the same dv.
E.g.

$$
\left[[\mathrm{a}]^{*} \leftarrow=\rightarrow^{*}[\mathrm{~b}] \rightarrow^{*}[\mathrm{c}]\right]
$$

(a)
$\neg \rightarrow^{*}\left[\neg\left(\mathrm{a} \Rightarrow \quad \varepsilon=\rightarrow^{*}[\mathrm{~b}]\right)\right]$
(c) with $\operatorname{XPath}\left({ }^{*} \leftarrow\right)$
(d) with $\operatorname{XPath}\left(\rightarrow^{*},{ }^{*} \leftarrow\right)$
$\operatorname{XPath}\left(\rightarrow^{*},{ }^{*} \longleftarrow\right)$ cannot express (f), (g)
(b) with XPath $\left(\rightarrow^{*}\right)$
(e) Between any \mathbf{a} and \mathbf{b} with the same dv there is exactly one \mathbf{c}.
(f) For every a there is a future \mathbf{b} with the same $d v$ such that in between there is a \mathbf{c} with a different $d v$.
(g) There are at least two elements in the word.
(h) The next element of an \mathbf{a} is always $\mathbf{a} \mathbf{b}$.

Known results

$\operatorname{XPath}\left(\rightarrow^{+},+\leftarrow\right)$ undecidable
[F,Segoufin '10]

Known results

$$
\begin{aligned}
& \operatorname{XPath}\left(\rightarrow^{+},+\leftarrow\right) \\
& \operatorname{XPath}\left(\rightarrow^{+},{ }^{*} \leftarrow\right)
\end{aligned}
$$

undecidable
 [F, Segoufin '10]

undecidable

Known results

$$
\begin{aligned}
& \operatorname{XPath}\left(\rightarrow^{+},{ }^{+} \leftarrow\right) \\
& \operatorname{XPath}\left(\rightarrow^{+},{ }^{*} \leftarrow\right) \\
& \operatorname{XPath}\left(\rightarrow, \rightarrow^{*, *}, \leftarrow\right)
\end{aligned}
$$

undecidable
 [F,Segoufin '10]

undecidable
undecidable

Known results

$\operatorname{XPath}\left(\rightarrow^{+},+\leftarrow\right)$
$\operatorname{XPath}\left(\rightarrow^{+},{ }^{*} \leftarrow\right)$
undecidable
[F, Segoufin '10]
undecidable
$\operatorname{XPath}\left(\rightarrow, \rightarrow{ }^{*},{ }^{*} \leftarrow\right)$
undecidable
$\operatorname{XPath}\left(\rightarrow^{+}\right)$
decidable in non-PR time

Known results

$\operatorname{XPath}\left(\rightarrow^{+},+\leftarrow\right)$
$\operatorname{XPath}\left(\rightarrow^{+},{ }^{*} \leftarrow\right)$
undecidable
[F,Segoufin '10]
$\operatorname{XPath}\left(\rightarrow, \rightarrow{ }^{*, *} \leftarrow\right)$
undecidable
XPath $\left(\rightarrow^{+}\right)$
undecidable
decidable in non-PR time

Our result

$\operatorname{XPath}\left(\rightarrow^{*, *} \leftarrow\right)$

Known results

$\operatorname{XPath}\left(\rightarrow^{+},+\leftarrow\right)$
$\operatorname{XPath}\left(\rightarrow^{+},{ }^{*} \leftarrow\right)$ undecidable [F,Segoufin '10]
undecidable
$\operatorname{XPath}\left(\rightarrow, \rightarrow{ }^{*},{ }^{*} \leftarrow\right)$
undecidable
XPath $\left(\rightarrow^{+}\right)$
decidable in non-PR time

Our result

$\operatorname{XPath}\left(\rightarrow^{*, *} \leftarrow\right)$
decidable in 2ExpSpace
(or ExpSpace)

Proof idea

$\phi:\left\{\begin{array}{l}\text { there is only one dv under ac } \\
\text { for every } \mathbf{a} \text {, there is } \mathbf{a} \mathbf{b} \text { accessible via a } \mathbf{c} \text { with the same dv } \\
\text { there is a } \mathbf{c} \text { with the same dv as the current position }\end{array}\right.$

e.g. \quad	a	b	b	a	b	c	a	b	c	c	a	a	b	c	b
1	2	4	4	3	1	5	1	1	1	4	4	5	1	4	$\quad \vDash \phi$

Proof idea

restricted to subpaths of $\phi=\left\{\rightarrow \rightarrow^{*}[\mathrm{c}] \rightarrow^{*}[\mathrm{~b}], \rightarrow \rightarrow^{*}[\mathrm{c}], \rightarrow[\mathrm{b}]\right\}$

Proof idea

there is only one dv under ac
$\phi:\{$ for every \mathbf{a}, there is $\mathbf{a} \mathbf{b}$ accessible via $\mathbf{a} \mathbf{c}$ with the same $d v$ there is ac with the same dv as the current position

restricted to subpaths of $\phi=\left\{\rightarrow^{*}[\mathrm{c}] \rightarrow^{*}[\mathrm{~b}], \rightarrow^{*}[\mathrm{c}], \rightarrow^{*}[\mathrm{~b}]\right\}$

Proof idea

$\phi:\left\{\begin{array}{l}\text { there is only one dv under a } \mathbf{c} \\ \text { for every a, there is a } \mathbf{b} \text { accessible via a } \mathbf{c} \text { with the same dv } \\ \text { there is a } \mathbf{c} \text { with the same dv as the current position }\end{array}\right.$
a relation

if they can abstract consecutive positions in a word
\rightarrow An infinite transition system TS (ϕ) over mosaics.

in $\operatorname{TS}(\phi)$ s.t. the first and last elements have certain conditions

Proof idea

$\phi:\left\{\begin{array}{l}\text { there is only one dv under ac } \\
\text { for every } \mathbf{a} \text {, there is } \mathbf{a} \mathbf{b} \text { accessible via a } \mathbf{c} \text { with the same } \mathrm{dv} \\
\text { there is a } \mathbf{c} \text { with the same dv as the current position }\end{array}\right.$

e.g. \quad	a	b	b	a	b	c	a	b	c	c	a	a	b	c	b
1	2	4	4	3	1	5	1	1	1	4	4	5	1	4	$\quad \vDash \phi$

We can add a dv that simulates 4

Proof idea

We can add a dv that simulates 4

Proof idea

We can add a dv that simulates 4
...but we cannot simulate 1 .

Proof idea

$\phi:\left\{\begin{array}{l}\text { there is only one dv under a c } \\
\text { for every } \mathbf{a} \text {, there is a } \mathbf{b} \text { accessible via a } \mathbf{c} \text { with the same } \mathrm{dv} \\
\text { there is a } \mathbf{c} \text { with the same dv as the current position }\end{array}\right.$

e.g. \quad| a | b | $b b a a b$ | c | a | b | c | c | $a \operatorname{aa} a b$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 49493 | 1 | 5 | 1 | 1 | 1 | 49495 |
| 1 | 1 | 49 | | | | | | |$\quad \vDash \phi$

We can add a dv that simulates $4 \longrightarrow$ flexible value
\ldots...but we cannot simulate $1 \longrightarrow$ rigid value
satisfaction of ϕ is closed under simulation of flexible values
rigid value : from some position it is the only dv accessed with a path α

Proof idea

> there is only one dv under a c for every \mathbf{a}, there is $\mathbf{a} \mathbf{b}$ accessible via $\mathbf{a} \mathbf{c}$ with the same dv there is a \mathbf{c} with the same dv as the current position

adding simulated values of flexible values: \leq

Proof idea

> there is only one dv under a c for every \mathbf{a}, there is $\mathbf{a} \mathbf{b}$ accessible via a \mathbf{c} with the same dv there is a \mathbf{c} with the same dv as the current position

adding simulated values of flexible values: \leq

A monotonicity property:

Proof idea

> there is only one dv under a c for every \mathbf{a}, there is $\mathbf{a} \mathbf{b}$ accessible via $\mathbf{a} \mathbf{c}$ with the same dv there is a \mathbf{c} with the same dv as the current position

adding simulated values of flexible values: \leq

A monotonicity property:

Proof idea

> there is only one dv under a c for every \mathbf{a}, there is $\mathbf{a} \mathbf{b}$ accessible via $\mathbf{a} \mathbf{c}$ with the same dv there is a \mathbf{c} with the same dv as the current position

adding simulated values of flexible values: \leq

we only need to consider \leq-minimal mosaics
there are boundedly many (since there are boundedly many rigid values)
we reduce to a derivation problem for a finite transition system

Future work XPath on data trees

Decidability/complexity of...
$\operatorname{XPath}\left(\downarrow, \downarrow_{*}, \rightarrow^{*}, \leftarrow\right) ?$
(XPath $(\downarrow, \downarrow *)$ in ExpTime)
$\operatorname{XPath}\left(\downarrow, \downarrow_{*}, \uparrow^{*}, \rightarrow^{*}, \leftarrow\right) ?$
[F '09]
$\operatorname{XPath}\left(\downarrow, \downarrow *, \uparrow, \uparrow^{*}, \rightarrow^{* *}, \leftarrow\right) ? \quad\left(\operatorname{XPath}\left(\downarrow, \downarrow *, \uparrow, \uparrow^{*}\right)\right.$ decidable $)$
[F,Segoufin '11]

Future work XPath on data trees

Decidability/complexity of...

$$
\operatorname{XPath}\left(\downarrow, \downarrow *, \rightarrow^{* *}, \leftarrow\right) ?
$$

(XPath $(\downarrow, \downarrow *)$ in ExpTime)
$\operatorname{XPath}\left(\downarrow, \downarrow *, \uparrow^{*}, \rightarrow^{* *}, \leftarrow\right) ?$
$\operatorname{XPath}\left(\downarrow, \downarrow_{*} \uparrow^{\uparrow}, \uparrow^{*}, \rightarrow^{* *}, \leftarrow\right) ? \quad\left(X \operatorname{Path}\left(\downarrow, \downarrow_{*}, \uparrow, \uparrow^{*}\right)\right.$ decidable $)$
[F,Segoufin '11]
thank you

