
Imperative Programs as Proofs
via Game Semantics

Martin Churchill, Jim Laird, Guy McCusker
University of Bath

Logic in Computer Science, 21st June 2011

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Curry-Howard Correspondence

The Curry-Howard isomorphism notes a striking correspondence
between proofs and functional programs:

Types Propositions

Programs Proofs

Evaluation Proof normalisation

I We can extend our notion of programs to include those with
imperative effects...

I What are the corresponding proofs?

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Overview

I We present a logic where proofs have imperative behaviour.
I The system is expressive:

I This logic contains first-order intuitionistic linear logic
I We can embed a total imperative programming language

I ⇒ We can use the logical structure to specify behaviour of
the imperative programs, etc...

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Games Model

I The logic is based on a simple, well-studied notion of
two-player game

I Propositions ∼= games
I Proofs ∼= (history-sensitive) winning strategies

I Longley has developed a programming language based on
these games. Our work analyses its logical structure.

I We prove a strong full completeness result with respect to this
games model

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Formulas of WS1

I Fix a first-order language L with pairs of predicates (φ,φ) and
a variable set V (=∈ φ)

I For formulas of the logic are as follows:

M, N := 1 | ⊥ | φ(−→x) |
M ⊗ N | M � N | N C P |
∀x .P | M&N | !N

P, Q := 0 | > | φ(−→x) |
POQ | P C Q | P � N |
∃x .P | P ⊕ Q | ?P

I We have an involutive (−)⊥ operation switching polarity

I We can express implication M (N = N C M⊥

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Formulas as Games

I Formulas denote (families of) two-player games
I (indexed over L-structures and valuations)
I Opponent and Player alternately play moves according to a

tree of valid plays
I In negative formulas Opponent starts, in positive formulas

Player starts

I Proofs of a formula denote (uniform families of) winning
P-strategies on the interpretation of that formula.

I Player must always respond to an Opponent-move
I There is a winning condition for infinite plays
I Player must behave “uniformly” with respect to the
L-structure

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Formulas as Games

I Formulas denote (families of) two-player games
I (indexed over L-structures and valuations)
I Opponent and Player alternately play moves according to a

tree of valid plays
I In negative formulas Opponent starts, in positive formulas

Player starts

I Proofs of a formula denote (uniform families of) winning
P-strategies on the interpretation of that formula.

I Player must always respond to an Opponent-move
I There is a winning condition for infinite plays
I Player must behave “uniformly” with respect to the
L-structure

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Units and Additives

I The formula 1 represents the empty game (` 1).

I The formula ⊥ represents the single-move game (6` ⊥).

I We have additive conjunction of negative formulas M&N —
Opponent chooses to play in M, or in N.

(+ positive versions...)

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Multiplicatives

If M and N are negative games, M � N denotes the left-merge:

I A play in M � N is a merge of a play in M and a play in N,
that begins in M.

I Opponent starts playing in M, and may later switch between
the two.

In M ⊗ N, Opponent may start in either component.

M ⊗ N ∼= (M � N)&(N �M)

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Sequents

A sequent of WS1 is of the form Φ ` Γ where:

I Φ consists of the variables in scope and atomic assumptions

I Γ is a nonempty list of formulas of either polarity

Φ ` M,N,P,Q

Comma is to be read as a left-associative � or C:

Φ ` ((M � N) C P) C Q

⇒ First move must occur in first formula.

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Rules for ⊗ and �

There are head introduction rules for each connective.

Φ ` A,N, Γ

Φ ` A� N, Γ

Φ ` M,N, Γ Φ ` N,M, Γ

Φ ` M ⊗ N, Γ

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Exponential

In !N, Opponent may open infinitely many copies of N

!N ∼= N � (N � (N � . . .

⇒ the final coalgebra of X 7→ N � X

Φ ` N, !N, Γ

Φ `!N, Γ
Φ ` N,P⊥,P

Φ `!N,P

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Example: Boolean Storage Cell

I We can define formulas:
I B corresponding to bool
I Bi corresponding to bool → 1

I !var =!(B&Bi) is a type of reusable Boolean variables (read
method and write method)

I We can define a reusable Boolean cell ` B (!var using the
anamorphism rule and a proof p ` var,B,B⊥

B
p
- var � B

id� p
- var � (var � B)

id� (id� p)
- . . .

!var
?

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Example: Boolean Storage Cell

I We can define formulas:
I B corresponding to bool
I Bi corresponding to bool → 1

I !var =!(B&Bi) is a type of reusable Boolean variables (read
method and write method)

I We can define a reusable Boolean cell ` B (!var using the
anamorphism rule and a proof p ` var,B,B⊥

B
p
- var � B

id� p
- var � (var � B)

id� (id� p)
- . . .

!var
?

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Boolean Cell — p

B ((B & Bi) � B
r

r
b

b
r
b

wb

ok
r
b

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Boolean Cell — ana(p)

B ((B & Bi) � B ((B & Bi) � ((B & Bi) � . . .)
wb

wb

ok
ok

r
r
b

b
...

I We can extend this example to define a Boolean Stack in
WS1 (B ∼= pop, Bi ∼= push. For the “state” we use !B)

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Atoms and Quantifiers

I A negative atom φ(−→x) is interpreted as 1 if satisfied, ⊥ if not.

I At a given model M, ∀x .N is represented as the M-fold
product of N.

Φ, φ(−→x) ` ⊥, Γ
Φ ` φ(−→x), Γ

Φ, φ(−→x) ` >, Γ
Φ, φ(−→x) ` φ(−→x), Γ

X] {x}; Θ ` N, Γ
x 6∈ FV (Θ, Γ)

X ; Θ ` ∀x .N, Γ

X] {y}; Θ ` P[y/x], Γ

X] {y}; Θ ` ∃x .P, Γ

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Proofs and Strategies

I We give semantics of proofs as (uniform, winning) strategies

There is a partial converse...

Finitary strategy → proof denoting that strategy

I As well as the head introduction rules, there are rules which
act to combine the tail into a single formula (reading
upwards).

I We can use these to define this full completeness procedure

For infinite strategies, we obtain an infinitary core proof

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Proofs and Strategies

I We give semantics of proofs as (uniform, winning) strategies

There is a partial converse...

Finitary strategy → proof denoting that strategy

I As well as the head introduction rules, there are rules which
act to combine the tail into a single formula (reading
upwards).

I We can use these to define this full completeness procedure

For infinite strategies, we obtain an infinitary core proof

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Intuitionistic Linear Logic

I We can also use the anamorphism rule to derive promotion
I ⇒ Embedding of Intuitionistic Linear Logic in WS1

I There are formulas that are not provable in ILL but are
provable in WS1 e.g. medial:

` ((α⊗ β (⊥)⊗ (γ ⊗ δ (⊥) (⊥) (
((α(⊥)⊗ (γ (⊥) (⊥)⊗ ((β (⊥)⊗ (δ (⊥) (⊥)

I We can also embed Polarized Linear Logic
I And hence CBN and CBV lambda calculi
I With Boolean cells, coroutines, ...

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Uniformity for Controlling Imperative Flow

We can use uniformity of the underlying strategies to give
refinements on imperative beavhiour. E.g...

I Define B′ = ⊥C (α⊕ β), Bi′ = (α&β) C>.

I If α and β are false, B′ = B, Bi′ = Bi

I ... in which case worm = Bi′�!B′ represents the type of a
“write-once-read-many” Boolean cell.

I But since any proof must be a uniform strategy on all models,
any proof of worm must act as a well-behaved Boolean cell.

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Further Directions

I Enhancing the logic to be able to specify more interesting
properties of more interesting programs

I Introducing propositional variables (that can represent
arbitrary games — polymorphism)

I Recursive types (list(B) = µX .⊥C (>⊕ (>� (B⊗ X))))

I Peano axioms, programs over natural number base types and
their properties

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

Thank You

Any questions?

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics

