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Curry-Howard Correspondence

The Curry-Howard isomorphism notes a striking correspondence
between proofs and functional programs:

Types Propositions

Programs Proofs

Evaluation Proof normalisation

I We can extend our notion of programs to include those with
imperative effects...

I What are the corresponding proofs?
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Overview

I We present a logic where proofs have imperative behaviour.
I The system is expressive:

I This logic contains first-order intuitionistic linear logic
I We can embed a total imperative programming language

I ⇒ We can use the logical structure to specify behaviour of
the imperative programs, etc...
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Games Model

I The logic is based on a simple, well-studied notion of
two-player game

I Propositions ∼= games
I Proofs ∼= (history-sensitive) winning strategies

I Longley has developed a programming language based on
these games. Our work analyses its logical structure.

I We prove a strong full completeness result with respect to this
games model
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Formulas of WS1

I Fix a first-order language L with pairs of predicates (φ,φ) and
a variable set V (=∈ φ)

I For formulas of the logic are as follows:

M, N := 1 | ⊥ | φ(−→x ) |
M ⊗ N | M � N | N C P |
∀x .P | M&N | !N

P, Q := 0 | > | φ(−→x ) |
POQ | P C Q | P � N |
∃x .P | P ⊕ Q | ?P

I We have an involutive (−)⊥ operation switching polarity

I We can express implication M ( N = N C M⊥

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics



Formulas as Games

I Formulas denote (families of) two-player games
I (indexed over L-structures and valuations)
I Opponent and Player alternately play moves according to a

tree of valid plays
I In negative formulas Opponent starts, in positive formulas

Player starts

I Proofs of a formula denote (uniform families of) winning
P-strategies on the interpretation of that formula.

I Player must always respond to an Opponent-move
I There is a winning condition for infinite plays
I Player must behave “uniformly” with respect to the
L-structure
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Units and Additives

I The formula 1 represents the empty game (` 1).

I The formula ⊥ represents the single-move game (6` ⊥).

I We have additive conjunction of negative formulas M&N —
Opponent chooses to play in M, or in N.

(+ positive versions...)
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Multiplicatives

If M and N are negative games, M � N denotes the left-merge:

I A play in M � N is a merge of a play in M and a play in N,
that begins in M.

I Opponent starts playing in M, and may later switch between
the two.

In M ⊗ N, Opponent may start in either component.

M ⊗ N ∼= (M � N)&(N �M)
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Sequents

A sequent of WS1 is of the form Φ ` Γ where:

I Φ consists of the variables in scope and atomic assumptions

I Γ is a nonempty list of formulas of either polarity

Φ ` M,N,P,Q

Comma is to be read as a left-associative � or C:

Φ ` ((M � N) C P) C Q

⇒ First move must occur in first formula.
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Rules for ⊗ and �

There are head introduction rules for each connective.

Φ ` A,N, Γ

Φ ` A� N, Γ

Φ ` M,N, Γ Φ ` N,M, Γ

Φ ` M ⊗ N, Γ
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Exponential

In !N, Opponent may open infinitely many copies of N

!N ∼= N � (N � (N � . . .

⇒ the final coalgebra of X 7→ N � X

Φ ` N, !N, Γ

Φ `!N, Γ
Φ ` N,P⊥,P

Φ `!N,P

Martin Churchill, Jim Laird, Guy McCusker University of Bath Imperative Programs as Proofs via Game Semantics



Example: Boolean Storage Cell

I We can define formulas:
I B corresponding to bool
I Bi corresponding to bool → 1

I !var =!(B&Bi) is a type of reusable Boolean variables (read
method and write method)

I We can define a reusable Boolean cell ` B (!var using the
anamorphism rule and a proof p ` var,B,B⊥

B
p
- var � B

id� p
- var � (var � B)

id� (id� p)
- . . .

!var
?
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Boolean Cell — p

B ( (B & Bi) � B
r

r
b

b
r
b

wb

ok
r
b
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Boolean Cell — ana(p)

B ( (B & Bi) � B ( (B & Bi) � ((B & Bi) � . . .)
wb

wb

ok
ok

r
r
b

b
...

I We can extend this example to define a Boolean Stack in
WS1 (B ∼= pop, Bi ∼= push. For the “state” we use !B)
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Atoms and Quantifiers

I A negative atom φ(−→x ) is interpreted as 1 if satisfied, ⊥ if not.

I At a given model M, ∀x .N is represented as the M-fold
product of N.

Φ, φ(−→x ) ` ⊥, Γ
Φ ` φ(−→x ), Γ

Φ, φ(−→x ) ` >, Γ
Φ, φ(−→x ) ` φ(−→x ), Γ

X ] {x}; Θ ` N, Γ
x 6∈ FV (Θ, Γ)

X ; Θ ` ∀x .N, Γ

X ] {y}; Θ ` P[y/x ], Γ

X ] {y}; Θ ` ∃x .P, Γ
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Proofs and Strategies

I We give semantics of proofs as (uniform, winning) strategies

There is a partial converse...

Finitary strategy → proof denoting that strategy

I As well as the head introduction rules, there are rules which
act to combine the tail into a single formula (reading
upwards).

I We can use these to define this full completeness procedure

For infinite strategies, we obtain an infinitary core proof
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Intuitionistic Linear Logic

I We can also use the anamorphism rule to derive promotion
I ⇒ Embedding of Intuitionistic Linear Logic in WS1

I There are formulas that are not provable in ILL but are
provable in WS1 e.g. medial:

` ((α⊗ β ( ⊥)⊗ (γ ⊗ δ ( ⊥) ( ⊥) (
((α( ⊥)⊗ (γ ( ⊥) ( ⊥)⊗ ((β ( ⊥)⊗ (δ ( ⊥) ( ⊥)

I We can also embed Polarized Linear Logic
I And hence CBN and CBV lambda calculi
I With Boolean cells, coroutines, ...
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Uniformity for Controlling Imperative Flow

We can use uniformity of the underlying strategies to give
refinements on imperative beavhiour. E.g...

I Define B′ = ⊥C (α⊕ β), Bi′ = (α&β) C>.

I If α and β are false, B′ = B, Bi′ = Bi

I ... in which case worm = Bi′�!B′ represents the type of a
“write-once-read-many” Boolean cell.

I But since any proof must be a uniform strategy on all models,
any proof of worm must act as a well-behaved Boolean cell.
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Further Directions

I Enhancing the logic to be able to specify more interesting
properties of more interesting programs

I Introducing propositional variables (that can represent
arbitrary games — polymorphism)

I Recursive types (list(B) = µX .⊥C (>⊕ (>� (B⊗ X ))))

I Peano axioms, programs over natural number base types and
their properties
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Thank You

Any questions?
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